
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4,April 2006

71

Manuscript revised January 2006.

Multi-Processor Tasks with Resource and Timing Constraints

Using Particle Swarm Optimization

Tzu-Chiang Chiang †, Po-Yin Chang††, and Yueh-Min Huang†

†Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan, R.O.C
†† Department of Information Management, Hsing-Kuo University of Management, Tainan, Taiwan, R.O.C

Summary
The job-shop scheduling problems have been categorized as
NP-complete problems. In our previous work, we use Hopfield
Neural Network (HNN) to solve the energy function of the
scheduling multi-processor tasks problem. Particle swarm
optimization (PSO) is an evolutionary computation technique
mimicking the behavior of flying birds and their means of
information exchange. However, a pure PSO algorithm approach
tends to solve continues linear problems. Therefore, the pure PSO
algorithm need to be specially designed or some other methods
may be combined to solve the energy function. This paper
proposes using the particle swarm optimization to solve the
constrained scheduling problem in display system operation. The
constrained scheduling problem not only satisfies the resource
constraint and the timing constraint. In our work, there are
barriers must be overcome in applying energy function to PSO. In
particle encoding, we attempt using a one-dimension 0-1 array
mapping a three-dimension matrix of a candidate solution for
each particle, and then using sigmoid function to produce
probability threshold from velocity of each particle for velocity
updating. The result showed that the proposed approach is
capable of obtaining higher quality solution efficiently in
constrained scheduling problems.
Key words:
Job-shop scheduling, Particle swarm optimization, Energy
function

1. Introduction

The job-shop scheduling problems have been classified to
NP-complete problems. The augmentation of the number
of jobs to be processed, the number of operations for each
job and the number of flexible machines performing the
processes, causes the exponential increase of the time
required to obtain an optimal solution. Because of the
exponential growth, the exhaustive search for global
optimal schedules is very difficult or even impossible. To
generate good-quality schedules instead of global optimal
schedules, adaptive search approaches have been
implemented. In our previous work, 1999 and 2001, to
schedule multiprocessor job with resource and timing
constraints, an energy function for the HNN was proposed
by Huang and Chen [1][2]. Then, in 2001, we integrated

fuzzy c-means clustering strategic into a HNN to solve
scheduling problems [3]. Recently, stochastic search
techniques such as particle swarm optimization have
shown the feasibility to solve the job-shop scheduling
problems. In 2004, Weijun Xia and Zhiming Wu proposed
a new algorithm based on the principle of PSO approach to
solve job-shop scheduling [8]. In 2005, Hong Zhang et al.
applied PSO to solve resource-constrained project
scheduling problem [9]. In this paper, we attempt using
discrete binary PSO-based approach with a feasible energy
function to solve multi-processor task scheduling problem
with timing and resource constraints. The original version
of PSO approach which is clever at solves continues linear
problems; the pure PSO algorithm need to be specially
designed or some other schemes may be combined to solve
the energy function. This remainder of the paper is
organized as follows: In Section 2, the definition of the
energy function of the scheduling problem is presented. In
Section 3, the PSO and discrete binary PSO algorithms are
reviewed, and then proposed approach applied to the
energy function is illustrated. After this, the simulation
examples and experimental results are presented in Section
4. Finally, conclusions of this paper are discussed in
Section 5.

2. Energy Function of Problem

Job-shop scheduling problems are different from case to
case. The scheduling problem domain in this paper has the
following definition. Suppose N jobs are considered, each
of which can be segmented, and M machines that are
capable of performing the operations of all jobs, are also
considered. The execution time required by each job is
predetermined and can be estimated by calculating the
machine cycles. It is supposed that different machines do
not possess different segments of a job, and assumed that
the job migration between machines is prohibited.
Moreover, the deadline constraint for each job is imposed
on the proposed system, and a resource to be shared by two
jobs simultaneously is not allowed. According to the above
assumptions, we attempt to generate legal schedules.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

72

To solve this problem, the energy function of the problem
regarding all constraints is derived [1][2]. The energy
function is modified and reduced in this work. A state
variable ijkV is defined as representing whether the job i

is executed on machine j at a certain time k or not.

Moreover, the state ijkV = 1 denotes that the job i is run

on machine j at the time k; otherwise, ijkV = 0. Because a

machine j can operate only one job i at any certain
time k , the energy term can be formulated as the
following:

jki

N

i

M

j

T

k

N

ii
i

ijkVV 1
1 1 1

1
11

∑∑∑∑
= = =

≠
=

 (1)

ijkV are defined as above; i (i = 1,…,N) represents the

total number of jobs to be scheduled; j (1 to M) represents
the total number of machines to be assigned; k represents a
specific time from 1 to T, the latest deadline of the job. The
same notations are used hereinafter. The minimum value of
this term is zero, which occurs when either ijkV or

jkiV 1 equals zero. As mentioned earlier, if a job is assigned
on a dedicated machine, then all of its segments must be
executed on the same machine. According this constraint,
the energy term is defined as follows:

11
1 1 1

1
11 11

jki

N

i

M

j

T

k

M

jj
j

T

k
ijkVV∑∑∑∑∑

= = =
≠
= =

 (2)

Since a job i can be processed on either machine j or

machine 1j , at any time, the minimum value of this term is

zero, which occurs when either ijkV or 1ijkV equals as for
the resource constraint, two jobs are not allowed to utilize
the same resource instance simultaneously. Besides, the
resource is non-preemptive so that the energy term can he
defined as follows zero.
As for the resource constraint, two jobs are not allowed to
utilize the same resource instance simultaneously. Besides,
the resource is non-preemptive so that the energy term can
he defined as following:

isjkpfki

N

i

M

j

T

k

N

ii
i

P

p

F

f

T

k
isijkpf RVRV 11

1 1 1
1

11 1 1 11
∑∑∑∑∑∑∑
= = =

≠
= = = =

 (3)

where F denotes the quantity of available resource
instances, isR and siR 1 are the elements of the resource

requested matrix for job i and 1i , respectively. The value

isR = 1 means that job i requires resource s while siR 1 = 1

implies that job 1i requests resource s. When two distinct
jobs are scheduled to be processed on different machines j
and 1j at the same time k (say ijkV =1 and jkiV 1 =l),

machines j and 1j cannot share the same resource at the

time k . Hence, either isR or siR 1 is zero. This
observation implies that the energy term becomes zero if
the resource constraint is satisfied. Correspondingly, the
total energy function with all constraints can be induced as
Eq.(4)

sikji

N

i

M

j

T

k

N

ii
i

M

jj
j

F

s
isijk

jki

N

i

M

j

T

k

M

jj
j

T

k
ijkjki

N

i

M

j

T

k

N

ii
i

ijk

RVRV
C

VVCVVCE

111
1 1 1

1
11

1
11 1

3

11
1 1 1

1
11 11

2
1

1 1 1
1

11

1

2

22

∑∑∑∑∑∑

∑∑∑∑∑∑∑∑∑

= = =
≠
=

≠
= =

= = =
≠
= == = =

≠
=

+

+=

 (4)

where 1c , 2c and 3c refer to weighting factors and are
supposed to be positive constants in our work. This study
concentrates mainly on scheduling problems with
constraint satisfaction. In the following section, PSO
algorithm is introduced to solve the constraint satisfaction
of the scheduling problems.

3. Experimental Consideration

Particle Swarm Optimization (PSO), one of the modern
heuristic algorithms, is a population-based stochastic
optimization technique developed by Eberhart and
Kennedy in 1995[6], and was developed through
simulation of a simplified social system. It has been found
to be potent when it solves continuous nonlinear
optimization problems. In our previous work, the energy
function is set in discrete space. In this paper, we introduce
a method of converting energy function to PSO.

3.1 Standard PSO Algorithm

PSO is an optimization tool providing a population-based
search procedure in which individuals, called particles,
change their positions, or states, with time. Particles in a
PSO system fly around in a multidimensional search space.
During the flying process, each particle modifies its
position according to earned experience and the experience
of nearby particles, and makes use of the best position met
by it and other neighboring particles. The PSO method
generates high-quality solution within shorter calculation

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4,April 2006

73

time and the more stable convergence feature than other
stochastic methods [4]. Let ix xi and iv represent the
coordinates and the corresponding flight speed of the
particle i in a search space, respectively. The
particle-updating mechanism for particle flying can be
formulated as

)(**)(** 2211 iipbestiigbestii xXrandcxxrandcvwv −+−+⋅= (5)

iii vxx += (6)

w : inertia weight factor
c1, c2: acceleration constant

21,randrand : uniform random value in the range [0,1]

igbestx : the best particle among all individuals in the
population

ipbestX : the best history position of particle ix .

The parameter determined the resolution, or fitness, with
which regions are to be searched between the max present
position and the target position. When value is too high,
max particles might fly past good solutions. Contrarily,
particles may not explore sufficiently beyond local
solutions when is too small. Experiences with PSO
indicated that was often set at 10-20% of the dynamic
range of the variable on each dimension. The constants c1
and c2 can describe the weighting of the stochastic
acceleration terms that pull each particle xi toward x and x
positions. Low values allow pbesti and gbesti particles to
roam far from the target regions before being tugged back.
On the other, high values result in abrupt movement
toward, or past, target regions. Hence, the acceleration
constants c1 and c2 were often set to be 2.0 according to
past experiences.

iter
iter

wwww ×
−

−=
max

minmax
max (7)

where maxw and minw are both random numbers
called initial weight and final weight respectively. In
addition, maxiter is the maximum number of iterations,
and iter is the current iteration. The standard PSO
algorithm was described as following:
PSO algorithm
Begin
Initialize

Particles to multidimensional scope with randomly
While the maximum of iterations is not reached

For each particle
Using Fitness function calculate fitness value

If the fitness value is better than the best fitness value
according to past experiences
Set current value as the new pbest

End For
Choose the particle with the best fitness value of all the
particles as the gbest
For each particle

Calculate particle velocity, V, according Eq. (5)
Update particle position, present, according Eq. (6)

End for
End While

End Begin

The output state in the energy function is 0 or 1 only, thus
it is not suitable to apply the original version of PSO that is
clever at operating the real values. A clever method for
establishing a discrete binary version of the PSO (BPSO)
was presented by Kennedy and Eberhart [5]. The
dimensional value of BPSO must stay in values of 0 or 1
only. The velocity iV will determine a probability
threshold. If iV is higher, the individual will be more
likely to choose 1; lower values will favor the 0 choice;
such a threshold needs to stay in the range [0.0, 1.0]. One
familiar sigmoid function in neural network achieves this
goal; the function is defined as the following:

Vii e
Vs −+

=
1

1)(
 (8)

The function scales the Velocities iV between 0 and 1 and
has a value that makes it agreeable to be used as a
probability threshold. Finally we update the dimension d of
the particle iX shown in the following:

⎩
⎨
⎧

= 0. otherwise ,0
)(s < () rand If ,1

i

i
i X

V
X

 (9)

Particles velocities on each dimension are limited to a
maximum velocity maxV . If the sum of accelerations may
cause the velocity on that dimension to surpass maxV , which
is a parameter specified by the user, then the velocity on
that dimension is limited to maxV .

3.2 Particle Encoding

To establish a “solution mapping” and “generate solution”
mechanisms are critical issues in applying PSO for solving
a specified domain problem. If these two issues are
dissolved successfully, it is possible to find a good-quality
solution. In section 2, the energy functions of our previous

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

74

work are formulated with timing and resource constraints.
In this work, the purpose of energy function is to evaluate
the energy value of candidate solution of each particle, and
then chose best candidate solution into next iteration
according to the energy value. However, energy function
clever on dissolving discrete matrix which is a 0-1 form;
thus how to encode the particle for mapping a
multi-dimension discrete matrix is an important issue in
applying energy function to PSO. In our work, we use an
one-dimension array to denote a three-dimension discrete
matrix of candidate solutions. In a swarm, a particle iP is
represented by a s dimension and can be defined
as],...,,[21 si pppP = . The s denotes the size of the
three-dimension matrix of candidate solution, Eg. job=4,
resource = 2, time=2, the s dimensional vector of each
particle is calculated by Job*Resource*Time. In this case,
the s = 16, the three-dimension matrix of a candidate
solution can be illustrated as Fig 1:

Fig. 1 The three-dimension matrix of a candidate solution

In Fig. 1, the “x” axis denotes the “job” variable and I
represents a job with a range from 1 to N, the total number
of jobs to be scheduled; where the “y” axis denotes the
machines variable and any point j on the axis represents a
dedicated machine identified from 1 to M, the total
number of machines to be operated; where the z axis
denotes the time variable and k represents a specific time
which should be less than or equal to T, the deadline of the
job. Thus, a state variable ijkV is defined as representing
whether the job i is executed on machine j at a certain time
k. However, it is difficult to operate and understand the 0-1
permutations in three-dimensional matrix, thus we
transform all permutations of a candidate solution into a
two-dimensional matrix, mapping one-dimension array as
Fig. 2:

Fig. 2 three-dimension matrix is mapping to one-dimension array

In Fig.2, it illustrated representation of the solution; the
three-dimension matrix is transformed into two-dimension
matrix and then maps a candidate solution via
one-dimension array. The job, resource and time fields of
two-dimension matrix denote the axes of x, y and z in
Fig.1, and all permutations are listed in two-dimension
matrix. The field iP denotes the code of a particle and is
mapping the state value of the three-dimension matrix.
Therefore, a candidate solution is encoded as a particle
successfully. In order to calculate the energy value for each
particle, these two simple equations are derived for
operating the state value of iJob in one-dimension array.
The equations are illustrated as the following:

Lower Bound = (s /Total Job * iJob) – (s /Total Job-1) (10)
Upper Bound = (s /Total Job * iJob) (11)

For example, the candidate solution of a particle is
computed by Eq. (1), initial iteration iJob =1, the lower
and upper bound of iJob is computed by Eq.(10) and (11),
the example is illustrated as following Fig3:

Fig. 3 the upper and lower bound for each job

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4,April 2006

75

In the Fig. 3, the lower and upper bound are calculated by
Eq. (10), (11). Then energy value of a candidate solution is
calculated by Eq. (1) in this simplify numerical
demonstration.

While iJob =1 then
Lower Bound = (s /Total Job * iJob) – (s /Total Job-1)
= (16/4 * 1)-(16/4-1) = 1
Upper Bound = (s /Total Job * iJob) = (16/4*1) = 4
For

iJob =2, Lower Bound = 5, Upper Bound = 8

iJob =3, Lower Bound = 9, Upper Bound = 12

iJob =4, Lower Bound = 13, Upper Bound = 16
As above, the lower and upper bound of job1, 2, 3, 4 are
calculated (10), (11). In order to simplify the calculate
process, thus only list the permutations of iJob =1 and the
energy value is calculated according to Eq.(1) shown as
following:

Fig. 4 three-dimension matrix is mapping to one-dimension array

Finally, the energy-based PSO algorithm is illustrated
following:

Step1. Initialization
The initial candidate solutions of particles in the swarm
are generated randomly according to timing and resource
constraints, and calculate energy value for each particle
by eq.(4), then set the pBest and gBest of swarm.

Step2. Generating new velocity
New velocities for all the dimensions in each particle are
generated by eq. (8).

Step3. Updating pBest & gBest Particle
The new position for each particle is generated by eq. (9);
pBest & gBest are calculated and updated.

Step4. Stopping criteria

Energy values are calculated for each particle, if the
stopping criteria are met, otherwise jumps to Step2.

4. Experiment Result

Three sets of resource and timing constraints are applied
for the simulations. The constants of the energy function,

1c , 2c , and 3c , are all given to 1 in this work. Each
population of individual of the PSO algorithm is initialized
randomly. The resource requested matrix and the timing
constraints matrices for three cases are shown in Table 1
and Table 2.

Table 1: Resource Requested Matrix
Case1
 R1 R2 R3
Job1 1 0 0
Job2 0 0 1
Job3 0 1 0
Job4 1 0 0

Case2
 R1 R2 R3 R4
Job1 1 0 0 0
Job2 0 0 1 0
Job3 0 1 0 0
Job4 1 0 0 1
Job5 1 0 0 1

Case3
 R1 R2 R3 R4
Job1 1 0 0 0
Job2 0 0 1 0
Job3 0 1 0 0
Job4 1 0 0 1
Job5 1 0 0 1
Job6 0 1 0 0
Job7 0 0 0 1
Job8 0 0 1 0
Job9 0 0 0 0
Job10 0 0 1 0

Table 2: Timing Constraints Matrix

Case1
 Time Required Time Limit
Job1 4 6
Job2 3 4
Job3 3 6
Job4 2 3

Case2
 Time Required Time Limit
Job1 2 3
Job2 3 8

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

76

Job3 3 4
Job4 4 8
Job5 2 5

Case3
 Time Required Time Limit
Job1 5 10
Job2 3 5
Job3 3 9
Job4 2 5
Job5 3 9
Job6 2 6
Job7 3 10
Job8 2 5
Job9 3 9
Job10 4 10

0

10

20

30

40

50

60

70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Iterations

E
ne

rg
y

V
al

ue

 1

 2

 3

Fig. 5 The Energy curve of the iteration in the population. (a)Case1 (b)

Case 2 (c) Case 3.

Fig. 5 displays the energy curve of the best member in the
population for 3 cases during iterations. The simulated
scheduling results are graphically represented by the Gantt
charts and are shown in Fig 6. To estimate the quality of
the scheduling results, we can calculate the makespan, the
sum of the maximum completion time of each job. The
energy function used by the latter is simplified in this work,
the computation time can he reduced.

Fig. 6 the good-quality solution in case (1)

5. Conclusion

The job-shop scheduling problems have been categorized
as NP-complete problems. It is a complex optimization
problems, the exponential growth of time required to
obtain an optimal solution. In our previous work, we used
HNN to solve the energy function of the scheduling
multi-processor task problem. In this work, we attempt
using PSO algorithm to solve the energy function of HNN.
However, some barriers must be overcome in applying
energy function to PSO. Fist, the multi-dimension 0-1
matrix of a candidate solution is mapping in an
one-dimension 0-1 array; the candidate solution is encoded
in each particle successfully. Next, the discrete state value
0 or 1 is throughout the state scope of energy function, thus
original version of PSO that applied on real value is not
suitable to solve the energy function. The sigmoid function
is utilized to produce probability threshold from velocity of
each particle, then generating new candidate solution. In
the three simulated cases, the proposed scheme converges
rapidly. Results show that the energy function is applying
PSO successfully. The energy-based PSO is a competent
method to solve the scheduling multi-processor task
problem. In future work, we attempt to derive our energy
function for describing the complex problem in various
industries, and make efforts to improve our PSO approach

References
[1] Yueh-Min Huang and Ruey-Maw Chen “Scheduling

Multiprocessor Job with Resource and Timing Constraints
Using Hopfield Neural Networks”, IEEE Transactions on
Sysrems, pp. 490-502, 1999.

[2] Ruey-Maw Chen and Yueh-Min Huang, “Competitive
Neural Network UI Solve Scheduling Problems”,
Neurocompuring, pp. 177-l96,2001.

[3] Ruey-Maw Chen and Yueh-Min Huang, “Multiprocessor
Task Assignment with Fuzzy Hopfield Neural Network
Clustering Technique”, Neural Computing and Applications,
pp. 12-21, 2001.

[4] Y. Shi and R. C. Eberhart, “Empirical Study of Particle
Swarm Optimization,” Proceedings of the 1999 Congress on
Evolutionary Computation, pp. 1945-1950, 1999.

[5] J. Kennedy, R. Eberhurt, “A discrete binary version of the
particle swarm algorithm,” Proc. 1997 Conf. Systems, 1997.

[6] Eberhart, R. C., Kennedy, J., “A new optimizer using
particle swarm theory,” Proc. Sixth Intl. Symposium on
Micro Machine and Human Science, pp. 39-43, 1995

[7] T. O. Ting, M. V. C. Rao., C.K. Loo, “A Novel Approach
for Unit Commitment Problem via an Effective Hybrid
Particle Swarm Optimization”, IEEE Transactions on Power
Systems, pp. 411-418, 2006.

[8] Weijun Xia, Zhiming Wu, “An effective hybrid optimization
approach for multi-objective flexible job-shop scheduling
problems”, Computer h& Industrial Engineering, pp.
409-425, 2005.

[9] Hong Zhang, Xiadong Li, Heng Li and Fulai Huang,
“Particle swarm optimization-based schemes for
resource-constrained project scheduling”, Automation in
Construction, pp. 393-404, 2004.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4,April 2006

77

Tzu-Chiang Chiang received his B.S.
degree in Engineering Science from the
National Cheng Kung University,
Taiwan, R.O.C., in 1987. He received
his M.S. degree in computer science
from University of Southern California,
Los Angeles, USA in 1992. He worked
in Computer Center at National Chung
Cheng University, Taiwan from 1993 to
2002. Since 2002, he has been a lecturer
in Department of Information

Management of Hisng-Kuo University of Management, Taiwan,
R.O.C. He is currently a Ph.D. student in Department of
Engineering Science of National Cheng Kung University, Taiwan,
R.O.C. His current research interests include security and routing
protocol issues in wireless ad hoc networks and multi-objective
optimization with genetic algorithms, multimedia
communications.

Po-Yin Chang received the B.S.
degree in Information Management
from Husing-Kao University of
Management, Taiwan, R.O.C., in 2002.
He received his MBA degree in
Graduate Institute of Commerce
Automation and Management from
National Taipei University of
Technology in 2005. He is a lecturer in
Department of Applied Internet

Science of Hisng-Kuo University of Management, Taiwan,
R.O.C. His current research interests include scheduling,
optimization in wireless ad hoc networks, web-services and
above issues using particle swarm optimization, genetic
algorithms

Yueh-Min Huang was born in Taiwan,
R.O.C., in 1960. He received the B.S.
degree in Engineering Science from the
National Cheng Kung University,
Taiwan, R.O.C., in 1982, and both the
M.S. and Ph.D. degrees in electrical
engineering from the University of
Arizona, Tucson, AZ, in 1988 and 1991,
respectively. He has been with National
Cheng Kung University since 1991, and

is currently a professor of the Department of Engineering Science.
His research interests include wireless ad hoc networks,
distributed multimedia systems, data mining, and real-time
systems. Dr. Huang is a member of IEEE Computer Society, the
American Association for Artificial Intelligence, and the Chinese
Fuzzy Systems Association.

