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Summary 
In computer graphics and computer-aided geometric 
design, more and more subdivision schemes are being 
extensively used for free-form surfaces of arbitrary 
topology. The convergence and continuity analyses of 
uniform subdivision surfaces have been performed very 
well, but it is very difficult to prove the convergence and 
the continuity properties of non-uniform recursive 
subdivision surfaces (NURSSes, for short) because the 
subdivision matrix varies at each iteration step. This 
restricts widespread use of NURSSes, although NURSSes 
have a lot of advantages over uniform subdivision surfaces. 
This paper presents the concept and technique for eigen 
analysis, convergence and continuity analysis of 
subdivision surfaces. 
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Introduction 
 
Some basic principles can be applied to a variety of 
subdivision schemes described as: Doo-Sabin, Catmull-
Clark, Loop, Modified Butterfly, Kobbelt, Midedge. Some 
of these schemes were around for a while: the 1978 papers 
of Doo and Sabin and Catmull and Clark were the first 
papers describing subdivision algorithms for surfaces. 
Other schemes are relatively new. Remarkably, during the 
period from 1978 until 1995 little progress was made in 
the area. In fact, until Reif’s work [1] on C1- continuity of 
subdivision most basic questions about the behavior of 
subdivision surfaces near extraordinary vertices were not 
answered. Since then there was a steady stream of new 
theoretical and practical results: classical subdivision 
schemes were analyzed [2, 3], new schemes were 
proposed [4, 5, 6, 7] and general theory was developed for 
C1-and Ck-continuity of subdivision. Smoothness analysis 
was performed in some form for almost all known 
schemes. 
 
One of the goals is to provide an accessible introduction to 
the mathematics of subdivision surfaces. Subdivision 
surfaces as parametric surfaces, C1-continuity, eigen 

structure of subdivision matrices, characteristic maps.The 
developments of recent years have convinced us of the 
importance of understanding the mathematical foundations  
of subdivision. A Computer Graphics professional who 
wishes to use subdivision, probably is not interested in the 
subtle points of a theoretical argument. However, 
understanding the general concepts that are used to 
construct and analyze subdivision schemes allows one to 
choose the most appropriate subdivision algorithm or 
customize one for a specific application. 
 

Subdivision Surfaces: an Example 
 
One of the simplest subdivision schemes is the loop 
scheme, invented by Charles Loop. We will use this 
scheme as an example to introduce some basic features of 
subdivision for surfaces. The Loop scheme is defined for 
triangular meshes. The general pattern of refinement, 
which we call vertex insertion, is shown in Figure 1. 
 
 
 

 
 
Figure 1: Refinement of a triangular mesh. New vertices 
are shown as black dots. Each edge of the control mesh is 
split into two, and new vertices are reconnected to form 4 
new triangles, replacing each triangle of the mesh. 
 
.Like most (but not all) other subdivision schemes, this 
scheme is based on a spline basis function, called the 
three-directional quadratic box spline. Unlike more 
conventional splines, such as the bicubic spline, the three-
directional box spline is defined on the regular triangular 
grid; the generating polynomial for this spline is 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April  2006 
 

 

53

 
 
 Note that the generating polynomial for surfaces has two 
variables. This spline basis function is C2- continuous. 
Subdivision rules for it are shown in Figure 2. 
 

 
Figure 2: Subdivision coefficients for a three directional 
box spline. 
 
In one dimension, once a spline basis is chosen, all the 
coefficients of the subdivision rules that are needed to 
generate a curve are completely determined. The situation 
is radically different and more complex for surfaces. The 
structure of the control polygon for curves is always very 
simple: the vertices are arranged into a chain, and any two 
pieces of the chain of the same length always have 
identical structure. For two-dimensional meshes, the local 
structure of the mesh may vary: the number of edges 
connected to a vertex may be different from vertex to 
vertex. As a result the rules derived from the spline basis 
function may be applied only to parts of the mesh that are 
locally regular; that is, only to those vertices that have a 
valence of 6 (in the case of triangular schemes). In other 
cases, we have to design new rules for vertices with 
different valences. Such vertices are called extraordinary. 
 
we consider only meshes without a boundary. Note that 
the quadratic box spline rule used to compute the control 
point inserted at an edge (Figure 2,left) can be applied 
anywhere. The only rule that needs modification is the rule 
used to compute new positions of control points inherited 
from the previous level. 
 

Natural Parameterization of Subdivision 
Surfaces 

 
The subdivision process produces a sequence of polyhedra 
with increasing numbers of faces and vertices. Intuitively, 
the subdivision surface is the limit of this sequence. The 
problem is that we have to define what we mean by the 
limit more precisely. For this, and many other purposes, it 

is convenient to represent subdivision surfaces as 
functions defined on some parametric domain with values 
in R3. In the regular case, the plane or a part of the plane 
is the domain. However, for arbitrary control meshes, it 
might be impossible to parameterize the surface 
continuously over a planar domain. Fortunately, there is a 
simple construction that allows one to use the initial 
control mesh, or more precisely, the corresponding 
polygonal complex, as the domain for the surface. 
 
Parameterization over the initial control mesh 
 
We start with the simplest case: suppose the initial control 
mesh is a simple polyhedron, i.e., it does not have self-
intersections. Suppose each time we apply the subdivision 
rules to compute the finer control mesh, we also apply 
midpoint subdivision to a copy of the initial control 
polyhedron (see Figure 3). This means that we leave the 
old vertices where they are, and insert new vertices 
splitting each edge in two. Note that each control point 
that we insert in the mesh using subdivision corresponds 
to a point in the midpoint subdivided polyhedron. 
 
Another fact is that midpoint subdivision does not alter the 
control polyhedron regarded as a set of points; and no new 
vertices inserted by midpoint subdivision can possible 
coincide. 
 

 
 
Figure 3: Natural parameterization of the subdivision 
surface. 
 
We will use the second copy of the control polyhedron as 
our domain. We denote it as K, when it is regarded as a 
polyhedron with identified vertices, edges and faces, and 
jKj when it is regarded simply as a subset of R3. 
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Subdivision Matrix 
 
An important tool both for understanding and using 
subdivision is the subdivision matrix, similar to the 
subdivision matrix for the curves. We define the 
subdivision matrix and discuss how it can be used to 
compute tangent vectors and limit positions of points. 
Another application of subdivision matrices is explicit 
evaluation of subdivision surfaces.  
 
Similarly to the one-dimensional case, the subdivision 
matrix relates the control points in a fixed neighborhood 
of a vertex on two sequential subdivision levels. Unlike 
the one dimensional case, there is not a single subdivision 
matrix for a given surface subdivision scheme: a separate 
matrix is defined for each valence. 
 
For the Loop scheme control points for only two rings of 
vertices around an extraordinary vertex B define f (U) 
completely. We will call the set of vertices in these two 
rings the control set of U. 
 
Let pj0 be the value at level j of the control point 
corresponding to B. Assign numbers to the vertices in the 
two rings (there are 3k vertices).Note that U j andU j+1 
are similar: one can establish a one-to-one correspondence 
between the vertices simply by shrinking U j by a factor of 
2. Enumerate the vertices in the rings; there are 3k vertices, 
plus the vertex in the center. Let pj i , i = 1: : :3k be the 
corresponding control points. 
 
By definition of the control set, we can compute all values 
pj+1 i from the values pj i . Because we only consider 
subdivision which computes finer levels by linear 
combination of points from the coarser level, the relation 
 

 
 
Figure 4: The Loop subdivision scheme near a vertex of 
degree 3. Note that   points in two rings are 
required. 
 

between the vectors of points pj+1 and pj is given by a 
(3k+1)(3k+1) matrix: 
                    

                                    
It is important to remember that each component of pj is a 
point in the three-dimensional space. The matrix S is the 
subdivision matrix, which, in general, can change from 
level to level. We consider only schemes for which it is 
fixed. Such schemes are called stationary. 
 
We can now rewrite each of the coordinate vectors in 
terms of the eigenvectors of the matrix S (compare to the 
use of eigen vectors in the 1D setting). Thus, 
 

                                   
                    and 

                                   
 
where the xi are the eigenvectors of S, and  the λi are the 
corresponding eigenvalues, arranged in non increasing 
order. As discussed for the one dimensional case, λ0 has 
to be 1 for all subdivision schemes, in order to guarantee 
invariance with respect to translations and rotations. 
Furthermore, all stable, converging subdivision schemes 
will have all the remaining λi less than 1. 
 

Subdominant eigenvalues and eigenvectors 
 
It is clear that as we subdivide, the behavior of pj, which 
determines the behavior of the surface in the immediate 
vicinity of our point of interest, will depend only on the 
eigenvectors corresponding to the largest eigenvalues of S. 
To proceed with the derivation, we will assume for 
simplicity that λ = λ1 = λ2 > λ3. We will call λ1 and λ2 
subdominant eigenvalues. Furthermore, we let a0 = 0; this 
corresponds to choosing the origin of our coordinate 
system in the limit position of the vertex of interest (just as 
we did in the 1D setting). Then we can write 

 
 
where the higher-order terms disappear in the limit. 
 
This formula is very important, and deserves careful 
consideration. Recall that pj is a vector of 3k+1 3D points, 
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while xi are vectors of 3k+1 numbers. Hence the 
coefficients ai in the decomposition above have to be 3D 
points. 
 
This means that, up to a scaling by (λ) j , the control set 
for f (U) approaches a fixed configuration. This 
configuration is determined by x1 and x2, which depend 
only on the subdivision scheme, and on a1 and a2 which 
depend on the initial control mesh. 
Each vertex in pj for sufficiently large j is a linear 
combination of a1 and a2, up to a vanishing term. This 
indicates that a1 and a2 span the tangent plane. Also note 
that if we apply an affine transform A, taking a1 and a2 to 
coordinate vectors e1 and e2 in the plane, then, up to a 
vanishing term, the scaled configuration will be 
independent of the initial control mesh. The transformed 
configuration consists of 2D points with coordinates 
(x1i;x2i), i = 0: : :3k, which depend on the subdivision 
matrix.  
 
Informally, this indicates that up to a vanishing term, all 
subdivision surfaces generated by a scheme differ near an 
extraordinary point only by an affine transform. In fact, 
this is not quite true: it may happen that a particular 
configuration (x1;i;x2;i), i = 0: : :3k does not generate a 
surface patch, but, say, a curve. In that case, the vanishing 
terms will have influence on the smoothness of the surface. 
 

Tangents and limit positions 
 
We have observed that similar to the one-dimensional case, 
the coefficients a0 a1 and a2 in the decomposition 3.1 are 
the limit position of the control point for the central vertex 
v0, and two tangents respectively. To compute these 
coefficients, we need corresponding left eigenvectors: 
 
      a0 = (l0 , p), a1 = (l1 , p), a2 = (l2 , p) 
 
Similarly to the one-dimensional case, the left 
eigenvectors can be computed using only a smaller 
submatrix of the full subdivision matrix. For example, for 
the Loop scheme we need to consider the matrix acting on 
the control points of 1 neighborhood of the central vertex, 
not on the points of the 2-neighborhood. 
 

Smoothness of Surfaces 
 
Intuitively, we call a surface smooth, if, at a close distance, 
it becomes indistinguishable from a plane. Before 
discussing smoothness of subdivision surfaces in greater 

detail, we have to define more precisely what we mean by 
a surface, in a way that is convenient for analysis of 
subdivision. 
 

Conclusion 
 
In this section we discuss how to determine if a 
subdivision scheme produces smooth surfaces. Typically, 
it is known in advance that a scheme produces C1-
continuous (or better) surfaces in the regular setting. For 
local schemes this means that the surfaces generated on 
arbitrary meshes are C1-continuous away from the 
extraordinary vertices. We start with a brief discussion of 
this fact, and then concentrate on analysis of the behavior 
of the schemes near extraordinary vertices. Our goal is to 
formulate and provide some motivation for Reif’s 
sufficient condition for C1-continuity of subdivision. We 
assume a subdivision scheme defined on a triangular mesh, 
with certain restrictions on the structure of the subdivision 
matrix and derivations can be performed without these 
assumptions, but they become significantly more 
complicated. We consider the simplest case so as not to 
obscure the main ideas of the analysis. 
 
In the future we plan to use the technique presented here 
to study more systematically artifacts on subdivision 
surfaces. 
We also plan to develop tools for the design of initial 
control polyhedra that will give subdivision surfaces with 
prescribed properties. 
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