
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

30

Manuscript received March 25, 2006.
Manuscript revised March 30 , 2006.

Multi-Paradigm Spreadsheet for End Users

Jong-Myung Choi,† and Young-Chul Kim††,

Department of Computer Engineering, Mokpo University, South Korea†
Department of Electronic Commerce, Yuhan College, South Korea††

Summary
Spreadsheets are widely used in various areas by end users
because they are easy to use. However, due to the lack of the
methodology for analysis and design for spreadsheet applications,
users suffer with problems such as high error rates, low
reusability, and maintenance difficulties. To mitigate these
problems, we introduce a multi-paradigm spreadsheet that allows
end users to analyze their problems and design for the solutions.
Our multi-paradigm spreadsheet supports object-oriented
programming, flowchart, XML, and spreadsheet. While writing
the XML document, they analyze the problems by grouping
similar things into one concept, and the concept develops into a
class in object-oriented programming. The flowchart and
spreadsheet are used for describing operations or methods of the
class. Our multi-paradigm spreadsheet is so simple that even end
users can analyze and design for their applications.
Key words:
Multi-Paradigm, Spreadsheet, End Users, OOP

1. Introduction

The Spreadsheet is one of the most popular computer
softwares because of its user friendliness, and it allows
even end users to write applications for auditing,
calculation, or statistics. However, the applications are
developed without any systematic analysis or design [1]
because most of their developers are non-programmers. As
the number of end-user developers increases, the need for
a methodology that even end users can follow easily is
increasing [2].
Spreadsheet applications developed in ad-hoc manner
have serious problems. First of all, these applications
suffer with high error rates. In fact, according to Panko’s
researches [3,4] 20% to 40% of all spreadsheet
applications contain errors. Furthermore, these errors
cause serious financial loss. For example, they found 131
errors in the spreadsheet application used for tax
calculation in UK, and there was a £196,603 loss per error
[5].
Second, a spreadsheet provides only limited support for
reuse. Other programming languages allow users to build
libraries and reuse them. In particular, object-oriented
languages support not only libraries but also inheritance
and composition mechanisms for reuse. However,

spreadsheet supports only copy-paste and macros
mechanism for reuse. Furthermore they are even apt to
cause errors.
Finally, a spreadsheet provides limited mechanisms for
modularity and abstraction. Because it does not provide
high-level abstraction, users have difficulties in
understanding or solving problems. In order to figure out
the overall structure of the application, the users must
repeatedly select a cell, read the formula, and move on to
the next cell, until they have seen enough formulas to get
an overview of the spreadsheet [6].
These problems prevent spreadsheet from being used in
the development of large applications. In order to solve
these problems, we introduce an object-oriented
spreadsheet system. It allows users to think about the
application problems in high conceptual level abstraction,
to analyze and design applications according to software
engineering principles, and to reuse software modules.
Markku’s research [7] shows that the different paradigms
in the spreadsheet system affect the error rates, and that
the high conceptual level reduces error rates in the
spreadsheet. Object-oriented programming in spreadsheets
will reduce errors, increase reusability, and help users to
write high quality programs.
The rest of this paper is divided into 4 sections. In the next
section, we show how to model a spreadsheet program as
class using XML, and then we introduce object-oriented
programming in a spreadsheet. We then discuss related
studies. In the last section, we draw some preliminary
conclusions.

2. Data Modeling

There has been some research on methodologies for
spreadsheet modeling [1,8]. Most of them are basically
based on the structured analysis and design methodology
[8], but nowadays object-oriented programming is widely
used, and it is much easier for end users because it
supports natural modeling, reusability, and maintainability.
Therefore, we set our goal of achieving user-friendly
analysis, design, and programming by combining the
merits of object-oriented programming and spreadsheet
programming.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

31

Since most spreadsheet users are non-programmers, and
they do not have knowledge of object-oriented
programming, a simple method is needed that helps users
in identifying and constructing classes without expert
knowledge. In order to meet this requirement, we decide
to use XML [9] as a means of structuring data and
defining classes. Because XML to object mapping, such as
JAXB [10], is commonly used, it is reasonable.
Furthermore, since the objects used in a spreadsheet are
typically entity objects, the mapping is rather natural.
However, the XML application should be simple enough
for end users to use.
Let me give an example. Assume that we process the
student's score and grade with our approach. First, we
advise users to write an example XML document for a
student. Writing an example document helps users in
analyzing the problem, and structuring data according to
their local meaning and coherence. While they handle
concrete data, they will feel at ease. An XML document
for a student can be written as:

<Student>
 <name>Gil D. Hong</name>
 85
 <eng>90</eng>
 <avg>
 avg = (math + eng) / 2
 </avg>
</Student>

The example XML document is transformed into our
XML application, called TCML (Tiny Class Markup
Language). It has minimum rules for end users. In TCML,
end users can choose their own tag names and write
documents with those tags as long as you follow some
rules on predefined attributes. For example, "type"
attribute is predefined, and it means the data type of a tag
contents. In the example XML document, the tag contents
are converted into the "type" attribute according to its data
type. The type attribute's value "abc" means that the data
type is a string. Similarly, "99" and "99.99" means integer
and real number relatively. If the "type" attribute is
omitted, the data type is considered to be the same as the
tag name.
End users can write either an example XML document or
a strict TCML document. For example, the student
example document is transformed as follows:

<Student>
 <name type="abc"/>
 <math type="99"/>
 <eng type="99"/>
 <avg type='99.99" readonly="yes">
 avg = (math + eng) / 2

 </avg>
</Student>

The TCML document is converted into java classes. The
topmost tag corresponds to class name, and its child tags
match the class's member fields. If a user needs to describe
a method or operation, he/she can describe the formula in
text or the algorithm using the flowchart. The operations
in a spreadsheet are rather simple, and they are in the form
of x = f(x1, x2,.., xn). It means that most spreadsheet
formula can be represented as a function of member fields
within a class. Therefore, in TCML, the operations are
specified as the contents of a tag. For example, the "avg"
tag has the text contents that define how the value should
be calculated. Furthermore, multi-paradigm spreadsheet
provides a graphic flowchart to help users in describing
complex operations.
Inheritance is a very powerful mechanism for reuse in
object-oriented programming. A child class inherits
member fields and methods from the parent class. In
TCML, the inheritance can be denoted with the "kindof"
attribute. For example, the Student class inherited from the
Human class can be described as:

<Human>
 <name type="abc"/>
</Human>
<Student kindof="Human"> ...
</Student>

Composition is another mechanism for reuse in object-
oriented programming. Composition makes it possible to
build a big class composed of other objects. Composition
is easily expressed with nested tags in XML documents.
For example, the ClassRoom class consists of students and
score average. Then, the example document for the
ClassRoom can be described as:

<ClassRoom>
 <Student>
 <name>Gil D. Hong</name> ...
 </Student>
 <Student>
 <name>Chul S. Kim</name> ...
 </Student>
 <avg>
 avg = sum(Student.avg)/numberof(Student)
 </avg>
</ClassRoom>

The example document is transformed into the following
intermediary TCML document.

<ClassRoom>
 <Student number="many"/>
 <avg type="99.99" readonly="yes">

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

32

 avg=sum(Student.avg)/numberof(Student)
 </avg>
</ClassRoom>
The "number" attribute denotes the cardinality. The
repeated tags in the example document (eg. Student) are
condensed to one tag with the "number" attribute. TCML
provides some predefined functions for collective data.
The "sum" and "numberof" are examples of the predefined
functions. The "sum" function returns summation, and the
"numberof" function return the amount of data. The class
designer parses a TCML document, analyzes its meaning,
and converts it into a strict TCML document. The XML
parser checks the validity of the strict TCML document.
The strict TCML has the following DTD.

<!ELEMENT class (field*, method*)>
<!ATTLIST class
 abstract NMTOKEN #IMPLIED
 name NMTOKEN #REQUIRED
 kindof NMTOKEN #IMPLIED>
<!ELEMENT field (#PCDATA)>
<!ATTLIST field
 name NMTOKEN #REQUIRED
 type CDATA #IMPLIED
 number NMTOKEN #IMPLIED
 readonly NMTOKEN #IMPLIED>
<!ELEMENT method (#PCDATA)>
<!ATTLIST method
 name CDATA #REQUIRED
 type CDATA #REQUIRED
 args CDATA #IMPLIED>

The strict TCML document is again converted to a Java
class. The generated class has setter and getter methods for
each member field. However, a tag with a "readonly"
attribute has only a getter method. The generated getAvg()
method of the Student class is as follows:

 public double getAvg() {
 avg = (math + eng) / 2.0;
 return avg;
 }

TCML is very simple and limited because it is designed
for novices. Experts can modify the generated class on
their own, or they can directly write Java classes. Java
classes can be used in the object spreadsheet.

3. Multi-Paradigm Spreadsheet

3.1 Objects in Spreadsheet

In order to apply object-oriented programming to a
spreadsheet, we should be able to represent classes and

objects in it. In a multi-paradigm spreadsheet, classes are
represented in a horizontally contiguous area. Fig. 1 shows
how the Student class is presented on the spreadsheet
system. The read-only member fields have the 'R' symbol
on the upper right corner of spreadsheet cells.

Fig. 1 Class Declaration in Spreadsheet

A class plays the role of model or template for data, and
data located in the vertically contiguous area below the
class declaration is considered as the instances of the class.
Fig. 2 shows the class declaration and its instances in the
object spreadsheet. When the data is input, the setter
methods are called automatically. On presentation of data,
the getter methods are called. For example, when end
users key in the student’s name, the set method is called.
In addition, whenever the Math or English score is
changed by user input, the set methods are called, and the
average is calculated automatically. This removes the need
for users to type the formulas, and this will reduce the
mechanical errors in spreadsheets. The "avg" member field
does not have a setter, so that users cannot input data into
the "avg" cell. This mechanism prevents users from miss-
typing in the wrong cell.

Fig. 2 Class and Objects in Object Spreadsheet

Fig. 3 Inheritance

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

33

We can represent inheritance in the spreadsheet as shown
in Fig. 3. We use a triangle symbol on the upper right
corner of the parent class to identify inheritance.
Composition is represented by a diamond symbol. Fig. 4
shows inheritance and composition in the spreadsheet.
Using the object spreadsheet, users can describe class
declaration, objects, inheritance, and composition in the
spreadsheet. It means that they can apply object-oriented
technology to developing spreadsheet applications.
Programmers are able to use object-oriented tools such as
UML. Systematic object-oriented analysis and design will
reduce logic and omission errors in spreadsheets.

Fig. 4 Composition

3.2 System Architecture

The multi-paradigm spreadsheet system supports both the
spreadsheet paradigm and the object-oriented paradigm.
To make this possible, we determine to separate logic and
presentation in the spreadsheet application. The system is
designed and implemented according to the MVC (Model-
View-Controller) design pattern. View plays the role of
presentation. Model plays the part of logic for the
application. Fig. 5 shows the architecture of the multi-
paradigm spreadsheet system.

Fig. 5 Architecture of Multi-paradigm Spreadsheet

View provides the GUI of the traditional spreadsheet
system. Controller interacts with users, and changes the
state of objects. Model maintains data and program logic,
and performs operations. The classes in the model are
written in the Java programming language, and we choose
this language for its portability. The interaction is
converted into the object-oriented language code by the
transformer, and the Jython interpreter [11] executes the
code. Fig. 6 shows the class designer and the flowchart.
The class designer converts the XML documents into the
Java program. The flowchart is used to describe methods
in the class designer.

Fig. 6 Class Designer and Flowchart

Fig. 7 Multi-paradigm Spreadsheet System

Fig. 7 shows the appearance of the multi-paradigm
spreadsheet. When end users key in data into the cell, a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

34

new instance is created at first, and the value of the
member field is assigned by calling the setter method.
While keying in data, the calculation is performed
automatically. The viewing of the member fields on the
spreadsheet is done by the calling getter methods.

4. Related Works

Due to the success of the spreadsheet, there has been much
research on spreadsheets. Some studies tried to apply the
structured analysis and design methodology to the
spreadsheet in order to reduce logical errors [12,13].
These studies differ from our study in that we use multi-
paradigm programming and the object-oriented
methodology for end users.
Some other studies [2,14,15] are concerned with reducing
or preventing error by providing auditing or assertion
mechanisms. These studies are very useful for current
spreadsheet systems, but they also have the limit of not
being suitable for large applications.
There also has been research on multi-paradigm
programming in spreadsheets. Michael [16] applied Logic
Programming to spreadsheets, and Chris [17] and Bjorn
[18] combined spreadsheet and Functional Languages.
These works are very interesting, but it is rather hard for
end users to use these languages.
Other researchers worked on the object-oriented
spreadsheet. Model Master [19] and ASP [20] are
examples. Model Master is a compiler that generates
spreadsheet equations from textual specifications of
models. Model Master provides inheritance, in the object-
oriented sense of the word, enabling the users to take a
partially specified object, and extend it by adding more
attributes or equations. ASP [20] is a Smalltalk-based
object-oriented spreadsheet. Cells in ASP can literally
hold any type of Smalltalk object. The formula syntax of
ASP is the Smalltalk language with a single added
construction. These object-oriented spreadsheets are
similar to our multi-paradigm spreadsheet, but our system
supports user-friendliness by using XML, flowchart, and a
spreadsheet user interface.

5. Conclusions

Because of the user-friendliness of a spreadsheet, it is
widely used by end users. Inherently, they are not
concerned with systematic analysis or design for their
applications. Due to their ad-hoc programming style, they
suffer serious problems. First of all, spreadsheet
applications contain many errors, and the errors cause
critical financial loss. Second, a spreadsheet hardly
supports reuse. It supports only copy-paste, and the low
reusability prevents spreadsheets from being used for large

applications. Finally, it is very hard to understand the
spreadsheet application’s structure and logic because of its
complex data dependency in formulas.
To reduce these problems, we proposed a multi-paradigm
spreadsheet system. It consists of a class designer and an
object spreadsheet. The class designer allows end users to
define classes using XML and flowchart. The XML
documents are transformed into Java classes automatically.
When the classes are used in the spreadsheet, their
instances are created, and their setter and getter methods
are invoked whenever users input data.
We separate logic and presentation for implementing the
spreadsheet system. In presentation, the class declaration
is presented on the spreadsheet in the horizontally
contiguous area, and the instance is located in the
vertically contiguous area below the class declaration. The
logic part maintains the class definition and class
libraries.
The multi-paradigm spreadsheet allows users to use
object-oriented analysis, design, programming, and
maintenance. In addition it reduces logic and omission
errors by supporting object-oriented technology. It also
reduces mechanical errors by removing the need for
formula input and by preventing users from slips in
"readonly" data. When a user defines classes using RMI or
CORBA, the multi-paradigm spreadsheet system can be
used in distributed computing.

References
[1] Ronen, B., Michael, A. P., Henry, C. L.: Spreadsheet

Analysis and Design, Comm. of ACM, Vol. 32, No. 1 (1989)
84-93

[2] Margaret Burnett, Curtis Cook, and Gregg Rothermel,
"End-user software engineering", Comm. of ACM, Vol. 47,
No, 9, pp. 53-58, Sep., 2004.

[3] Panko, R. R.: Spreadsheet Research (SSR) Website
(http://www.cba.hawaii.edu/panko/ssr/) Honolulu, Hawaii:
University of Hawaii

[4] Panko, R. R., Halverson, R. P. Jr., "Spreadsheets on Trial: A
Framework for Research on Spreadsheet Risks", Proc. of
the 29th Hawaii International Conference on System
Sciences , 1996.

[5] Raymond J. Butler, "Is This Spreadsheet a Tax Evader?
How H.M. Customs & Excise Test Spreadsheet
Applications", Proc. Of the 33rd Hawaii International
Conference on System Sciences, 2000.

[6] Igarashi, T., et al., "Fluid Visualization of Spreadsheet
Structures", Proc. 14th IEEE Symposium on Visual
Languages, pp. 118-125, 1998.

[7] Tukianen, M.: Uncovering Effects of Programming
Paradigms: Errors in Two Spreadsheet Systems, Proc. of
PPIG-12 12th Annual Meeting of the Psychology of
Programming Interest Group, pp. 247-265, 2000.

[8] Knight, B., Chadwick, D., Rajalingham, K., "A Structured
Methodology For Spreadsheet Modeling", Proc. of the
EuSpRIG 2000 Symposium on Spreadsheet Risks, Audit and
Development Methods, pp. 43-50, 2000.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

35

[9] XML, available at http://www.w3.org/xml/
[10] Sun, Java Architecture for XML Binding, available at

http://java.sun.com/xml/jaxb/.
[11] Hugunin, J., "Python and Java: The Best of Both Worlds",

Proc. of the 6th International Python Conference, 1997,
available at http://jpython.org/.

[12] Kamalasen Rajalingham et al, "Quality Control in
Spreadsheets: A Software Engineering-Based Approach to
Spreadsheet Development", Proc. of the 33rd Hawaii
international Conference on System Sciences, 2000.

[13] Brian Knight, David Chadwick and Kamalasen Rajalingham,
"A Structured Methodology for Spreadsheet Modelling", in
Proc. of EuSpRIG, pp. 43-50, 2001.

[14] Takeo Igarashi et al, "Fluid Visualization of Spreadsheet
Structures", Proc. of IEEE Symposium on Visual Languages,
pp. 118-125, 1998.

[15] Gregg Rothermel, et al, "A Methodology for Testing
Spreadsheets", ACM Transactions on Software Engineering
and Methodology, Vol. 10, No. 1, pp. 110-147, 2001.

[16] Michael Spenke and Christian Beilken, "A Spreadsheet
Interface for Logic Programming", Proc. of CHI, pp. 75-80,
1988.

[17] Chris Clack and Lee Braine, "Object-oriented functional
spreadsheets", Proc. of the Glasgow Workshop on
Functional Programming, pp. 1-12, 1997.

[18] Björn Lisper and Johan Malmström, "Haxcel: A
Spreadsheet Interface to Haskell", Proc. of International
Workshop on the Implementation of Functional Languages,
pp. 206-222, 2002, available at http://www.mrtc.mdh.se/.

[19] Paine, J., "Model Master: an object-oriented spreadsheet
front end", Proc. of CALECO97, 1997.

[20] Piersol, K. W., "Object Oriented Spreadsheets: The
Analytic Spreadsheet Package", Proc. of OOPSLA, pp. 385-
390, 1986.

Jong-Myung Choi received the B.S., M.S.,
and PhD degrees in Computer Science from
Soongsil University, Korea, in 1992, 1996,
and 2003. He is currently a professor in the
School of Information Engineering, Mokpo
National University, Korea. His research
interests are the multi-paradigm
programming, XML processing, and
ubiquitous computing.

Young-Chul Kim received the B.S.
degree in Computer Science from Hannam
University in 1990, and M.S. and PhD
degrees in Computer Science from SoongSil
University, Korea, in 1996 and 2003
respectively. During 2004-2005, he stayed
in Information Media Technology Research
Center, Korea. He is currently a professor in
the Department of Electronic Commerce at

Yuhan College. His research interests are programming language,
compiler, network management, and XML.

