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Summary 
Pre-aggregation is one of the most effective techniques in OLAP 
to ensure quick responses to user queries in data warehouses. 
Partial pre-aggregation is used widely, and the technique usually 
requires that the hierarchies of a dimension are onto, covering and 
self-onto. However, in real-world applications, many irregular 
dimensions do not meet the requirements. To solve the problem, in 
this paper, we propose a new dimension model to support the 
modeling of irregular dimensions based on extended directed 
Hasse graph. The model can express various relationships among 
dimension levels and different relationships among elements in 
the domain of a dimension. The model can also avoid aggregation 
loops in a dimension and ensure correct aggregation paths in the 
dimension by controlling the directions of paths and disallowing 
isolated nodes in EDH graphs. Thus, it can support both regular 
and irregular dimensions. 
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1. Introduction 

OLAP (On-Line Analytical Processing) systems support 
decision-making processes by providing dynamic 
analytical operations on high volumes of data. These 
operations are performed on the data with the help of a 
group of dimensions. Pre-aggregation is one of the most 
effective techniques in OLAP to ensure quick response to 
user queries in data warehouses. The technique 
pre-aggregates and stores some (or all) results of the 
queries on original data.  
    The fastest response times may be achieved when 
materializing the results of all possible aggregate queries 
in advance, i.e., full pre-aggregation. However, the 
required storage space grows rapidly, and become 
prohibitive, as the complexity of the application increases. 
This phenomenon is called data explosion. Another 
problem with full pre-aggregation is that it takes too long 
to update the materialized aggregates when base data 
changes. With the goal of avoiding data explosion, 
research has focused on how to select the best subset of 
aggregation levels given space constraints [1] or 
maintenance time constraints [2]. The approach is 

commonly referred to as partial pre-aggregation [2]. The 
premise underlying the applicability of partial 
pre-aggregation is that lower-level aggregates can be 
reused to compute higher-level aggregates, known as 
summarizability [3]. Usually, summarizability requires the 
dimension hierarchies to be onto, covering, and self-onto 
[4,5]. However, in real-world applications, many irregular 
dimensions do not meet the requirements; and we call 
them as irregular dimensions, which can be non-onto, 
non-covering, or self-into [4,5]. There are two ways to 
deal with irregular dimensions. One way is to propose an 
effective multidimensional model to support these 
dimensions, and also the cubes with irregular dimensions 
and the OLAP operations on them. The models can be 
found in [5,6,7]. Another way is to devise some algorithms 
to transform irregular dimensions into well-formed ones 
that can be used in most multidimensional models. In this 
paper, we will mainly concern proposing a new powerful 
model to support the modeling of irregular dimensions. 
    The modeling of irregular dimensions is much more 
difficult than that of regular ones, because the complicated 
relationships among dimension levels are hardly described 
with simple mappings on the set of levels. Moreover, there 
might be aggregation loops in irregular dimensions, which 
will lead to error aggregation results; therefore, we should 
also control aggregation loops in dimensions. 
   In addition, most multidimensional models [6~14] 
describe the relationships among levels only with a single 
partial order. However, this modeling method would lose 
some semantics of a dimension because of the exclusive 
character of a set.  

Recently, some research work [4,7,8,9,10,11,12,15] 
has been done to solve the problem. In [4], Pedersen 
proposes a model mainly to deal with many-to-many 
relationships between facts and dimensions; and he also 
concerns the modeling of irregular dimensions. However, 
the model will lose partial semantics when describing 
dimensions with Hasse diagram, and Pedersen did not 
mention the problems caused by aggregation loops.  

In [11], Jensen presents a new approach to model 
partial containment relationships among the spatial objects 
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in spatial dimensions; however, Jensen did not mention 
whether the model can support irregular dimensions and 
whether the model can control aggregation loops.  
    In [13], Tapio proposed a new formal form for OLAP 
cube design, and some decomposition algorithms to 
produce normalized OLAP cube schemata, and then it 
could control the structural sparsity resulting from 
inter-dimensional functional dependencies. However, the 
normalization algorithms are mainly used to control the 
sparsity that is mostly caused by non-normalized 
relationships between dimensions and facts; moreover, 
Tapio could not concern the possible non-normalization 
caused by the complex inner structure of a dimension; 
therefore, there are no further discussions in their work 
about the normalization of  other irregular dimensions.  
    In this paper, we proposed a new technique called 
extended directed Hasse graph (EDH) to describe structure 
of special posets. The technique uses both original 
relationships and the extended partial order to describe the 
structure of a poset; and thus this avoids the problem when 
processing direct mappings and transitive relationships. 
Based on EDH, we propose a new dimension model to 
support irregular dimensions. Not only can the model 
express various relationships among the dimension levels 
of a dimension and the relationships among the elements in 
the domain of the dimension, but also it can avoid 
aggregation loops by controlling isolated nodes and the 
directions of paths. Therefore, the model can support both 
regular dimensions and irregular dimensions.  
    The rest of the paper is organized as follows. We 
define the EDH technique and propose a new dimension 
model in section 2. A cube model is defined in section 3. In 
section 4, we mainly define two major OLAP operations 
based on the EDH dimension model. Finally, section 5 
concludes the paper. 
 
2. Dimension model 
 

In this section, we extend the way that Hasse diagram 
uses to describe the structure of a poset, which is called 
extended directed Hasse graph (EDH). EDH describes the 
structure of a poset based on both the partial order and the 
corresponding original relationships on the poset. On the 
basis of EDH, we propose a new multi-dimensional model, 
which can express the loop structure of an irregular 
dimension and disallow directed loops in a dimension by 
imposing restrictions on the direction of an arc. Therefore, 
the model can ensure correct aggregation paths in a 
dimension. Compared with those models in [6~10], the 
model can support the covering, onto dimensions and the 
non-covering, non-onto, self-into dimensions. 

Definition 1. Given D={l1,l2,…,ln}, where li is called 

the attribute of set Ai and dom(li)=Ai (1≤i≤n). For any li, 

lj∈D (1≤i,j≤n), if there is a mapping from dom(li) to dom(lj), 

then we define it as f: dom(li) dom(lj). If there is an 

attribute lk∈D such that there are two mappings g: 

dom(li) dom(lk) and h: dom(lk)  dom(lj); for any a∈Df, 

c∈Rf, where Df is the domain of f , Rf is the range of f, if 

there is an element b∈dom(lk) such that b=g(a) and c=h(b), 

then we call f as the transitive mapping from dom(li) to 

dom(lj); otherwise, we call f as the direct mapping from 

dom(li) to dom(lj). 
Definition 2. Given D={l1,l2,…,ln} is a set of 

attributes, where dom(li)=Ai (1≤i≤n). Let 
ppp , pfp , fpp , ffp  be four bi-relationships on D; for 

any li, lj∈D (1≤i,j≤n), if there is a direct mapping f: 
dom(li) dom(lj), then, (1) If f is not everywhere defined 
and onto, then li ppp lj, (2) If f is not everywhere defined 

and onto, then li pfp lj, (3) If f is everywhere defined and 

non-onto, then li fpp lj, (4) If f is everywhere defined and 

onto, then li ffp lj. 
Definition 3. Given four relationships on D: 

ppp , pfp , fpp , ffp , let p＝ ppp ∪ pfp ∪ fpp ∪ ffp , 

pp'p = ppp , pf'p = pfp , fp'p = fpp , ff'p = ffp  and 

"p = pp'p ∪ pf'p ∪ fp'p ∪ ff'p . For any li, lj∈D (1≤i,j≤n, 

i ≠ j), if (li,lj) ∈ ppp ∪ pfp ∪ fpp ∪ ffp and (lj, 

li)∈ ppp ∪ pfp ∪ fpp ∪ ffp , then lj=li. We extend 

pp'p , pf'p , fp'p  and ff'p  according to the following 
rules. 

(1) For any li∈D, if (li, li)∉ ppp ∪ pfp ∪ fpp ∪ ffp , 

then let ff'p = ff'p ∪{(li, li)}. 

 (2) We extend pp'p , pf'p , fp'p , ff'p  according to 
the following transitive rules: 
Rule 1: if li ppp lj , lj ppp lk, li p lk and there is no other 

level lp∈D(p∉{i,j,k}) such that li p lp, then li ff'p lk. 

Rule 1’: if li ppp lj , lj ppp lk and (li,lk)∉ ppp , then 

li pp'p lk. 

Rule 2: if li ppp lj, lj pfp lk, li p lk and there is no other level 

lp∈D(p∉{i,j,k}) such that li p lp, then li ff'p lk. 
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Rule 2’: if there are only li ppp lj and lj pfp lk, then 

li pf'p lk. 

Rule 3: if li ppp lj, lj fpp lk, then li pp'p lk. 

Rule 3’: Given li ppp lj, lj fpp  lk, li p lk and there is no 

other level lp∈D(p∉{i,j,k}) such that li p lp, if there is no 
other level ln∈D(n∉ {i,j,k}) such that ln p lk, then li 

ff'p lk, otherwise li fp'p lk. 

Rule 4: if li ppp  lj, lj ffp  lk, then li pf'p  lk. 

Rule 5: if li pfp  lj, lj ppp  lk, then li pp'p  lk. 

Rule 6: if li pfp  lj , lj pfp  lk, then li pf'p  lk. 

Rule 7: if li pfp  lj, lj fpp  lk, then li pp'p  lk. 

Rule 8: Given li pfp lj , lj ffp lk, lip lk, if there is no other 

level lp∈D(p∉{i,j,k}) such that li p lp, then li ff'p  lk, 

otherwise li pf'p lk. 

Rule 9: Given li fpp lj, lj ppp lk, if li p lk and there is no 

other level lp∈D(p∉{i,j,k}) such that li p lp, then li fp'p lk, 

otherwise li pp'p lk. 

Rule 10: Given li fpp lj, lj pfp lk, if li ppp lk, then li pf'p lk，

otherwise li pp'p lk. 

Rule 11: If li fpp  lj, lj fpp lk, then li fp'p lk. 

Rule 12: If li fpp  lj, lj ffp lk, then li ff'p lk. 

Rule 13: If li ffp  lj, lj pfp lk, then li pf'p lk. 

Rule 14: If li ffp  lj, lj ppp lk, then li pp'p lk. 

Rule 15: If li ffp  lj, lj fpp lk, then li fp'p lk. 

Rule 16: If li ffp  lj, lj ffp lk, then li ff'p lk. 

Let 'p  be the transitive and reflexive closure of "p  
gotten by the rules in (1) and (2), then (D, 'p ) is a poset. The 
four relationships fpp , ffp , ppp , pfp  are called the 
original aggregation relationships on D. The relationships 

pp'p , pf'p , fp'p  and ff'p  processed after closure 
operations are called the extended aggregation relationships 
on D, and 'p  is called call the aggregation partial order on  
D. Currently, there are two notation methods for a poset: 
Hasse diagram and digraph. 
 For a poset (D, 'p ), the corresponding digraph uses 
arcs to connect any two elements which satisfy the partial 
order; therefore, the digraph can explicitly express each 
relationship between any two elements. However, for the 
sakes of using reflective arcs and transitive arcs explicitly in 
the digraph, the structure of the resulted digraph is very 
complicated and hard to read and process for us. 

    The way of using a Hasse diagram to describe the 
structure of a poset is much simpler than that of using a 
digraph, because reflective edges and transitive edges are 
ignored in the Hasse diagram. However, a Hasse diagram 
has some obvious disadvantages. (1) the Hasse diagram is 
an undirected graph and vertices in an undirected graph is 
position-irrelative; moreover, an edge could not denote 
whether an vertex is higher (or lower) than another vertex in 
the graph. (2) An edge in the Hasse diagram might make us 
to misunderstand that the connected elements satisfy a 
symmetrical relationship; obviously, this is wrong and it 
might form a loop in the graph. (3) If it is used to describe 
irregular dimensions, a Hasse diagram would lost some 
semantics of the dimension. If we use Hasse diagram to 
describe the structure of the depot dimension in fig.1, 
which is shown in fig.3, then the figure will ignore the 
edge (GrainDepot, ParentCompany) based on the 
transitivity of the partial order. As we can see, it cannot 
fully express the non-covering mapping between 
“SubCompany” and “ParentCompany” w.r.t “GrainDepot”. 

To solve the problems, we propose a new notation 
method for the special posets defined in definition 1, which 
combines the advantages of both digraphs and Hasse 
diagrams, and avoids their disadvantages. Given a poset 
(D, 'p ) and the original aggregation relationships 

ppp , pfp , fpp  and ffp ; let pp'p , pf'p , fp'p , ff'p  be 

the extended relationships of ppp , pfp , fpp , ffp  

respectively, and 'p = pp'p ∪ pf'p ∪  fp'p ∪ ff'p , then 

we describe the structure of poset (D, 'p ) according to the 
following steps. For any li,lj∈D (1≤i,j≤n, i≠j), 

(1) If li 'p lj and there is no middle level lk∈D(1≤k≤n, 
k≠i, k≠j) such that li 'p lk and lk 'p lj, then we put li under lj, 
and draw an arc from li to lj according to the following rules 
(the arcs are called the 1st arc, 2nd arc, 3rd arc and 4th arc, 
as shown in fig.2). 

(2) If li 'p lj and there is an level lk∈D (1≤k≤n, k≠i, 
k≠j) such that li 'p lk and lk 'p lj, then if (li,lj) 
∈ ppp ∪ pfp ∪ fpp ∪ ffp , then we draw an arc from 
to according to (1), otherwise, draw no arc. 
  (3) If (li, li)∈ pp'p , draw a 4th arc from li to itself. 

Jilin 
subcompany

Siping 
depot

Central Grain Com pany

Shanghai 
subcom pany

Nong'an 
depot

K unsan 
depot

Shunyi 
depot

Grain 
D epot

Sub
Com pany

Parent 
Com pany

allAll

 
     Fig.1. Depot dimension and it’s partial  member structure  
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 (a) li ff'p lj  (b) li pf'p lj  (c) li fp'p lj   (d) li pp'p lj 

Fig.2. Four types of arcs 

ParentCompany

SubCompany

GrainDepot

All

ParentCompany

SubCompany
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All

 
Fig.3. The Hasse diagram     Fig.4. The EDH  

 
The graph obtained according to above method is called 
Extended Directed Hasse Graph (EDH). For example, we 
use EDH to describe the structure of the depot dimension, 
which is shown in fig.4. In the figure, although there are 
already two arcs (GrainDepot, SubComany) and 
(SubComany, ParentComany), we need still draw a 2nd 
arc from “GrainDepot” to “ParentCompany” because 
(GrainDepot, ParentComany) ∈ pfp .  

Given an EDH graph G, let v be a vertex in G. For 
any vertex v’(v’≠v) in G, if there is always a directed path 
from v’ to v, then v is a root node in G. If there is no any 
directed path ending at v in G, then v is a leaf node in G. 
Otherwise, v is a middle node. 

Definition 4. Given a poset (D, 'p ), and 
ppp , pfp , fpp , ffp  are the original aggregation 

relationships; let pp'p , pf'p , fp'p , ff'p  be the 

extended relationships of ppp , pfp , fpp , ffp  

respectively, and 'p = pp'p ∪ pf'p ∪ fp'p ∪ ff'p  be 
the aggregation relationship on D, where D={l1,l2,…,ln}. 
Let G be the EDH graph of (D, 'p ), if G satisfies the 
following three conditions, then (D, 'p ) is called a 
dimension schema, written d=(D, 'p ), and G is the schema 
structure graph (SSG) of dimension d; moreover, let 
dom(d)=

ni≤≤1
U dom(li). 

(1) G is connected. 
(2) There are at least two nodes in G.  
(3) There is only one root node li(1≤i≤n) in G, written 

All[8], and one single leaf node lj(1≤j≤n, i≠j), written 
Atomic, where dom(All)={all}. 

Given a dimension d and its EDH graph G, a path 
from Atomic to All is called a hierarchy of d. Dimension 
schema defines the basic structure of a dimension, namely 

the organization form of the elements in the dimension 
domain. On this basis, we define the partial order on the 
dimension domain, and also use an EDH graph to describe 
the structure of the dimension domain. 

Definition 5. Given a poset (D, 'p ), and the 
aggregation relationship 'p  on D, where D={l1,l2,…,ln}. 
Let E=

ki≤≤1
U dom(li), and ≤  is a bi-relationship on E, if 

≤  satisfies the following conditions, then we call ≤  as 
the element aggregation relationship (EAR) on E. 

(1) Given li,lj∈D(1≤i,j≤n) such that li 'p lj, let ijσ  be 
the mapping from dom(li) to dom(lj) corresponding to the 
pair (li,lj), then for any a∈dom(li) and b∈dom(lj), if (a,b) 
∈ ijσ , then a≤ b. 

(2) Given li,lj∈D (1≤i,j≤n), for any a∈dom(li) and 
b∈dom(lj), if a≤ b, then li 'p lj. 

(3) Given li,lj,lk∈D(1≤i,j,k≤n), for any a∈dom(li), 
b∈dom(lj) and c∈dom(lk), if a≤ b and b≤ c, then a≤ c. 

 
Given two elements a and b, they could only have 

following three relationships: (1) a≤ b and b≤/ a, (2) b≤ a 
and a ≤/ b, (3) a ≤/ b and b ≤/ a. Let ff≤ = ≤ , 

ff'≤ = ff≤ , '≤ =≤ , then we can use the EDH graph that 
only contain 1st arcs to describe the structure of poset 
(E, '≤ ). Moreover, we need not to check the sixteen rules 
in definition 2, because there is only one relationship 

ff'≤ on E. We call the EDH of poset (E, '≤ ) as the element 
structure graph (ESG) of dimension d. 

Based on the definitions of dimension schema and 
dimension structure graph, we will investigate the 
relationship between an irregular dimension and its SSG. 
Given a dimension d =(D, 'p ) and G=(V,A) is the SSG of 
d, then, (1) d is non-covering iff there are two nodes a, 
b∈V (a≠b) such that there are two paths in G from a to b. 
(2) d is non-onto iff there is at least one 3rd arc or one 4th 
arc in G. (3) d is self-into iff there is one node a in G such 
that there is one 4th arc from a to itself. 
 
3. Cube model 
 
 In this section, based on the above dimension model, 
we will present a cube model by combining the dimension 
model with various types of measures to support the 
modeling of the cubes with irregular dimensions. 
We know that cubes are basic units in a data warehouse, 
and cubes are made of dimensions and measures, so cubes 
should be modeled along with the dimension model. 

A measure structure is defined first, and then a cube 
model is defined. 

Definition 6. Let m=(M,agr) be a measure structure, 
where M is a numeric set, and agr is a function: 2M M, 
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which is called the aggregation function on M. And let 
dom(m)=M, m is called the measure attribute. 

Definition 7. A data cube is defined as a tri-tuple: 
C=(D,M,f), where,(1) D={d1,…,dn} is the set of all 
dimensions, and di=(Di, 'p i) (1≤i≤n), (2) M={m1,…,mk} 
is the set of all measures，and mj=(Mj,agrj) (1≤j≤k), (3) 
let dom(D)=dom(d1)×…×dom(dn), dom(M)=dom(m1)
×…×dom(mk), (4) f is a mapping: P dom(M), where 
P⊆ dom(D) and P≠φ , (5) let dom(C)=P×dom(M). 

P is a set of n-tuples, and the set of the element in the 
ith position of each tuple in P is a subset of dom(di), which 
is called the current domain of dimension di, written 
cdom(di). In addition, we should impose a restriction on 
the elements in the current domain of dimension d to 
ensure the structure of a cube is organized reasonably, 
which is described as follows: the current domain of 
dimension di must be the set of all minimal elements in 
dom(di) or a subset of one certain level’s domain of di. 

Given a cube C=(D,M,f), in fact, D and M define the 
schema of the cube C, written: schema(C)=(D,M), while f 
defines the domain of the cube C. For any non-null set P 
that satisfies the restriction, we could get a new cube 
which is different from C only in the domains, and they 
have the same schema. We call these cubes as the 
base-common cubes. In these cubes, there is a special 
cube, of which the set P is the Cartesian production of all 
minimal elements of every dimension’s domain; and then, 
we call the cube as the base cube of the schema (D,M). 
Moreover, the base cube is unique for the schema (D,M). 
The base cube is formally defined as follows. 

Definition 8. Let Cb=(D,M,fb) be a cube of the schema 
(D,M), where D={d1,…,dn}, fb:P dom(M) and 
P⊆dom(D). For each tuple x=(x1,x2,…,xn)∈P, where 
xi∈dom(di) (1≤i≤n), if xi is a minimal element in dom(di), 
then we call Cb as the base cube of the schema (D,M).  

Compared with the cube models in [6~10], definition 
7 and definition 8 have broken the restriction that the 
elements in the current domain of each dimension of a 
cube must belong to the same dimension level’s domain. 
Therefore, it provides a more agile way for cube modeling. 

 
4. OLAP operations 
 

For the cubes with irregular dimensions, the 
procedures of the operations, such as roll-up and 
drill-down, are much more complex than those on cubes 
with regular dimensions. Moreover, they cannot be 
expressed explicitly only with one formula. In this section, 
we use functions to describe these operations. 

Fig.5 shows the procedure of the operation drill-down. 
In the figure, C, G1, G2, di and Hi are the input parameters 
of the function, where C is the current cube, di and Hi are 
the dimension and the hierarchy on which we perform 
drill-down operation, G1 is the ESG of the dimension di, 

G2 is the ESG of the dimension di. The output of the 
function is the final cube. For any element x in cdom(di), if 
there are no arcs in G1end at x, then the function does 
nothing and return C. Otherwise, if there are some 
elements in cdom(di) such that there are arcs in G1end at 
them and cdom(di) is exactly the domain of some level lp, 
then the level lp is the current level of dimension di. In 
addition, there is another node lk in G2 such that the arc 
(lk,lp) belongs to Hi. If lk is Atomick, then let s' be the set of 
all leaves of G1;otherwise, let s' =dom(lk). We construct a 
cube C' =(D,M,f') according to s' and C, where f' defines 
P'=cdom(d1)×…×cdom(di－1)×s'×…×cdom(dn), then 
C' is the final cube of operation drill-down. 

 
Cube Function Drilldown(C, G1, G2, di, Hi) 
(1) For ∀ x∈cdom(di), If there is no arc in ESG that end 
at x, then return C  
(2) Otherwise，if there are some elements in cdom(di) 
satisfying that there are arcs in ESG which end at them, 
then there must be a level lp in di such that 
cdom(di)=dom(lp).  
(3) And there is a vertex lk in SSG such that (lk,lp)∈Hi, if 
lk is Atomic, then s'={all leaves in G1} 
(4) If lk is not Atomic, then s'=dom(lk) 
(5) Let the cube C' =(D,M,f'), where f' is a function: 
P' dom(M), and P'=cdom(d1)×…×cdom(di－1)×s'×…
×cdom(dn).  
(6) Return C’ 

Fig.5. Function Drilldown 
 

Fig.6 shows the procedure of the operation roll-up. In 
the figure, the function has the same input parameters with 
Drilldown, and the output is the final cube. If there is an 
element x in cdom(di) that is the root of the ESG, then the 
function returns C directly; else if all the elements of 
cdom(di) are the leaves of the ESG, then Atomici is the 
current level of dimension di; and there is one node liq in the 
SSG such that the arc (Atomici,liq) belongs to the hierarchy 
Hi; otherwise, cdom(di) must be the domain of some level lip, 
and there is an arc (lip,liq) that belongs to the hierarchy Hi. 
Therefore, liq is the current level of dimension di after 
Rollup is performed. Following previous analyses, we 
construct a cube C' =(D,M,f'), where f' defines the set P'= 
cdom(d1)×…×cdom(d－i 1)×dom(liq)×…×cdom(dn), then C' 
is the final cube after Rollup is performed. 

 
Cube Function Rollup(C, ESG, SSG, di, Hi) 
(1) If ∃ ∀ x∈cdom(di) such that x is the root of ESG, 
then return C. 
(2) Else if elements in cdom(di) are the leaves of ESG, 
then there is an arc (Atomici,liq) in Hi. 
(3) Else there is a level lip such that cdom(di)=dom(lip), and 
there is an arc (lip,liiq) in Hi. 
(4) Then level liq is the resulting level and 
cdom(di)=dom(liq). 
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(5) Let the cube C' =(D,M,f'), where f' is a function: 
P' dom(M), and P'= cdom(d1) × … × cdom(di － 1) ×
dom(liq)×…×cdom(dn). 
(6) Return C' 

Fig.6. Function Rollup 
 
5. Conclusion 
 

In this paper, we extended Hasse diagram technique to 
describe the structure of a poset, and the extended 
technique is called extended directed Hasse(EDH) graph. 
EDH technique can describe the structure of a set 
according to the original four relationships we defined and 
the extended partial order on the set, and thus it can avoid 
losing partial semantics when describing transitive 
relationships among elements. 

Based on EDH technique, we also proposed a new 
dimension model to support the modeling of both regular 
dimensions and irregular dimensions. The model can not 
only describe various relationships among levels and 
different relationships among elements, but also it can 
avoid aggregation loops in a dimension and ensure correct 
aggregation paths in the dimension by controlling the 
directions of paths and disallowing isolated nodes in EDH 
graphs.  
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