
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

125

A proposed Approach to Model and to Implement Mobile Agents

Adlèn Loukil, Héla Hachicha and Khaled Ghedira

SOIE, Institut Supérieur de Gestion de Tunis, Université de Tunis

Summary
In the last years, mobile agents are gaining great attention as a
new concept for developing and implementing mobile and
distributed applications. However, very little work has taken
place in defining concepts and notations to model mobile
agents.
In this paper, we present an approach to model and to
implement mobile agents. This approach is materialized by a
UML notation, called MA-UML for modeling mobile agents,
and a software CASE Tool, called MAMT for mapping
conceptual diagrams into Java implementation.
Key words:
Mobile Agent, UML, Agent UML, Mobile Agents Engineering

Introduction

Mobile Agents (MAs) are a class of software agents that
have the ability to move from host to host. As a result of
this intrinsic characteristic of mobility, nowadays,
mobile agents raise considerable interest as a new
programming concept for developing and implementing
mobile, distributed and interoperable applications such
as Telecommunication Management, Health-Care
Medicine, information retrieval, and electronic
commerce.

Nowadays there are several technological solutions to
support the development of mobile agent-based
applications. All of them provide a platform to support
the migration and execution of code (agent platform) and
use scripting or interpreted languages (such as TCL or
Java) to cope with heterogeneity. However, these
technologies do not take into account the analysis and
the design phases of the development process. To
contribute towards to solve this problem, we have been
working to propose an approach to model and to
implement mobile agents. This approach is materialized
by a MA-UML (Mobile Agent UML) notation, which
extends the UML [1], and the AUML [2] notations, and
the MAMT (Mobile Agent Modelling Tool) software
CASE Tool, which supports the use of MA-UML
notations and the automatic code generation from
conceptual diagrams.

In this paper we present first the MA-UML notation
for modelling mobile agents. Then, we describe the
MAMT software CASE Tool and our strategy to map the
mobile agent specifications to Java code. This code will

be integrated into a mobile agent platform in order to
implement mobile agent-based applications.

The paper is organized as follows. Section 2 reviews
previous approaches extending the standard UML or\and
AUML formalism to model mobile agents. In section 3,
we describe our approach for modelling mobile agents
and we discuss the contributions of the proposed
approach. Section 4 presents our strategy and CASE
Tool to map mobile agent specifications to Java code.
Finally, a conclusion and an outlook to future works are
made in section 5.

2. Mobile Agent Modeling with UML

In the last years, many agent-oriented modelling
techniques and methodologies have been developed,
such as Agent UML [2], and GAIA [3]. However, these
methodologies, and formalisms are not well suitable to
model mobile agents. In this context, in recent years,
several approaches (methodologies, formalisms, profiles)
for modeling and specifying mobile agents have been
proposed. The literature defines three main types of
approaches which are: the pattern approach [4], the
formal approach [5] and the semi-formal approach [6].

In our work we are interested to semi-formal
approaches and particularly to formalisms which
proposed extensions to UML or\and AUML notations.
We mention hereafter some of them and the most
relevant for our work.

MAM-UML [7] is an approach for the modeling of
mobile-agent applications. It aims to propose extensions
to the standard UML in order to capture relevant
abstractions for the modeling of mobile-agent features.
This approach is materialized by an UML profile, which
includes views to model organizational, lifecycle,
interaction and mobility aspects of mobile-agent
applications contributing to the analysis, design and
implementation phases of their development.

 Klein et al. [8] have proposed some extensions to
UML for mobile agents. They have introduced new
concepts to model strong mobility, weak mobility and
cloning action. Also, they have introduced new
stereotypes to model entities of mobile agent
environments (mobile-agent, mobile-agent systems,
places, and regions). Moreover, they have proposed

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

126

extensions to the sequence diagram in order to model
agent’s movement from one location to another.

Gervais and Muscutariu [9] have defined an
Architecture Description Language (ADL) devoted to
the design of mobile agent systems. This ADL has
proposed some concepts and operation interfaces
necessary for interoperability among heterogeneous
mobile-agent systems. In addition, it has proposed
extensions to deployment and component diagrams and
it has introduced new stereotypes to model mobile agents
and mobile agent systems. Modeling mobility of agent is
supported by the stereotyped flow relationship
"becomes", an operation "move", and operations
"beforeMove" and "afterMove" that prepare the agent for
the migration.

Mouratidis et al. [10] have introduced extensions to
the UML deployment and activity diagrams to give
answers to some questions that arise from the use of
mobile agents. These extensions have been integrated to
the AUML formalism. The AUML deployment diagram
allows developers to capture the reason (why) an agent
moves to a different nodes and the location (where) it
moves. The AUML activity diagram allows developers
to capture the when (timing) a mobile agent leaves a
node to move to another.

3. The proposed MA-UML notation

3.1 The MA-UML notation

According to the literature, the mobility of an agent is
related to some concepts such as: itinerary, location,
move action (strong or weak), remote cloning action,
security, etc. In addition, based on the existing literature
[11], a mobile agent must contain all of the following
models: an agent model, a lifecycle model, a
computational model, a security model, a communication
model and finally a navigation model. Also, it must exist
in a software environment (called the mobile agent
environment) in which it can execute.

Based on these issues and in order to allow developers
to model mobile agents, we define a set of coherent and
interconnected diagrams. We summarize hereafter the
main proposed diagrams.

The Itinerary Diagram: several definitions of the
concept of an itinerary can be found in the literature,
such as: «itinerary describes the places an agent visits,
the tasks/ actions to be performed at each place, and the
order of such traversal», «an agent’s itinerary describes
the tasks of the agent and the locations where those tasks
are to be performed» [12].

Based on these definitions and so on, we deduce that
the static view of itinerary is composed of: places, tasks,
and results. In order to model the mobile agent itinerary
we define a new diagram, called itinerary diagram. This

diagram represents an extension of the UML class
diagram by adding new stereotyped classes and graphical
notations.

In addition, based on these definitions, we deduce that
the itinerary defines the MA travel schema and the
mapping of tasks to be performed on locations. These
issues represent the dynamic view of the MA itinerary.
In order to model the dynamic aspect of the itinerary, we
define two new diagrams: navigation and mobile agent
activity diagrams.

The Navigation Diagram is responsible for modelling
the MA travel schema. This diagram extends the UML
statechart diagram by adding new stereotyped action and
new graphical notations. The states model the locations
while the transitions model the movements of an agent.

The Mobile Agent Activity Diagram is responsible for
modelling tasks to be performed by MA when it is in
running state and the mapping of which places these
tasks need to be performed. This diagram extends the
UML activity diagram by introducing the concept of
location. We propose to attach parameters to each
activity (Parametric Activity). These parameters specify
the list of locations where this activity can be performed.
This set of locations can be updated by adding or
removing locations. Figure 1 illustrates the mobile agent
activity diagram.

Fig. 1. Mobile Agent Activity diagram

The parameters of an activity make possible to model the
reuse aspect of an activity. Also the parameters can be
instantiated during the system execution. Then it is
possible to model the dynamic aspect of the itinerary. As
shown in figure 1, activity1 for example is performed in
place P1 and place P2.

The mobile agent lifecycle diagram
In order to model the mobile agent lifecycle, we

propose a new diagram, called lifecycle diagram. The
lifecycle diagram extends the UML statechart diagram
by adding the concept of location, new stereotyped
actions and new types of transitions: activity, interaction,
and navigation transitions. The Activity transition
triggers the execution of the mobile agent activity
diagram in the "activated" state in order to perform tasks
corresponding to a given location. The interaction
transition triggers the execution of the interaction
diagram in a given state in order to execute

Activity 2

IDP1
IDP3

IDP: IDentity of Place

 Activity 1

IDP1
IDP2

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

127

communication acts. The navigation transition triggers
the execution of the navigation diagram in a given state
in order to determine and to decide to the next location to
be visited. Figures 2, 3 and 4 illustrate respectively the
graphical notations and the use of activity, interaction
and navigation transitions.

Fig. 2. Granularity levels of the lifecycle diagram use: Activity

transition
The activity transition labelled with the stereotyped
action «do» express that MA change its state having
executed a set of activities (tasks) in "activated" state and
corresponding to a given location.

Fig. 3. Granularity levels of the lifecycle diagram use: Interaction
transition

The interaction transition labelled with the stereotyped
action «authenticate» express that MA change its state
having executed a set of communicative acts
corresponding to the authenticate action.

Fig. 4. Granularity levels of the lifecycle diagram use: Navigation
transition

The Navigation transition labelled with the stereotyped
action «decide» express that MA change its state having
decide to the next destination to be visited.

3.2 Relationship between MA-UML’s diagrams

There are seven diagrams in MA-UML notation, which
are: environment diagram, mobile agent diagram,
itinerary diagram, lifecycle diagram, mobile agent
activity diagram, interaction diagram and navigation
diagram. Figure 5 illustrates the relationships between
the different diagrams, which are defined as follows:

Fig. 5 Inter-Model Relationship

Relationship 1 (Environment diagram MA diagram):
each mobile agent specified in the environment diagram
must be specified in the mobile agent diagram in order to
specify its internal structural and its characteristics.
Relationship 2 (MA diagram Itinerary diagram):
when identifying the MA internal structure, it is
necessary to specify the MA itinerary.
Relationship 3 (MA diagram Lifecycle diagram): for
each mobile agent it is necessary to specify the different
states that agent can reach during its lifetime.
Relationship 4 (Lifecycle diagram Intercation
diagram): the lifecycle diagram specify the behavior of
MA during its lifetime. During its lifecycle and in a
given state, MA needs to communicate and to interact
with others entities. This defines the relationship
between lifecycle and interaction diagrams.
Relationship 5 (Lifecycle diagram Activity diagram):
in the “activated” state (in the lifecycle diagram) and in a
given location, MA must execute the set of tasks related
to this location. Therefore, the relationship between the
lifecycle and the MA activity diagrams.
 Relationship 6 (Lifecycle diagram Navigation
diagram): before to transit in the “migrating” state (in the
lifecycle diagram), MA should decide to the next
location where it moves. The navigation diagram defines
the travel planning. Therefore the relationship between
lifecycle diagram and navigation diagram.

3.3 Contributions of the MA-UML notation
All approaches previously described in section 2 are
useful and practical contributions to model mobile agent
applications. However, some deficiencies can be
identified; we mention hereafter some of them:

Environment
diagram

MA diagram

Itinerary
diagram

Lifecycle
diagram

MA Activity
diagram

Navigation
diagram

Interaction
diagram

1 2

3

4

5
6

 Activity diagram

do (location L)

Lifecycle diagram

 do (location L)

MobileAgent

do (location L)

Class diagram

Activity transition

Activated

Suspended

MobileAgent

Authenticate ()

AUML sequence
diagram

authenticate ()

Lifecycle diagram

Class diagram

Interaction transition

Waiting

Activated

authenticate ()

 Navigation diagram

decide (location L)

Lifecycle diagram

MobileAgent

decide (location L)

Class diagram

Navigation transition
 decide (location L)

chooseDest

Suspende

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

128

• Mobile agent lifecycle describes all the states that an
agent can reach during its lifetime and transitions
between states. During its lifetime and in order to
achieve its mission, the MA needs to communicate with
other entities, to move from location to another, and to
perform the assigned tasks. These issues allow to
specify when and how mobile agent transits to one state
to another. In order to specify mobile agent change states,
MA-UML proposes new types of transitions in the UML
statechart diagram to specify relations with the
interaction diagrams, which specifies the communication
acts, the navigation diagram, which specifies the travel
planning, and the activity diagram, which specifies the
tasks plan. Some works have proposed to model the
mobile agent lifecycle, but they have not taken into
consideration relations between change states and
interaction, navigation, and activity models.
• Few works have proposed to design mobile agent
itinerary model. However, they lack concepts that
specify the relations that exist between locations and
activities. MA-UML proposes to introduce the concept
of location in the UML activity diagram in order to
model relationships between activities and locations by
adding parameters to each activity. These parameters
represent the set of locations where this activity can be
performed. MAM-UML [9] has proposed to model
relationships between locations and activities but this
work model the static aspect of the travel schema.
• Most works have proposed to model move action in
UML diagrams, but they did not propose to specify how
identify the destination address, argument of the move
action. In fact, in [13], the syntax of the move action is
defined as: <Boolean, reasons> move (location). Where
the Boolean value (True or False) indicates whether the
movement is successful or unsuccessful, the reason value
contains a string message that explains why the
movement has failed, and location is the address of
location to be visited. MA-UML proposes to model move
action in the statechart diagram. In order to determine the
destination location, MA-UML proposes a new type of
transition, called navigation transition, which triggers the
execution of the navigation diagram. The returned
location represents the argument of the move action.

4. Implementation Strategy

In order to support the use of the MA-UML notation,
and to implement a system using MA-UML, it is
necessary to create a software CASE Tool (Computer
Aided Software Engineering Tool) and to refine the
models and to generate code. In the following sections,
we present first the software CASE Tool we have
developed to generate Java code automatically from the
MA-UML specifications. Then we describe the proposed
strategy for mapping mobile agent specifications to Java
code.

 4.1 A CASE tool for mapping MA-UML diagrams
into Java code

We developed MAMT (Mobile Agent Modeling
Tool) that is a software development environment to
support a mobile agent development process. The
MAMT environment was developed as a set of plug-ins
for the Eclipse Platform [14]. Eclipse provides as much
flexibility as possible and allows developers to create
several plug-ins. The Eclipse provides a solid base with
the Eclipse Modeling Framework (EMF) and Graphical
Editing Framework (GEF).

The MAMT environment, presented in figure 6,
consists of three tools:
The editor tool: includes the MA-UML library. It is
composed of the UML, the AUML and the MA-UML
metamodels. The editor tool supports the creation of a
number of UML, AUML and MA-UML artefacts. The
GEF was used to provide a powerful foundation for
creating editors for visual editing of arbitrary models.
The EMF was used to create and store UML, AUML and
MA-UML models in the XMI format.
The translator tool: includes transformation rules. It is
responsible for the transformation of the MA-UML XMI
file to the UML XMI file.
The code generation tool: includes a Java library. It is
responsible to generate automatically Java code based on
the UML XMI file.

Editor Tool
Java Code

MA-UML Library

AUML Meta model UML Meta model

MA-UML Meta model

Translator Tool
Transformation rules

Eclipse Modeling
Framework EMF

Graphical Editing
Framework GEF

Eclipse Modeling
Framework EMF

MA-UML Specification models

Fig. 6. MAMT environment architecture

Code Generator Tool

Java Library
Eclipse Modeling
Framework EMF

MA-UML XMI file

MAMT Environment

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006

129

4.2 Generating Code from MA-UML diagrams

To transform mobile agent specification models into Java
code, we propose:
• To transform MA-UML models to MA-UML XMI
file. MA-UML XMI is a XMI file generated from MA-
UML DTD, which extends the UML DTD according to
the extensions proposed by MA-UML to the UML
meta-model.
• To transform MA-UML XMI file into UML XMI file
by defining a set of transformation rules.
• To generate Java code based on the UML XMI file.
We present hereafter some transformation rules in order
to implement the lifecycle diagram.

Figure 7 shows the UML class diagram for implementing
MA-UML lifecycle diagram.

Fig. 7. UML class diagram for implementing lifecycle diagram

5. Conclusion

In this paper, an approach for the modelling and the
implementation of mobile agents was introduced. It aims
to deal with the deficiencies of UML and AUML
notations to model mobile agents. This approach is
materialized by a UML notation, called MA-UML, and
the MAMT software CASE Tool we have developed for
mapping MA-UML diagrams into java implementation.

Our future works include two axes. In the first, we are
examining how to develop an ontology to act as a
specification to allow for the consistency checking of the
MA-UML design model. In the second axe we are
looking into the design and the implementation of a
mobile agent application in the medical field with the
MA-UML notation and the MAMT prototype.

References
[1] OMG. Unified Modeling Language (UML), version 1.4.

www.omg.org, September 2001.

[2] Bernhard Bauer, Jörg P. Müller, James Odell: Agent
UML: A Formalism for Specifying Multiagent Interaction.
In Agent-Oriented Software Engineering, Springer-Verlag,
Berlin, pp. 91-103, 2001. (Held at the 22nd International
Conference on Software Engineering (ISCE)).

[3] Wooldridge, M., Jennings N. R., and Kinny, D.: The Gaia
Methodology for Agent-Oriented Analysis and Design.
2000, Journal of Autonomous Agents and Multi-Agent
Systems, Vol.3, No. 3, pp. 285-312.

[4] Arido Y. and Lange D.B.: Agent Design Patterns:
Elements of Agent Application Design. In Proceeding of
Autonomous Agent ’98, ACM Press.

[5] G.P. Picco, A.L. Murphy, and G.-C. Roman: LIME: Linda
Meets Mobility. In proc. Of 21th Int. Conf. On Software
Engineering (ICSE), 1999.

[6] Sutandiyo, W., Chhetri, M, B., Loke, S,W., and
Krishnaswamy, S., (2004): mGaia: Extending the Gaia
Methodology to Model Mobile Agent Systems. Sixth
International Conference on Enterprise Information
Systems (ICEIS 2004), Porto, Portugal, April 14-17.

[7] Belloni E. and Marcos C.: Modeling of Mobile-Agent
Applications with UML. In Proceedings of the Fourth
Argentine Symposium on Software Engineering
(ASSE´2003). 32 JAIIO (Jornadas Argentinas de
Informática e Investigación Operativa), Buenos Aires,
Argentina. September 2003. ISSN 1666-1141, Volumen
32.

[8] Klein C., Rausch A., sihlinh M. and Wen Z.: Extension of
the Unified Modeling Language for mobile agents. In Siau
K. Halpin T. (Eds.): Unified Modeling Language. System
Analysis, Design and Development Issues, chapter VIII.
Idea Group Publishing, 2001.

[9] Muscutariu F. and Gervais M-P.: On the modeling of
mobile agent-based systems. In 3rd International
Workshop on mobile agents for telecommunication
applications (MATA’01), LNCS Vol. 2164, pp. 219-234.
Springer-Verlag, August 2001.

[10] Mouratidis H. Odell J. and Manson G.: Extending the
Unified Modeling Language to Model Mobile Agents.
Workshop on Agent-oriented methodologies. OOPSLA
2002, Seattle, USA, November 2002.

[11] Nwana H.: Software agents: An Overview. Knowledge
and Engineering Review, 11(3) November 1996.

[12] Ling, S. and Loke, S.W.: Verification of Itineraries for
Mobile Agent Enabled Interorganizational Workflow.
Proc. of the 4th Intl. Workshop on Mobility in Databases
and Distributed Systems. 2001. IEEE Computer Society.
(ISBN 0-7695-1230-5). pp. 582-586.

[13] Sutandiyo, W., Chhetri, M, B., Krishnaswamy, S., and
Loke, S,W., (2004): Experiences with Software
Engineering of Mobile Agent Applications. Australian
Software Engineering Conference (ASWEC 2004),
Melbourne, Australia, April 13-16, IEEE Press.

[14] Eclipse.org: Eclipse, v 3.0; Available at:
http://www.eclipse.org/. Accessed on 05/2005.

R1: each state in the lifecycle diagram becomes a class.

R2: each transition from that state becomes a method in the corresponding class.

R3: each action becomes a method in the context class whose behavior is

represented by the lifecycle diagram.

R4: a context class delegates all events for processing to the current state object.

State : MAState

Create ()
Configured ()
Move ()

Context : MobileAgent

MAState « Mobile Agent »
MobileAgent

Initiated

Activated

Waiting

Adlen LOUKIL received the
Dr.degree in Computer Science from
Computer Science Department of
INSA-Lyon, France in 1996, and was
promoted assistant professor in July
1997. His research interest includes
distributed object, mobile agents,
software engineering.

