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Abstract. In this paper we present a fast algorithm for computing the deceptive degree of an objective function. We 
discuss theoretical foundations of  the fast algorithm and how to get the polynomial representation of a function 
quickly under the condition of that the function value of every input is known. We prove a fast decision theorem of 
whether a monomial  has deception about a variable in it, which makes computing the deceptive degree of a function 
easier. In the final, we describes the fast algorithm and analyses its complexity. 

1  Introduction 

Since Goldberg introduced the notion of deception in genetic algorithms (GAs), deception has come to be widely 
regarded as a central feature in the design of problems that are difficult for GAs. Though a number of different 
definitions of deception as well as types of deception have been proposed in the GA literature(e.g., see [2,3,4,5,6]), the 
relationship between a deceptive problem and a difficult problem is still not easy to be explained. Some 
counterexamples in [7,8,9,10] show that deception is neither necessary nor sufficient to make a problem difficult for a 
GA. For there is no generally accepted definition of deception, how to define deception is still a topic that deservers 
scrutiny.  

 In [1] we presented a novel quantitative measure metric for the "degree of deception" of a problem. We presented a 
new definition for the deceptive degree of a function. We investigated the relationship between the best solution and the 
monomial coefficients of a function, and we gave theorems and experiments that showed the usefulness of the new 
definition. For it is a complex work to computing the deceptive degree of a function according to the new definition in 
[1], we have to consider whether there is a fast algorithm for computing the deceptive degree of a function.  

In this paper we will present a fast algorithm for computing the deceptive degree of a function which was defined in 
[1].  The remainder of the paper is organized as follows: Section 2 reviews the new definition and the main results in 
[1]. The next two sections show theoretical foundations of  the fast algorithm. Section 3 discusses how to get the 
polynomial representation of a function quickly under the condition of that the function value of every input is known. 
Section 4 proves a decision theorem of whether a monomial  has deception about a variable in it, which makes 
computing the deceptive degree of a function easier. Section 5 describes the fast algorithm and analyses the complexity 
of the algorithm. Section 6 summarizes the paper. 

2 The new definition and the main results in [1] 

In this section we will review the new definition for the deceptive degree of a function in [1]. Section 2.1 introduces the 
notation to simplify the expression in this paper. Section 2.2 gives the definition and properties of a critical value which 
plays an important role in the new definition of deception. Section 2.3 describes the new definition which was 
presented in [1]. Some results in [1] which may be useful for the fast algorithm is given in lemma form.  

2.1 Notation 

Without loss of generality, we consider nn }1,0{=Ω as the search space for GAs and a pseudo-boolean function  f : 

Rn →}1,0{  as a fitness function. The goal is to find a best string (or solution) which is correlative to the maximum of 
the function  f . Because the new definition of deception was presented according to the relation between the best string 
and monomial coefficients of a given function, we must consider the function in polynomial form. Every pseudo-
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boolean function can be expressed in polynomial form. By convention,  f  will denote a pseudo-boolean function in 
polynomial form: 

nniiiinn xxxaxxaxaxaaxf
kk

LLLLL LL 2121110 11
)( ++++++=  

where 
kiia L1

is called the coefficient of the monomial 
kii xx L

1
 ,  k is called the degree of the monomial 

kii xx L
1

, 

and the maximum of the degrees of all monomials is called the polynomial degree of  f.  ),,( 1 kiif L−  = 

kk iiiiii xxxaf LL 2121
−  will denote f without the monomial 

kii xx L
1

. K will always represent a subset of 

},,2,1{ nL , and ]);,[( Kiif kik k
∈θ  will denote f where 

kk iix θ= for all Kik ∈  and }1,0{∈
ki

θ . For example, 

let 321321)( xxxxxxxf −++= , then 321)3,2,1( xxxf ++=− , 

333 10101)]0,2(),1,1[( xxxf +=••−++= . 

      A schema has been widely studied in the field of GAs, and is also an important concept in the new definition of 

deception. A schema corresponds to a subset of the search space nn }1,0{=Ω , or more precisely a hyper-plane of 
nΩ . An additional symbol "*"  representing a wild card ("0" or "1") is used to represent a schema. For example, if 

n=4,the strings 0101 and 1101 are the two elements of the schema S=*101. Non-* positions in a schema are called 
defining positions. Defining positions and their corresponding values can be used to get another representation of a 
schema. For example, S[(2,1),(3,0),(4,1)] is also used to represent the schema S=*101. The latter representation of a 
schema is often used in this paper. 

2.2 Definition and properties of a critical value 

A critical value plays an important role in the new definition of deception. Now we gives the concept and properties of 
a critical value of a monomial with respect to a variable.  

Definition 1[1]. For a given function f , λ  is called a critical value of the monomial 
kii xx L

1
with respect to the 

variable
1i

x  if for arbitrary ε >0,   all the best strings of ),,( 1 kiif L− + ( ελ + )
kii xx L

1
 are included in the 

schema )]1,[( 1iS  and one of the best strings of ),,( 1 kiif L− +( ελ − )
kii xx L

1
 is included in the schema 

)]0,[( 1iS , which means that all the maximum of ),,( 1 kiif L− + ( ελ + )
kii xx L

1
satisfy 1

1
=ix  and one of the 

maximum of ),,( 1 kiif L− +( ελ − )
kii xx L

1
satisfies 0

1
=ix .    

Remark. If there exists a critical value of the monomial 
kii xx L

1
with respect to the variable

1i
x   in f  ,  then the 

critical value is unique. If multiple critical values of the same monomial with respect to all variables exist, if exist , they 
are equal. If one of the best strings of f  is included in the schema )]0,[( 1iS , then there exists a critical value of  each 

monomial 
kii xx L

1
 with respect to the variable

1i
x . In other words, If there doesn’t exist a critical value of the 

monomial 
kii xx L

1
 with respect to the variable

1i
x  , then all the best strings of  f must be included in the schema 

S[(i1,1)]. 
Lemma 1[1].  If a critical value of the monomial 

kii xx L
1

 with respect to the variable 
1i

x  of f is 0, then  

)]}0,)[(,,(max{ 11 iiif kL− )]}1,)[(,,(max{ 11 iiif kL−=  

If there doesn’t exist a critical value of the monomial 
kii xx L

1
 with respect to the variable

1i
x   in  f , we say the 

critical value is −∞ where −∞ denotes a negative infinite number.  The following result can be proved. 

Lemma 2[1]. If the coefficient of the monomial 
kii xx L

1
is greater than critical values of the monomial 

kii xx L
1

 with 

respect to all variables, then the best string must be included in )]1,(,),1,(),1,[( 21 kiiiS L . If the coefficient of the 

monomial 
kii xx L

1
is less than one of critical values of the monomial 

kii xx L
1

 with respect to all variables, then the 

best string mustn’t be included in )]1,(,),1,(),1,[( 21 kiiiS L .  
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2.3 The new definition of deception 

In the following, we discussed whether  a monomial has deception about a variable according to the relation between a 
monomial coefficient and a critical value.  
 
Definition 2[1]. If a variable in a monomial satisfies one of the following three conditions, we say that  the monomial 
has deception about the variable. 

(1) If a critical value of the monomial with respect to the variable is 0; 
(2) If a critical value of the monomial with respect to the variable is positive and less than the monomial 

coefficient; 
(3) If a critical value of the monomial with respect to the variable is negative and greater than the monomial 

coefficient. 
Obviously these three conditions contradict each other and at most one can be satisfied.   

Lemma 3[1]. Let f have only one best string, then the monomial 
kii xx L

1
 doesn’t have deception about every variable 

in it if and only if the best string of ),,( 1 kiif L− is the same as the best string of  f . 

 
Remark: Lemma 2 and 3 are help to understand the new definition of deception. For a monomial 

kii xx L
1

, different 

bits between the best string of f and the best string of ),,( 1 kiif L− can be used to depict the GA difficulty. If it is easy 

for a GA to find the best string of f , it may be not easy for the GA to find the best string of ),,( 1 kiif L− only because 

of these different bits, and vice visa. In fact, for a monomial 
kii xx L

1
, if the best string of f is different from the best 

string of ),,( 1 kiif L− , one of the two best strings must be included in the schema )]1,(,),1,(),1,[( 21 kiiiS L . When 

we assume that the best string of f is included in the schema )]1,(,),1,(),1,[( 21 kiiiS L , then the number of variables 

for which the monomial has deception can reflect the difficulty of a GA evolving to the schema 
)]1,(,),1,(),1,[( 21 kiiiS L . Furthermore, if the best string of f is 11…1 , we can reflect the evaluation of the GA 

difficulty of f  by the number of variables about which the monomial has deception.  
 

For simplicity, we only discussed the deceptive degree of a function that has only one best string. 

Definition 3[1]. Let the best string of a function be 11…1, for a monomial whose coefficient isn’t equal to 0 , the 
number of variables about which the monomial has deception is called the deceptive degree of the monomial. The 
maximum of deceptive degrees of monomials of the function is called the deceptive degree of the function. 

    Let  ⊕  denote the binary XOR operation on bits and the bitwise XOR operation on strings.When the best string of a 
function isn’t 111L , the deceptive degree of the function can be computed as follows. 
 
Definition 4[1]. Let the best string of f be  11…1, and  

=),,,(
21 niii xxxg L  ),,,1(

21 niii xxxf L⊕ ， 

then we define the deceptive degree of  g to be equal to the deceptive degree of  f.  
 
From Definition 3 and 4, the deceptive degrees of every function which has only one best string can be computed, 

the deceptive degrees of functions range from 1 to n.  

Lemma 4[1]. For an arbitrary constant C n}1,0{∈ , the deceptive degree of )( Cxf ⊕  is equal to the deceptive 

degree of f (x). 

Lemma 5[1]. The deceptive degree of a function isn’t greater than the polynomial degree of the function. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006 
 
 

223

3 How to get the polynomial representation of a function quickly 

In order to get the fast algorithm for computing the deceptive degree of a function, we must resolve two problems 
which are theoretical foundations of the fast algorithm, one is how to get the polynomial representation of a pseudo-
boolean function quickly, another is how to computing the deceptive degree of a monomial quickly. In the following, 
we will discuss how to resolve the first problem.  

3.1 A theory  for getting the polynomial representation 

If we know the polynomial representation of a pseudo-boolean function, we can get the value of the function for every 
string (input) easily. But if we know the value of a  pseudo-boolean function for every string (input), how to get the 
polynomial representation of the function quickly is worth to consider.  

Theoretically we can get the polynomial representation of a function as follows. First, a pseudo-boolean function f : 

Rn →}1,0{ , should be written in the small item presentation: 

∑
−

=

=
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n

n

c
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n

cc xxxcfxf L                                       (1) 
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Then , let  

.,,2,1,1, 01 nixxxx iiii L=−==  

For every ),,1( nii L= , We substitute ix  for 1
ix  and ix−1  for ix in (1). Final, through the normal polynomial 

operations over real filed , we can get the polynomial representation of f in this form: 

nniiiinn xxxaxxaxaxaaxf
kk

LLLLL LL 2121110 11
)( ++++++=  

Now we discuss how to get the polynomial representation of a function by a computer program. First, we need code 
all coefficients in the polynomial representation of f. The code rule is as follows: The code number of every coefficient 
is a n-length binary number. if ),,1( nii L= is included in the lower ordinate set of  a coefficient, the ith bit of the 

corresponding code number is 1. The ith bit is 0 in another case.  For instance, the corresponding code number of 0a  is 

0)0,,0,0( =L , the corresponding code number of 1a  is 12)0,,0,1( −= nL , the corresponding code number of 21a  

is 21 22)0,,1,1( −− += nnL , the corresponding code number of na L21  is 12)1,,1,1( 1 −= −nL . Obviously ,every 

coefficient has and only has a code number, 2n coefficients are corresponding to 2n code numbers. 

In the following theorem, we will describe how a small item nc
n

cc xxxcf L21
21)(  of f  has influence on polynomial 

coefficients of f  .  
 

Theorem 1.  Let array A[k] represent polynomial coefficients of f ，for every nc }1,0{∈ , 

},,2,1},1,{,}1,0{),,,(|),,,({ 2121 nickcccckkkkK ii
n

nnc LLL =∈∈===   

If cKk ∉ , the small item nc
n

cc xxxcf L21
21)(  of f has no influence on  A[k].           If cKk ∈ , the small item 

nc
n

cc xxxcf L21
21)(  of f makes A[k] increase )()1( )()( cfcwkw −− . Where )(),( cwkw are the number of 1 in 

),,,( 21 nkkk L , ),,,( 21 nccc L respectively. 

 

Proof. Obviously, if 0)( =cf , the small item nc
n

cc xxxcf L21
21)(  of f has no influence on  A[k] for every 

nk }1,0{∈ . Now we consider only the case of  0)( ≠cf . For ),,2,1(,1, 01 nixxxx iiii L=−== ,then if 

1=ic ,all monomials gotten from nc
n

cc xxxcf L21
21)( must include ix ; if 1≠ic ,only half of monomials gotten from 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.3B, March 2006 
 
 

224

nc
n

cc xxxcf L21
21)(  include ix . So if 1=ic , nc

n
cc xxxcf L21
21)(  has influence on A[k] where 1=ik ;  if 0=ic , 

nc
n

cc xxxcf L21
21)(  has influence on A[k] where 0=ik  or 1=ik .  For all ).,2,1( nii L= ,we can get that 

nc
n

cc xxxcf L21
21)(  has influence on A[k] where cKk ∈  and nc

n
cc xxxcf L21
21)(  has no influence on A[k] where 

cKk ∉ . 

     nc
n

cc xxxcf L21
21)(  has influence on A[k] where cKk ∈ and make A[k] change. The corresponding monomial of 

A[k], which is gotten form nc
n

cc xxxcf L21
21)( , is the product of a )(cf , )(kwn −  ones, )()( cwkw −  minus ones 

and )(kw variables. So nc
n

cc xxxcf L21
21)(  makes A[k] increase  )()1( )()( cfcwkw −− .  

3.2 A procedure for getting the polynomial representation 

Now we can give a procedure for getting the polynomial representation of a function under the condition of that the 
function value of every input is known. The concrete steps are as follows: First , let array A[k] represent polynomial 

coefficients of f, the range of k is from 0 to 2n-1, set A[k]=0 for every k. Then ,for every nc }1,0{∈ , if 0)( ≠cf , we 

make A[k] increase )()1( )()( cfcwkw −− for every cKk ∈ . In the final, the value of A[k] is the value of the 

corresponding monomial coefficient . 
    Procedure 1 describes the concrete steps in a similar computer program language.    

Procedure 1 
begin 

for  k←0  to  2n-1  do  A[k]←0; 
for  c←0  to  2n-1  do 

if ( 0)( ≠cf ) 
begin 

            for  k1←c1  to  1  do 
            for  k2←c2  to  1  do 

              ┆ 
        for  kn←cn  to  1  do 
        A[k]←A[k] )()( )()( cfcwkw −−+  

 end 
end 

4 How to compute the deceptive degree of a monomial quickly 

If we want to compute the deceptive degree of a function, we must compute the deceptive degree of every monomial of 
the function according to Definition 3 and 4. then  we must compute the corresponding critical values according 
Definition 1 and 2, which is a complex work. Now we will present a new method to compute the deceptive degree of a 
monomial. 

4.1 A new method to compute the deceptive degree of a monomial 

In the following, we will present a decision theorem of whether a monomial has deception about a variable in it. 
Furthermore, we can get the deceptive degree of a monomial by some simple comparisons.    

Theorem 2. Let f have only one best string which is 111L , and  for every ),,2,1( nii L= ,let 

)]}0,[(|)(max{][ iSxxfipartbest ∈= . If 0
1

<
kiia L , then the monomial 

kii xx L
1

 doesn’t have deception 

about every variable in it. If 0
1

>
kiia L and 

kiiiaxfipartbest L21
)}(max{][ 1 −< , then the monomial 

kii xx L
1
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doesn’t have deception about the variable 
1i

x . If 0
1

>
kiia L and 

kiiiaxfipartbest L21
)}(max{][ 1 −≥ , then the 

monomial 
kii xx L

1
 has deception about the variable 

1i
x . 

Proof.  If 0
1

<
kiia L , suppose the monomial 

kii xx L
1

 has deception about the variable 
1i

x . If a critical value of 

the monomial 
kii xx L

1
with respect to the variable

1i
x is 0, according to Definition 1, the best string of f is included in 

the schema )]0,[( 1iS ,which contradicts the condition of that the best string of f is 11…1. If a critical value of the 

monomial 
kii xx L

1
with respect to the variable

1i
x  is negative and greater than the monomial 

kiia L1
, according to 

Definition 1, the best string of f is also included in the schema )]0,[( 1iS ,which also contradicts the condition of that 

the best string of f is 11…1. So If 0
1

<
kiia L , the monomial 

kii xx L
1

 doesn’t have deception about every variable in 

it. 
  If 0

1
>

kiia L and 
kiiiaxfipartbest L21

)}(max{][ 1 −< ,suppose the monomial 
kii xx L

1
 has deception about 

the variable 
1i

x . According to Definition 2, a critical value of the monomial 
kii xx L

1
with respect to the variable

1i
x  is 

0 or positive and less than the coefficient
kiia L1

. If a critical value of the monomial 
kii xx L

1
with respect to the 

variable
1i

x  is 0, Lemma 1 shows that: 

)]}0,)[(,,(max{ 11 iiif kL− )]}1,)[(,,(max{ 11 iiif kL−= , 

We can get 

)]}}1,)[(,,(max{)]},0,)[(,,(max{max{

)}(max{

1111

21

iiifiiif

axf

kk

iii k

LL

L

−−≤

−
 

                = )]}0,)[(,,(max{ 11 iiif kL−  
][ 1ipartbest=

 

which contradicts the condition of that 
kiiiaxfipartbest L21

)}(max{][ 1 −< . If a critical value of the monomial 

kii xx L
1

with respect to the variable
1i

x  is positive and less than the coefficient
kiia L1

, according to Definition 1, we 

can get 

)]}1,)[(,,(max{)]}0,)[(,,(max{ 1111 iiifiiif kk LL −− ≥  

Then  

)]}}1,)[(,,(max{)]},0,)[(,,(max{max{

)}(max{

1111

21

iiifiiif

axf

kk

iii k

LL

L

−−≤

−
 

                ≤ )]}0,)[(,,(max{ 11 iiif kL−  

][ 1ipartbest=  

which contradicts the condition of that 
kiiiaxfipartbest L21

)}(max{][ 1 −< . So If 0
1

>
kiia L and 

kiiiaxfipartbest L21
)}(max{][ 1 −< , then the monomial 

kii xx L
1

 doesn’t have deception about the variable 
1i

x . 

If 0
1

>
kiia L and 

kiiiaxfipartbest L21
)}(max{][ 1 −= , we will prove that  a critical value of the monomial 

kii xx L
1

with respect to the variable
1i

x  is 0. For arbitraryε ，
kiia L1

0 << ε ,   we get  

}),,(max{
11 kiik xxiif LL ε+−  

)(),,(max{
1111 kkk iiiiiik axxaiif LL LL −++= − ε }

1 kii xx L  
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})max{()}(max{
11 kk iiii xxaxf LL ε−−≥  

)()}(max{
1

ε−−=
kiiaxf L  

ε+= ][ 1ipartbest  

ε+= − )]}0,)[(,,(max{ 11 iiif kL  

Then the best strings of ),,( 1 kiif L− + ε
kii xx L

1
 are included in the schema )]1,[( 1iS  . On the other hand, since 

the best string of is 111L ,we get 

)]}0,)[(,,(max{ 11 iiif kL−  

][ 1ipartbest=  

kiiiaxf L21
)}(max{ −=  

)]}1,)[(,,(max{ 11 iiif kL−=  

ε−≥ − )]}1,)[(,,(max{ 11 iiif kL
kii xx L

1
 

Then one of the best strings of ),,( 1 kiif L− ε−
kii xx L

1
 is included in the schema )]0,[( 1iS . According to 

Definition 1and 2, we get that a critical value of the monomial 
kii xx L

1
with respect to the variable

1i
x  is 0 and the 

monomial 
kii xx L

1
 has deception about the variable 

1i
x .  

If 0
1

>
kiia L and 

kiiiaxfipartbest L21
)}(max{][ 1 −> , we will prove that  a critical value of the monomial 

kii xx L
1

with respect to the variable
1i

x  is positive and less than the coefficient
kiia L1

. First, since the best string of is 

111L ,we get 
)]}0,)[(,,(max{ 11 iiif kL− )]}1,)[(,,(max{ 11 iiif kL−>  

)]}1,)[((max{ 1ixf )]}0,)[(,,(max{ 11 iiif kL−>  

Let  

)]}0,)[(,,((max{ 11
1 iiif kL−=λ 2/)]})1,)[(,,(max{ 11 iiif kL−−  

)]}1,)[(((max{ 1
2 ixf=λ 2/)]})0,)[(,,(max{ 11 iiif kL−−  

Obviously , 

})()]1,)[(,,(max{
121

2
11 kiiiik xxaiiif LL L λ−+−  

)]}0,)[(,,(max{ 11 iiif kL−>  

})]1,)[(,,(max{
1

1
11 kiik xxiiif LL λ+> −  

Furthermore , the function )]}0,)[(,,(max{ 11 iiif kL−  is a constant and the other function 

})]1,)[(,,(max{
111 kiik xxiiif LL λ+−  is an increasing function about the variable λ . So there must exist a 

),0(
11

2010
kk iiii aa LL <−≤≤< λλλλ ， for arbitrary 0>ε , all the best strings of ),,( 1 kiif L− + 

( ελ +0 )
kii xx L

1
 are included in the schema )]1,[( 1iS  and one of the best strings of ),,( 1 kiif L− + 

( ελ −0 )
kii xx L

1
is included in the schema )]0,[( 1iS . Therefore, by Definition 1 and 2, 0λ is a critical value of the 

monomial 
kii xx L

1
 with respect to the variable

1i
x and the monomial 

kii xx L
1

 has deception about the variable 
1i

x .  

      Until now, the theorem is proved. 
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4.2  A procedure for computing the deceptive degree of  a function 

Now we can give a procedure for computing the deceptive degree of  a function at the condition of that all the value of 
A[k] are known and the best string of f is 111L . The concrete steps are as follows: First , let dd represents the 

deceptive degree of f , set dd=0. Compute ][ipartbest  for .,,2,1 ni L= Then, for every nk }1,0{∈ , compute the 
number of variables which the corresponding monomial has deception about , if the number is larger than dd, change 
the value of dd by the number. In the final, the value of dd is the deceptive degree of f. 
     

Procedure 2 describes the concrete steps in a similar computer program language.    
Procedure 2 

begin 
dd=0; 
for  i 1  to  n  do  partbest[i] 0;← ←  
for  k 0  to  2← n-1  do   

for  i 1  to  n  do←  
    if  ((ki=0) and (A[k]>partbest[i])) do    partbest[i] A[k];←     

 
for  k 0  to  2← n-1  do 

if (A[k]>0) do 
begin 

        flag=0; 
        for  i 1  to  n  do←  
            if (partbest[i]≥A[2n-1]-A[k]) do flag flag+1← ; 

     if(flag>dd) dd flag;←  
end 

       return(dd); 
end    

Remark: By Lemma 5, we can simplify Procedure 2. we can compute deceptive degree of monomials according to the 
sequence of monomial degrees from big to small. If the monomial degree of a monomial is less than the current value 
of dd, we needn’t compute the deceptive degree of the monomial for which has no influence on the deceptive degree of 
the function. 

5 A fast algorithm for computing the deceptive degree of a function 

Section 3 and 4 have prepared for a fast algorithm to compute the deceptive degree of a function which has only one 
best string under the condition of that the function value of every input is known. Now we describe the fast algorithm. 
 
Algorithm 1: 
Input: the function value of   every input  of a function )(xf . 

Output: the deceptive degree of the function )(xf . 

Step 1: verify whether )(xf  has only best string and the best string is 111L . If )(xf  has more than one best 

string, we have to terminate the algorithm. If the best string of )(xf is nC }1,0{∈ , which C isn’t equal to 111L  

and 111L=⊕CC , by Definition 4 and Lemma 4, we will compute the deceptive degree of  )( Cxf ⊕  instead of 

the deceptive degree of )(xf in the continuing part of the algorithm. 
Step2: get polynomial coefficients A[k] of the corresponding function by using Procedure 1. 
Step3: get the deceptive degree of the corresponding function by using Procedure2. 
 

Since the space complexity of the algorithm  is mainly for storing function values of  f , polynomial coefficients A[k] 

and other intermediate results, the algorithm needs )2( nO storage. On the other hand, the time complexity of the 

algorithm can be get as follows: Since Step 1 needs )2( nO time, Step 2 needs )3( nO time and Step 2 needs 

)2( nO time,  so the algorithm needs )3( nO time. 
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6 Summary  

In [1], we presented a new definition for the deceptive degree of a function, but it is very complicated to compute the 
deceptive degree of a function according to the new definition. In this paper we present a fast algorithm for computing 
the deceptive degree of a function. We discuss theoretical foundations of  the fast algorithm and how to get the 
polynomial representation of a function quickly under the condition of that the function value of every input is known. 
We prove a fast decision theorem of whether a monomial  has deception about a variable in it, which makes computing 
the deceptive degree of a function easier. In the final, we describes the fast algorithm and analyses the complexity of 
the algorithm. 

The fast algorithm is helpful to discussing the usefulness of the new definition of deception. Whether the new 
definition can play an important role in the connection between the GA performance and the structure of a given 
function deserves further consideration. The relation between the new definition and the old ones should also be taken 
into account for future research.  
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