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Summary 
A key component of autonomous navigation of intelligent home 
robot is localization and map building with recognized features 
from the environment. To validate this, accurate measurement of 
relative location between robot and features is essential.  
In this paper, we proposed relative localization algorithm based on 
3D reconstruction of scale invariant features of two images which 
are captured from two parallel cameras. We captured two images 
from parallel cameras which are attached in front of robot and 
detect scale invariant features in each image using SIFT(scale 
invariant feature transform). Then, we performed matching for the 
two images' feature points and got the relative location using 3D 
reconstruction for the matched points.  
Stereo camera needs high precision of two camera's extrinsic and 
matching pixels in two camera image. Because we used two 
cameras which are different from stereo camera and scale invariant 
feature point and it was easy to setup the extrinsic parameter. 
Furthermore, 3D reconstruction does not need any other sensor. 
And the results can be simultaneously used by obstacle avoidance, 
map building and localization. We set 20cm the distance between 
two cameras and capture the 3 frames per second. The 
experimental results show ±6cm maximum error in the range of 
less than 2m and ±15cm maximum error in the range of between 
2m and 4m.  
Key words: 
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Introduction 

For a long time, diverse methods to allow robot to decide its 
location has been introduced around the world, but high-
reliability technologies that can be actually used at home 
and in office environment is still at its early stage. Also, 
even though research is ongoing to increase reliability and 
to complement shortcomings by fusing environment 
recognition sensor including ultrasonic sensors, laser, and 
images, systems are complex and additional processes for 
sensor fusion has a lot of problems [1][2].  
Compared to other sensors, image sensors retain much more 
environmental information. Diverse information can be 
extracted depending on image processing techniques, so 

self-localization techniques using only image sensors have 
recently been introduced. This kind of research includes a 
method using artificially manufactured land marks [3] and a 
method using natural land marks. When an artificial land 
mark is used, it is effective and the realization is easy; but, it 
is impossible to apply it when the environment changes. 
Hence the method to use natural land marks has been 
suggested [4].   
Common research uses a method to detect a land mark by 
attaching a camera to a robot, which allows it to look ahead; 
and, many studies are ongoing, such as the latest research, 
vSLAM of the Evolution Robotics company [5]-[7]. Yet 
since the image distance information from this is obscure, 
relative distance, which is provided by an image and an 
encoder on two fixed locations, should be used in order to 
obtain three-dimensional location information of a land 
mark [8]-[11]. Therefore, an exact measurement of robot's 
movement is required to estimate a particular land mark and 
robot's relative location. However, when the measurements 
of robot's distance and position are encoded, it has a 
shortcoming that it is difficult to get an exact distance 
because errors are too big.   
Wnuk[20] proposed an algorism to estimate locations and to 
build a map by using an encoder and two sets of image data, 
while following walls using a monocular vision system. In 
the case of wall following, it is possible to minimize the 
impact of position error in the course of the robot's 
movement because the angle between the robot's direction 
and the central axis of camera is 90°C. However, in this 
kind of system, one cannot use the vision system only for 
building a map and measuring locations to detect front 
obstacles.     
In this paper, binocular camera system was suggested to 
resolve difficulties of monocular camera system which 
requires the location shifting of a mobile robot and an 
accurate measurement of shifted locations in order to detect 
ambient land marks. The existing binocular camera system 
constructs three dimensions (3D) through accurately setting 
up extrinsic parameters of two cameras and matching pixels. 
Thus, it requires a lot of calculations and it is difficult to 
install cameras. Therefore, in this study, we installed two 
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USB cameras on the upper part of a robot with a 20 cm 
distance between the two, and then we detected scale-
invariant features from the two images using the Difference 
of Gaussian (DoG) and the distance to the robot by 
matching the two images' features.  

2. Detecting Scale-Invariant Features and 
Matching  

In order to estimate strong locations in a dynamic 
environment and to build a map, characteristics of natural 
land marks should be detected to distinguish locations in 
acquired images. Natural land marks commonly used indoor 
are doors, windows, and lightings on the ceiling. It can be 
difficult to recognize these natural land marks because of 
partial blocking of land marks, lighting changes, changes of 
the distance to a robot, and changes of visual points. 
Therefore, it is necessary to detect strong features which are 
invariant even when many changes as the aforementioned 
ones occur in images, and the Harris-Laplace method and 
the Difference of Gaussian (DoG) method are mainly used. 
The former based on the Harris corner detection has strong 
points in terms of changes of lighting and of visual points. 
However, the Laplacian Filter needs to be applied to 
Gaussian-Filtered images to obtain extreme values in scale 
space, so there are too many calculations. In contrast, the 
latter uses difference image of Gaussian-Filtered images, so 
there are only a few calculations [12],[13]. Therefore, in 
this paper, the Difference of Gaussian was used to extract 
scale-invariant features.  
The vision system of a mobile robot detects land marks at a 
fixed distance and point, so detecting features should have 
invariant features in scale space. Lindeberg[19] contended 
that only Gaussian Filter can be a Smoothing Filter to be 
used to detect scale-invariant features. Therefore, one 
image's scale space is expressed as formula (1). That is, 
input image ),( yxI , and the Gaussian Function, ),,( σyxG , 
is shown as a convolution [14].  
 

),(*),,(),,( yxIyxGyxLs σσ =                                 (1)  
   
The DoG method is a method to effectively detect the stable 
locations of feature points, by using extreme points in the 
difference of convoluted Gaussian functions, as well as 
images; and this can be obtained by using formula (2).  
 

),,(),,(
),(*)),,(),,((),,(

σσ
σσσ
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−=
−=     (2)  

 
Here a constant, k  , usually uses a multiplier of 2  [5], 
and ),,( σyxG   is defined as formula (3).  
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As the 2D Gaussian function is separable, its convolution 
with the input image can be efficiently computed by 
applying two passes of the 1D Gaussian function in 
horizontal and vertical directions. This paper uses the 1-D 
DoG kernel with 7 sample points and 2=σ , which Lowe 
[14] suggested. Figure 1 shows the 1D DoG Kernel that was 
used.    
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Fig. 1 1D DoG kernel.  

When Input image data is like Fig 2, the process to form 
scale space by applying the above DoG kernel is shown in 
Table 1.  
 

   

Fig. 2 Input image. 

     Table 1: Gaussian and DoG images at the second scale 
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In Table 1, when 1=k , 2=σ , and 8 scale levels (Lev), 
Gaussian images and DoG image were shown at each level, 
which were created by applying Gaussian Smoothing Filter 
two times.   
In created DoG images, with locations of local maximum 
and minimum points, scale invariant feature points are 
selected as candidates. Local maximum and minimum 
points were used to compare each pixel of DoG image at 
each level with total 26 pixels - 8 ambient pixels, 9 pixels 
corresponding to adjacent high level and 9 pixels to low 
level - and made decisions.      
 In order to correct the stability of lighting, candidate points 
found in the DoG images were used to obtain magnitude 
( m ) and orientation (θ ) by using formulas (4) and (5), in 
terms of local images (

yxL ,
) in which a radius of each 

feature point location is 9 pixels.  
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Fig. 3 An orientation histogram and feature point orientation.  

Fig. 3 An orientation histogram and feature point 
orientation 
As shown in the left one of Figure 3, azimuth angles of all 
sample points within the circle area surrounding feature 
points were obtained; and as in the right one, a histogram 
was drawn up by quantize an azimuth to 10 levels and an 
angle with the greatest value was set as a standard 
orientation of feature points. As the distribution on the 
histogram slowly responds to lighting changes, a standard 
orientation has a strong feature against lighting changes.      
Feature points detected by the method to detect scale 
invariant feature points used the SIFT Descriptor of Lowe 
[15], [16]. A standard orientation was obtained by using the 
method to get the fore-mentioned azimuth within the area 
surrounding the feature points, and a new orientation was 
obtained by subtracting a standard orientation from the 
orientation of pixels in the surrounding area, which 
becomes a "canonical orientation" invariant to rotation 
transformation of images. Orientation Histogram made by 
quantizing a canonical orientation, which is invariant to 
rotation transformation, to 8 angles was used as feature 

vectors for feature points. In this paper, as a histogram 
quantized to 8 angles for the 4×4 area was used, each 
feature point becomes a feature vector of the 4×4×8=128 
dimension. Therefore, the descriptor of the scale invariant 
feature points was composed of the 128 feature vectors and 
coordinates, scale, and standard orientations.       
The process to match feature points on immovable images 
is done through comparison of feature vectors. In this paper, 
it was estimated if two feature points are the same points by 
comparing a sum of square of feature vector differences 
with a threshold value, which Lowe [14] suggested. If the 
threshold value is larger, then there are many matching 
points but there are points matched incorrectly; if the 
threshold value is smaller, then the accuracy of matching 
improves but the number of matched points decreases. 
Since the two cameras are installed in parallel, in addition to 
the comparison of feature vectors, the matching of two 
images can be done more accurately by judging if they have 
the same scale level and canonical orientation. However, 
the matching process with reference image can encounter 
image changes that occur due to various changes such as 
lighting change, scale change, rotation change, or a 
combination of these changes, so more stable feature points 
should be detected.             
In this study, feature points that are sensitive to noise and 
have low contrast were first removed with the method 
suggested by Brown and Lowe [15]. In order to ensure the 
stability of feature points, removing the sample points with 
low contrast is not sufficient. The DoG actually gets 
extreme values at edge. Yet depending on edge, points with 
extreme value of a small DoG value are sensitive to little 
noise and become unstable points, and thus should be 
removed.  
In the DoG image, extreme values that have small values at 
edge get a big principle curvature for a horizontal direction 
of edge, but a principle curvature with small values for the 
vertical direction. Principle curvatures can be obtained by 
using a 2×2 Hessian matrix ( hH ) as Formula (6) at the 
location and the scale of a key point.   
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

yyxy

xyxx
h DD

DD
H                                               (6)  

 
Derivatives

xxD , 
xyD , 

yyD , can be obtained by using the 
difference around sample points in the DoG image. When 
the method by Harris and Stephens [17] is used, it can be 
obtained without getting an Eigenvalue, yet only with ratio 
as shown in Formula (7).  
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In order to remove feature points with the ratio between 
principle curvatures of more than 10, r was set as 10 and 
feature points with a value for the ratio between curvatures 
of more than 10 were removed. Through the removal of 
features points with low contrast and the improvement of 
edge response characteristics, the accuracy of matching 
scale-transformed images only by comparing feature vectors 
improved.   

3. Detecting Distance of Feature Points and 
Localization 

In order to detect a distance to feature points, a process to 
transform pixel coordinates of an image plane with a 
coordinate of the real world. Figure 4 shows the process of 
transforming coordinates with an ideal pin-hole camera 
model. M  is a location of 3D real-world coordinate, and m  
is a location of image plane by ideal lens. The center point 
c  on the camera coordinate system is an optical center, and 
the distance between c  and p  is the focal distance, f [18]. 

In this model, all points on extension lines of 
→

Cm  have the 
same ),( vum  on the image plane.   
 

 

Fig. 4 Pin-hole camera model for geometrical analysis. 

To represent this characteristic of reflection, the 
transformation of image coordinates and real-world 
coordinate can be defined by using the perspective 
coordinate system. By adding a scale vectors to, it is 
expressed as Tyxm ]1,,[~ =  TTZYXM ],,,[~ = . The relation between 
perspective coordinates and real coordinates is U=X/T, 
V=Y/T, and W=W/T. A reflection equation using the 
perspective coordinate system is defined as Formula (8). 
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In Formula (8), ],[ TR is the extrinsic parameter of the 
camera, expressing the rotation and moving transformation 
between real-world coordinate system and the camera 
coordinate system, and A indicates the intrinsic parameter 
of the camera.  

In order to get the distance of feature points by using 
Formula (8), first the intrinsic parameters of two camera’s  

lA and rA  are obtained through offline camera calibration. 
For the convenience of calculation and installation, the two 
cameras are set in parallel, having constants, R  and T . 
Parameters used in this paper are defined as in Formula (9). 
In Formula (9), d  is the distance between two cameras.  
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Through matching feature points, extrinsic parameters for 
the same point, M, in real-world get the other two image 
coordinates, 

lm~ and rm~  ; so, by substituting Formula (8), the 
1st linear simultaneous equation as Formula (10) can be 
obtained.  
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As Formula (10) is 4 linear simultaneous equation, it can 
obtain 4 unknowns, the reflection coordinates , and real-
world coordinates that has the center of camera as the origin, 
M(U, V, W), can be obtained with U= X/T, V= Y/T, and 
W= W/T. The actual localization process through detecting 
feature points and the distance to the robot is shown in 
Figure 5.  

 
 

Fig. 5 Flowchart of relative localization. 

For input images of two cameras
lI  and rI  the DoG method 

was applied to each to get features
lP and rP . Two 

perspective coordinates, 
lm and

lm , for the same point are 
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obtained through matching 
lP and rP ; 4 linear simultaneous 

equation are formulated by using the camera's intrinsic 
parameter, A  , and extrinsic parameters, R , and T , 
obtained from the pre-treatment process; and, a solution to 
the linear equation can be acquired by using the SVD 
method. And, detected feature points and the distance 
between cameras, M, are obtained by using the relation of 
perspective coordinates and real-world coordinates; and, it 
is judged whether there are any obstacles in the direction of 
movement, using the distribution of feature points' distances. 
For localization, first, reference image, feature points 
descriptor, and distance information between feature points 
and robot are calculated and saved. Next, relative 
localization is done by comparing the measured distance, 
M  , and saved distance information of feature points 
detected through matching input image and saved reference 
image, 

dM . 
When the location of a feature point on reference image 
is ),,( rrrr ZYXM  , and the location of a feature point on 
input image, which is matched with reference image, 
is ),,( iiii ZYXM  , two feature points satisfy Formula (11). In 
indoor environment, a robot navigates on a plane ground, so 
it satisfies Formula (11). 
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In Formula (11), 

xT ,
yT  and θ  are a current location and 

position of the robot corresponding to reference location 
respectively. Therefore, when every location has more than 
two matching points, a robot's moved location and position 
can be obtained by using Formula (11).  

4. Experiments and Results  

Figure 6 shows the experimental environment. Figure 6 - 
(left) shows a camera installed in Hanuri-RD robot of the 
Hanwool Robotics Company, and Figure 6 - (right) shows 
the whole system that receives input of cameral image from 
Centrino 1.6G IBM laptop through a USB port and controls 
the robot. Two Logitech USB cameras were used.  
 

 

Fig. 6 Experimental environment. 

  

For localization through a vision system, the detection of 
scale invariant features and the measurement of exact 
distance are the keys. Hence, an experiment in which the 
same objects at intervals of 30cm measure the distance 
while moving was conducted. Figure 7 shows input images 
from left-side and right-side cameras when a 70cm-wide 
board is at 90cm and 120cm. Figure 8 shows matched scale-
invariant feature points on input images from left-side and 
right-side cameras and the matching relation on image plane. 
Figure 9 shows the 3D coordinates of matched feature 
points. The grid size of Figure 9 is 30x30cm.  

 

 

Fig. 7 Two camera input image. (left) 90cm. (right)120cm. 

 

Fig. 8 Matched Feature points. (Left)90cm. (right)120cm. 

 

Fig. 9 Measured 3D location for features. (left)90cm. (right)120cm. (grid 
size is 30x30cm). 

Table 2: Results of the measured distance 
Real 

distance(cm)
Number of 

Matched points 
Distance    

Error(cm) 

60 97 ±2 

90 72 ±2 

120 55 ±2 

150 49 ±3 

180 32 ±6 

210 25 ±15 
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Table 2 is the results of the above experiments conducted at 
60cm - 210cm at intervals of 30cm. According to the table, 
when the real distance is less than 150 cm, the distance 
errors are within 10 cm, and as the distance increases, so 
does the error.  
In order to observe the measurement accuracy for an object 
with more complex structure, two boards were arranged at 
angles of 90 degrees and of 120 degrees and the 3D 
coordinates of feature points were obtained from a fixed 
distance. Figure 10 is input image and Figure 11 and 12 
shows matched feature points and the 3D coordinates of 
feature points. In Figure 12, one can see that the distribution 
of detected feature points in fact expresses the arrangement 
angles of board   

 

 

        Fig. 9 Input Image. (left) 120 degree. (right) 90 degree. 

 

       Fig. 10 Matched points. (left) 120 degree. (right) 90 degree. 

 

  Fig. 11 Measured 3D location of feature points. (left) 120 degree. (right) 
90 degree. (grid size 30x30cm)   

 

 

Fig.12 Input image. 

 

Fig. 13 Matched points. 

In the robot navigating environment, input images of the 
camera system reflect various objects placed at fixed 
distances and fixed angles. Therefore, the important 
requirements to search for the path and to avoid the 
obstacles are to distinguish objects placed at fixed distances 
and directions in input images and to accurately measure 
each distance. Hence, we conducted an experiment with 
installing various obstacles at a fixed distance in the 
direction of the robot's navigation. Figure 12 shows input 
images and the distance information of obstacles. Figure 13 
shows matched figure points on left-side and right-side 
input images; and, Figure 14 shows the distribution of 
matched feature points on the x-z plane. As shown in the 
figure, front obstacles at 90cm, 120cm, and 180cm were 
accurately measured.  
 

 

Fig.14 Distance of feature points. 

After saving the reference images and the detected feature 
points for localization experiment, we got input images of a 
fixed location, which included the saved feature points and 
experimented to match with reference images. Figure 15 
shows the saved reference images, feature points, and the 
3D coordinate. Figure 16, 17, and 18 shows images which 
was input after the robot moved, feature points matched 
with reference images, and the 3D coordinate of feature 
points. Since coordinate values of feature points detected at 
the fixed locations are the values of the coordinate system 
centered on the robot, the 3D coordinate of feature points in 
reference images and the 3D coordinate of corresponding 
feature points in input images can be used, through simple 
coordinate transformation, to estimate relative locations 
corresponding to reference locations.    
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Fig. 15 Reference image feature points and measured distance. 

 

Fig. 16 Left rotated input image, matched feature points with reference 
image. 

 

Fig. 17 Right rotated image and matched feature points with reference 
image. 

  

 

Fig. 18 Rotation, moved image and matched feature points with reference 
image. 

Table 3 is the results of relative localization by applying the 
above results to Formula (11).  

 Table 3: Results of relative localization 

 Matched 
Features 

Relative 
Location Angle Distance 

Error (cm) 
Angle Error 

(Degree) 

Fig.16 28 (-18, -10) -27.9° 2.24 1.1 

Fig.17 31 (5.2, 6.4) 10.3° 1.5 1.7 

Fig.18 12 (13.4, 5.3) -24.8° 8.9 3.1 

 

After we conducted above experiments from various angles 
and locations, we found that: the result of relative 
localization within 2m and -30 〫 ∼ 30 〫  was location error 
was on average ±11cm and the mean error of position was 
±3. In the range beyond this, there were few matched 
feature points and too much matching error.  
The processing speed of the proposed method was total 
330ms - 200ms to capture two frames of 320 x 240 gray 
image input from left- and right-side cameras, 60ms to 
detect feature points from the two images, 20ms per 100 
feature points for matching left and right images and 
detecting the distance, and 30ms to match with reference 
image. Table 4 shows the comparison of the proposed 
method and the method using vSLAM [4]. According to 
this, the proposed method measures the distance more 
accurately than vSLAM, does not depend on the 
information of an encoder, and is able to extract the distance 
information of ambient objects even at idle state. However, 
compared to vSLAM that uses only one camera, this 
method using two cameras requires more resource. 
Therefore, even though a system that uses a monocular 
camera like vSLAM is inexpensive but since it depends on 
the information from an encoder, it is difficult to expect a 
high accuracy of distance measurement and localization.  

Table 4: Comparison with vSLAM  
 Proposed Method vSLAM 

Distance 
Accuracy ±10cm(Maximum) ±20cm(median)

No. of Camera 2 1 

Encoder 
Information Not used Used 

Resource Much Little 

5. Conclusions and Future Research  

 In this study, the DoG method was applied to two images 
captured from two general USB camera attached in parallel 
to a mobile robot; scale invariant features were detected; 3D 
coordinates of features were obtained through matching; 
and relative localization was performed through matching 
with reference image. Since the method proposed in this 
study uses two cameras, it demands more resource than a 
system that uses one camera, but it can carry out an accurate 
localization without any assistance from foreign sensors like 
an encoder, and it is capable of avoiding any obstacles in 
front. Also, it is easy to install compared to the existing 
binocular cameras, and due to its fewer amount of 
calculations, it can be utilized for a robot's intelligent 
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navigation within complex and dynamic environments like 
an indoor one   
For global localization in future, building a map database 
based on feature points is necessary. Also, it is required to 
develop an effective way to find matched feature points 
from numerous reference images and feature points stored 
in the map database.      
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