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Abstract 

In 2001, Itkis and Reyzin proposed the first 

forward-secure signature scheme in which both the 

signing and the verifying are as efficient as the 

underlying ordinary signature scheme. However, 

their method will require to generate many larger 

primes for keys, and key update algorithm is very 

slow, making it impractical for some applications. 

This paper proposes a new efficient method to 

implement the forward-secure signature. The 

proposed method can solve the problem raised by 

Itkis and Reyzin’s scheme of finding many larger 

primes and the efficiency of this method is the same 

as the underlying signature scheme. In the proposed 

scheme, no modular exponentiation and inverse 

computations are required for the key update 

algorithm. Moreover, only four modular 

multiplications, three modular additions and two 

hashing computations are performed by the key 

update procedure. That is more efficient than Itkis 

and Reyzin’s key update algorithm. Comparing with 

the existing forward-secure signature schemes in the 

literatures, the proposed scheme reduces a large of 

computations for the key update procedure. Hence, 

the fast key update algorithm could be used for 

electronic checkbook application. Furthermore, in 

our scheme, the total number of time periods T could 

be extended to T+1 or more periods, and the storage 

space to store its keys and signatures is almost the 

same as in those ordinary signature schemes. Thus, 

the proposed scheme is more practical and has lower 

limitations.  
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1.  Introduction 

The purpose of the digital signature is to 

establish the identity of the document’s signer.  

If the secret key of a signer is compromised, 

then all of the past signatures become 

worthless.  It is possible for a signer to deny 

ever signing the message by claiming that the 

private key has been compromised.  The 

ordinary digital signatures have this limitation.  

The forward-secure signature schemes were 

first proposed by Anderson [1] in 1997 and 

formalized by Bellare and Miner [2] in 1999.  

The goal of the forward-secure signature 

scheme is to preserve the validity of past 

signatures, and the forger cannot forge 

signatures for past time periods even if the 

current secret key has been compromised. This 

is achieved by dividing total time into T 

periods, and by using a different secret key in 
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each time period.  That is, the number of the 

time period is part of the signature.  Therefore, 

in the signature verification, a signature with 

incorrect time periods should not be verified.  

Some schemes require more storage to 

maintain secret keys for future certificates. 

Since the verifier needs to verify a chain of 

certificates to verify the actual signature on a 

message, a longer verification time is needed 

than in ordinary signatures.  In fact, these 

schemes offer a trade-off between storage 

requirements and verification time.  Later, 

some proposed schemes keep the master public 

key fixed but they do not need such certificates 

while per-period secret (public) keys are 

presented. Basically, forward-secure signature 

schemes are the same as ordinary signature 

schemes, the only difference is that there are 

time period and key update algorithm in 

forward-secure signatures.  Because the key 

update algorithm is public in these schemes, 

the verifier does not need to maintain the 

certificates of the secret key in each time 

period.  However, all of these previous 

forward-secure signature schemes took 

significantly longer to sign and verify than 

ordinary signature schemes. 

In 2001, Itkis and Reyzin [3] proposed a 

forward-secure signature scheme based on the 

scheme presented by Guillou and Quisquater 

[4], which is one of the most efficient ordinary 

signature schemes.  Itkis and Reyzin’s method 

is the first forward-secure signature scheme in 

which both the signing and the verifying are as 

efficient as in the ordinary signature scheme.  

Their method also keeps the master public key 

fixed and the key update algorithm is public so 

that no certificates are required for per-period 

secret key.  In their method, the signer will 
use the key ( )ii esn ,,  and the verifier will use 

the public key ( )ieVn ,, , where V is a fixed 

master public key; ie and is  are the public 

key and the secret key for the current time 

period i respectively; and n is a product of two 

large secret primes then publishes n.  Both 

signing and verifying procedures will take two 

modular exponentiations, one modular 

multiplication, and one hash computation. 

However, the (per-period) secret key update 

has to perform O(T) modular exponentiations 

which is inefficient. On the other hand, for the 

security of their scheme, these ie ’s should be 

larger primes and need to ensure that each of 

them should be relatively prime to ( )nφ , 

where ( )nφ  is Euler’s phi-function. Then, it is 

very time-consuming to find larger prime ie ’s 

and to make sure that ie  is relatively prime to 

( )nφ . In the key update algorithm, the signer 

needs some storage requirements to store these 

ie ’s so that it can compute these secret keys 

is ’s. Moreover, in Itkis and Reyzin’s scheme, 

the total number of periods T should be fixed 

from the very beginning, for their subsequence 

secret keys are relatively connected.  Then, T 

periods cannot be easily extended to T+1 or 

more periods. In fact, all previous known 

schemes (with the exception of the very 

inefficient “long signature scheme” described 

in [2] ) require the total number of periods T to 

be fixed in advance and passed as a parameter 

to the key generation algorithm. This is short 

of flexibility. 

In order to improve these disadvantages as 

above, we propose a new efficient and flexible 

forward-secure signature scheme in which both 

the signing and the verifying are as efficient as 
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the underlying ordinary signature scheme.  

The concept behind the proposed method is 

similar to the concept behind Itkis and 

Reyzin’s scheme. We use two generators of 

distinct order to implement so that all public 

keys and secret keys would not be limited by 

larger primes.  Our scheme also keeps the 

master public key fixed, but each period secret 

key can be randomly produced so the key 

update algorithm will be more efficient than all 

previous known schemes. And the T periods 

could be easily extended to T+1 or more 

periods. That means our forward-secure 

signature scheme which does not need the total 

number of time periods to be fixed in advance. 

In addition, the total storage required even with 

additional secrets is still less than in Itkis and 

Reyzin’s scheme as well as in most of the 

previous schemes. In our scheme both the 

signing and the verifying will also require two 

modular exponentiations, one modular 

multiplication, and one hash computation. It is 

the same as in Itkis and Reyzin’s method. But 

in our key update algorithm, no modular 

exponentiation and inverse computations are 

required. Moreover, only four modular 

multiplications, three modular additions and 

two hashing computations are performed by 

the key update procedure. This is very fast 

during each key update. Comparing with Itkis 

and Reyzin’s scheme and the best previous 

schemes that are mentioned in Malkin et al.’s 

paper [7], our scheme reduces a large of 

computations for the key update in each time 

period. In fact, our key update algorithm is 

more efficient than the existing forward-secure 

signature schemes. A fast key update is more 

useful for many applications such as an 

electronic checkbook (e-check) application 

where the time period corresponds to the check 

serial number, rather than physical time. If 

your electronic wallet is stolen or the current 

(e-check) secret key is exposed, you want to 

revoke all compromised checks without 

invalidating the checks which were 

legitimately issued. This could be achieved if 

the secret key is updated after signing every 

check. In this case, the fast key update 

algorithm is as important as fast signature 

generation. Hence, our forward-secure 

signature scheme possesses this property. From 

above, the proposed method is more practical 

and flexible. Furthermore, the security of our 

scheme is based on the difficulty of computing 

discrete logarithms and factorization problems. 

The rest of this paper is organized as 

follows.  In the next section, we will review 

Itkis and Reyzin’s forward-secure signature 

scheme. In Section 3, we present our 

forward-secure signature scheme.  In Section 

4, we analyze the security of our proposed 

method and discuss the efficiency of our 

scheme.  Finally, a brief conclusion is 

presented in Section 5. 

 

2. Related Work 
Itkis and Reyzin’s forward-secure signature 

scheme is based on RSA [5]. There are four 

stages in their scheme: key generation, secret 

key update algorithm, signature generation, 

and signature verification. For the initialization, 

let n=pq, where p and q are two large primes 

and )1)(1()( −−= qpnφ . Later the signer 

publishes n, and keeps p, q, and )(nφ  secret. 

Divide total time into T time periods. Then, we 

briefly review these four stages as follows. 
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Key generation: 

1. Choose a random number 1t  and generate 

larger primes ie  for Ti ,...,2,1= , where 

each ie  is relatively prime to ( )nφ .    

2. Let Teeef ×⋅⋅⋅××= 32 ( ))(mod nφ  and 

fts 11 = ( )nmod . 

3. Compute a master public key 

1

1
esV −

= ( )nmod  and compute 1
12

ett =  

( )nmod . 

4. Finally, the public key is { }Vnpk ,=  and the 

signer will use the secret key 1s , and the 

verifier will use the public key ( )1,, eVn  for 

the initial time period signature. 

Secret key update algorithm: 

The ( j +1)th time period secret key 

Tj

j

ee
j ts ×⋅⋅⋅×
+

+

+
= 2

1
1  ( )nmod  for 

1,...,2,1 −= Tj .  Compute 1
12
+

++ = je
jj tt  

( )nmod . 

Then, the signer will use the secret key 1+js  

and the verifier will use the public key 

( )1,, +jeVn  for the current time period 

Tj ≤+1 . 

Signature generation:  For a message m, 

suppose a signer A uses secret key is  to 

compute σ  and Z as A’s signature in the time 

period i. 

The signature is computed as follows: 

1. Choose a random integer r and compute 
iery = ( )nmod . 

2. Compute ( )myeih i ,, ,=σ  and σ
irsZ =  

( )nmod . 

  Here h( ) denotes a publicly known one-way 

hash function. 

Signature verification:  This process makes 

sure that ( )Z,σ  is A’s signature for message 

m in time period i .  The verifier computes 
σVZy ie=′  ( )nmod . 

If the equation ( )myeih i ,,, ′=σ  is 

satisfied, meaning that yy =′  the verifier 

concludes that ( )Z,σ  is a valid signature for 

message m in the time period i . 

The main idea of Itkis and Reyzin’s scheme 

involves choosing Teee ,...,, 21  to be distinct 

primes such that 1−= Vs ie
i ( )nmod  for 

Ti ≤≤1 . For the security of their scheme, 

ie ’s should be primes. In key generation and 

secret key update stages, the reader can easily 

obtain 1−= Vs ie
i ( )nmod  for Ti ≤≤1 . 

And their method needs some storage 

requirements for ie ’s to maintain the secret 

key update. However, it is very 

time-consuming to find T larger primes [3]. 

Moreover, when the T time periods are 

designed, then they generate T distinct primes, 

for example, Teee ,...,, 21 . And the master 

public key V can be computed as follows:  

ie
isV −=

)(
1

21 Teeet ×⋅⋅⋅××−=  ( )nmod . 

Therefore, these secret keys is ’s are mutually 

dependent. So T cannot be extended to T+1 or 

more, unless it is redefined. Hence, it is not 

flexible.                                         

 

3. Our Proposed Scheme 
The main idea behind our proposed method is 

based on the following statements, which are 

close to the subgroup membership problem [6].  

We will discuss its security in Section 4. 

First, choose a random large prime N of the 
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form 12 += nN , where 21 ppn =  with 1p , 

2p  primes.  And 21 ppK == , the size of 

the binary representation of both 1p  and 2p .  

Next, select two elements 1g and 2g  such that 

1g of order 1p  modulo N and 2g of order 

2p modulo N, i.e., ip
ig =1 ( )Nmod  for 2,1=i . 

Thus, the set { }12
11

1

11
,...,,,1 −= pgggG  

modulo N has 1p  distinct elements, and the 

set { }1
2

2
222

2,,,,1 −= pgggG L  modulo N has 

2p distinct elements. Two sets 1G  and 2G  are 

the subgroups of *
NZ  of order 1p  and 2p , 

respectively. And let 1g  and 2g  are 

generators of 1G  and 2G  respectively. We 

note that 21 GG I = { }1 . Here 1p  and 2p  

are distinct primes, so 1p  has a multiplicative 

inverse 1q  modulo 2p . Also, 2p  has a 

multiplicative inverse 2q  modulo 1p . That is 

111 =qp  ( )2mod p  and 122 =qp  

( )1mod p . Let 221 qp=α  and 112 qp=α . 

Then, we have the following proposition. 

Proposition 1: If 2211 αα kkV +=  ( )nmod , for 

some positive integers 1k  and 2k , then 
1

11
kV gg =  and 2

22
kV gg =  ( )Nmod  hold. 

Proof: For 221 qp=α =1 ( )1mod p  and 

112 qp=α =1 ( )2mod p , there exist two 

integers 1b  and 2b  such that 1111 += pbα  

and 1222 += pbα . Since 11
1 =pg   and 

12
2 =pg  ( )Nmod , then we have  

2211
11

αα kkV gg +=   
( ) 112111

1
1

1
qpkpbk gg ⋅= +  

1
1
kg=  ( )Nmod . 

Similarly, 2211
22

αα kkV gg +=   

      ( )1
22

222221 +⋅= pbkqpk gg   

      2
2
kg=  ( )Nmod . 

Hence, the proposition is proved. 

From the Proposition 1, one can also see the 

workings of the Chinese Remainder Theorem 

(CRT) here. Thus we can write 1kV =  

( )1mod p , 
2kV =  ( )2mod p . 

In our forward-secure signature scheme, we 

divide the total time into T periods with fixed 

“master” public key, and we use different 

secret key in each time period so as to provide 

a forward-security property.  Our scheme 

consists of four stages: key generation, key 

update algorithm, signature generation, and 

signature verification.  Since the key update 

algorithm is public, nothing can be certified for 

per-period secret (public) key. For the 

proposed method, it uses two fixed “master” 

public keys and generates two secret keys in 

each time period, which differs from other 

schemes. Then, we depict these four stages as 

follows. 

Key generation: 

1. Choose a large prime N of the form 

12 += nN  with 21 ppn = , where 1p , 

2p  are distinct secret large primes.  Select 

two integers ig  of order ip  modulo N, 

for ,1=i 2. The signer publishes N, 1g , and 

2g ; and keeps 1p  and 2p  secret. 

2. Compute two master public keys V and U. 

For some positive integers 1k , 2k , and r, 

let 2211 αα kkV +=  ( )nmod and 
21

21
rkrk ggU = ( )Nmod , where  

1221 == qpα  ( )1mod p  and  

1112 == qpα  ( )2mod p , and 1k , 2k , r, 

1α , and 2α  are secret parameters.   // 
21

21
rkrk ggU = = rVgg )( 21  ( )Nmod . // 

3. Select two secret random integers 1t and 2t , 

initial two secret keys )1,( 1111 ths =  

( )Nmod and )1,( 2112 ths = ( )Nmod  
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Then, compute the current public key 

212211111 )()( αα rskrske +++=  

( )nmod , where 1h ( ) is a public one-way 

hashing function. 

4. Finally, the public key is 

{ }UVggNpk ,,,, 21=  and the signer will 

use the secret   keys ( )1211 , ss  and the 

verifier will use the public key ( )1,,, eUVN  

for the initial time period signature. 

Key update algorithm: 

The j th time period secret keys 

),(
1111 jths j = ( )Nmod , ),( 212 jths j =  

( )Nmod where for Tj ,,3,2 ⋅⋅⋅= . And 

compute 222111 )()( αα rskrske jjj +++=  

( )nmod . 

Then, the signer will use the secret key 

( )21 , jj ss  and the verifier will use the public 

key ( )jeUVN ,,,  for the current time period 

Tj ≤ . 

Signature generation:  For a message m, 

suppose a signer A uses secret keys 1is  

and 2is  to compute σ  and Z as A’s signature 

in the time period i . 

The signature is computed as follows: 

1. Choose a random integer 
xggd )( 21= ( )Nmod  for some integer x  

and compute Vdy =  ( )Nmod . 
2. Compute ( )myeih i ,, ,=σ  and 

 σ)( 21
21

ii ss ggdZ =  ( )Nmod . 

  Here h( ) denotes a publicly known one-way 

hash function. 

Signature verification:  This process makes 

sure that ( )Z,σ  is A’s signature for message 

m  in time period i .  The verifier computes 
σσ UggZy ieV −=′ )( 21  ( )Nmod , or 
σ])[( 21 UggZy ieV −=′  ( )Nmod . If the 

equation ( )myeih i ,,, ′=σ  is satisfied, 

meaning that yy =′  the verifier concludes 

that ( )Z,σ  is a valid signature for message m in 

the time period i . The verifier can store 

pre-computation iegg −)( 21 for each period i. 

Then, we give the following theorem to examine 

the correctness of the proposed method: 

Theorem 1: If Vdy = ,b where xggd )( 21= ,  

and 21
21
rkrk ggU = ( )Nmod , for some σ  and 

σ)( 21
21

ii ss ggdZ =  ( )Nmod ,  

then yUggZ ieV =− σσ)( 21  ( )Nmod  holds. 

Proof: Since 2211 αα kkV += ( )nmod and 

222111 )()( αα rskrske iii +++=  ( )nmod , 

from Proposition 1, we have 1
11
kV gg =   and 

2
22
kV gg =  ( )Nmod ; also  )(

11
11 rske ii gg +=   

and )(
22

22 rske ii gg +=  ( )Nmod .  Then,   
σσ UggZ ieV −)( 21      

= Vss ii ggd ])([ 21
21

σ σσ Ugg ie−)( 21      

= Vd )( 21
21

VsVs ii gg σσ )( 21
σσ ii ee gg −− σσ 21

21
rkrk gg     

= Vd     
  = y   ( )Nmod . 

Hence, the theorem is proved. 

According to Theorem 1, our proposed 

scheme will allow a verifier to verify a valid 

signature in each time period, and the keys ie , 

1is  and 2is  need not relatively prime.  In 

fact, these 1is ’s and 2is ’s can be 

independent and the number of periods T could 

be extended to T+1 or more periods. This 

means the proposed method could be used in 

unbounded number of time periods. But in 

Itkis and Reyzin’s method and some schemes 

that are mentioned in Malkin et al.’s paper [7], 

the number of periods T should be fixed from 

the very beginning, for their secret keys are 

relatively connected. Therefore, the proposed 

method is proven to be more flexible and 

friendly than those above mentioned schemes. 
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 4. Security and Performance Analysis 
In this section, we discuss the security and 

analyze the efficiency of our forward-secure 

signature scheme.  The security of our 

scheme lies on the difficulty of computing 

discrete logarithms and factorization problems.  

If an intruder can easily factor the integers 1p  

and 2p  from 21 ppn = , then he can derive 

those secret parameters Vk =1 ( )1mod p , 

Vk =2 ( )2mod p , 221 qp=α =1 ( )1mod p  

and 112 qp=α =1 ( )2mod p . And suppose 

some private session keys
1j

s  and 
2js are 

compromised, then the intruder can compute 

another secret parameter r from the public key 

222111 )()( αα rskrske jjj +++=  ( )nmod . 

Since he knows all the secret values 1k , 2k , r, 

1α , and 2α , he can derive each session secret 

keys 1is  and 2is  when the signer has 

published the session public key 

222111 )()( αα rskrske iii +++=  ( )nmod . 

In this situation, all session’s secret keys can be 

obtained. Then, the proposed scheme is 

insecure.  For the security of our scheme, we 

have 12 += nN  with 21 ppn = , where 

21,, ppN  are primes, thus 1−N  should be 

large enough to make finding its factorization 

difficult. Therefore, the same modulo length 

recommendation as for RSA applies. One can 
suggest that 1024≈N . Moreover, the master 

public key 2211 αα kkV +=  ( )nmod , where 

1k  and 2k are positive integers. That 

is 1kV =  ( )1mod p , and 2kV =  ( )2mod p . 

So V is relatively prime to n , this imply that an 

adversary could not factor n  by means of V. 

On the other hand, given a value y  in NZ  

and some integer V such that yd V =  

( )Nmod , it should be intractable to compute d.  

Therefore, for our scheme to be secure, the 

value V needs to be larger so that computing d 

is infeasible.  If V is small enough that an 

adversary can easily compute d, then the 

adversary can easily obtain σ)( 21
21

ii ss gg from 
σ)( 21

21
ii ss ggdZ = . In this condition, suppose 

that ( )11, Zσ  and ( )22 , Zσ  are the signatures 

of 1m  and 2m  in the i th time period 

respectively.  Now, if ( ) 1,gcd 21 =σσ  then 

the attacker can obtain )( 21
21

ii ss gg  by applying 

the Euclidean algorithm. Thus, he can 
compute ( )~

,
~ ,, myeih i=σ  and 

 ~
21

~ )( 21 σii ss ggdZ =  ( )Nmod  to forge the 

signer’s signature for message ~m . Therefore, 

the attacker can forge the signer’s signature 

without knowing the current secret keys 1is  

and 2is . Hence, the value V needs to be larger 

so that computing d from yd V =  is 

infeasible. Similarly, 21
21
rkrk ggU = = rVgg )( 21  

( )Nmod , so that computing r is infeasible. 

Since 21 ppN +≈  and 21 pp = , it 

would also be sure that the discrete logarithm 

problem is hard in 1G  and 2G .  The 

security of our scheme is very similar to 

Gonzalez Nieto el al.’s scheme [6] that 

proposed a public key cryptosystem based on 

the subgroup membership problem.  To learn 

more about the treatment of the subgroup 

membership problem, the reader can refer to 

Gonzalez Nieto el al.’s paper. 

Let’s consider the key update algorithm, the 

secret keys are ),(
1111 jths j =  ( )Nmod , and 

),( 212 jths j =  ( )Nmod for each time period j , 

where 1t  and 2t  are secret parameters. 

Suppose some private keys 1is and 2is  have 

been exposed, but it does not help the attacker 
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to compute the values 1t  and 2t  because they 

are protected under the hashing function 1h ( ). 

Then, the attacker cannot derive other secret 

keys 
1j

s  and 
2js  for the time period ij ≠ . 

Therefore, the past sessions are safe, and the 

future sessions are safe. That is, forward 

security is provided.  

With regard to the efficiency of our scheme, 

both the signing and the verifying take two 

modular exponentiations, one modular 

multiplication and one hash computation.  It 

is the same as in Itkis and Reyzin’s method.  

However, Itkis and Reyzin’s key update 

algorithm has to perform O(T) modular 

exponentiations in each time period. But in 

the proposed scheme, no modular 

exponentiation and inverse computations are 

required for the key update. Moreover, only 

four modular multiplications, three modular 

additions and two hashing computations are 

performed by the key update procedure. That 

is very efficient during each key update. 

Comparing with Itkis and Reyzin’s scheme 

and the best previous schemes which are 

mentioned in Malkin et al.’s paper [7], the 

proposed scheme reduces a large of 

computations for the key update in each time 

period. In fact, our key update algorithm 

method is more efficient than the existing 

forward-secure signature schemes. Moreover, 

if we take away the time period and the key 

update algorithm, our forward-secure 

signature scheme could still be used in the 

same way as the ordinary signature schemes. 

And it only needs two extra space 

requirements for two random numbers 1t  

and 2t  to update the secret key for each 

time period. The increase storage is less than 

in most previous schemes. On the other hand, 

the proposed method does not certify the 

current public (secret) key for each time 

period. Thus, in our forward-secure signature 

scheme, both the signing and the verifying 

are as efficient as in the ordinary signature 

schemes. We summarize the comparisons of 

our forward-secure signature scheme with 

Itkis and Reyzin’s scheme in Table 1. We 

define related notations to analyze the 

computational complexity. eT  is the time 

for one exponentiation computation; mT  

denotes the time for one modular 

multiplication computation; hT  means the 

time for executing the adopted one-way hash 

function in one’s scheme; Note that the time 

for computing modular addition is ignored, 

since it is much smaller than eT ,  mT , and 

hT . 

  

Table 1. Comparisons for two forward-secure 

signature schemes 

 Our scheme  Itkis-Reyzin’s 

scheme 

Computations 

for the verifier 

hme TTT ++2  hme TTT ++2

 

Computations 

for the signer 

hme TTT ++2  hme TTT ++2

 

Computations 

for the key 

update in each 

time period 

hm TT 24 +  eTTO ⋅)(  

  

As shown in Table 1, our scheme only 

requires four modular multiplications and two 

hashing function for the key update in each 

period. It is obvious that the proposed scheme 
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provides the fast key update algorithm. 

 

5. Conclusions 
In this paper, we solve the problem of 

generating many of the larger primes in Itkis 

and Reyzin’s method.  In our scheme, both 

the signing and the verifying are as efficient as 

underlying the ordinary signature scheme, and 

the storage space for keys and signatures is 

almost the same as in those ordinary signature 

schemes. Moreover, only four modular 

multiplications, three modular additions and 

two hashing computations are required for our 

key update procedure. That is more efficient 

than the existing forward-secure signature 

schemes. And the total number of periods T 

could be extended to T+1 or more periods. It 

means that our forward-secure signature 

scheme does not need its maximal number of 

time periods to be fixed in advance. So, the fast 

key update algorithm and the flexible time 

periods make our scheme very attractive in 

many electronic applications.  

 

References 
[1] R. Anderson, Invited Lecture, Fourth Annual 

Conference on Computer and Communications 

Security, ACM, 1997. 

[2] M. Bellare and S. Miner, “A Forward-Secure 

Digital Signature Scheme,” Advances in 

Cryptology-CRYPTO’99, LNCS 1666, Aug. 1999, 

pp. 431-448.  

[3] G. Itkis and L. Reyzin, “Forward-Secure Signatures 

with Optimal Signing and Verifying,” Advances in 

Cryptology-CRYPTO 2001, LNCS 2139, Aug. 

2001, pp. 332-354. 

[4] L. C. Guillou and J. J. Quisquater, “A Paradoxical 

Identity-Based Signature        Scheme 

Resulting from Zero-Knowledge,” Advances in 

Cryptolgy-CRYPTO’88, Vol. 403, pp. 216-231. 

[5] R. L. Rivest, A. Shamir, and L. Adlemsan, “A 

Method for Obtaining Digital Signatures and 

Public-key Cryptosystem,” Communications of 

ACM, Vol. 21, No. 2, Feb. 1978, pp. 33-39. 

[6] J. M. Gonzalez Nieto, C. Boyd, and Ed Dawson, 

“A Public Key Cryptosystem Based on the 

Subgroup Membership Problem,” Information and 

Communications Security, LNCS 2229, 2001, pp. 

352-363. 

[7] T. Malkin, D. Micciancio, and S. Miner, “ Efficient 

Generic Forward-Secure Signatures with an 

Unbounded Number of Time Periods,” Advances 

in Cryptology-EUROCRYPT 2002, LNCS 2332, 

2002, pp. 400-417.  

 


