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Summary 
The job-shop scheduling problems have been categorized as 
NP-complete problems. In our previous work, we use Hopfield 
Neural Network (HNN) to solve the energy function of the 
scheduling multi-processor tasks problem. Particle swarm 
optimization (PSO) is an evolutionary computation technique 
mimicking the behavior of flying birds and their means of 
information exchange. However, a pure PSO algorithm approach 
tends to solve continues linear problems. Therefore, the pure PSO 
algorithm need to be specially designed or some other methods 
may be combined to solve the energy function. This paper 
proposes using the particle swarm optimization to solve the 
constrained scheduling problem in display system operation. The 
constrained scheduling problem not only satisfies the resource 
constraint and the timing constraint. In our work, there are 
barriers must be overcome in applying energy function to PSO. In 
particle encoding, we attempt using a one-dimension 0-1 array 
mapping a three-dimension matrix of a candidate solution for 
each particle, and then using sigmoid function to produce 
probability threshold from velocity of each particle for velocity 
updating. The result showed that the proposed approach is 
capable of obtaining higher quality solution efficiently in 
constrained scheduling problems.  
Key words: 
Job-shop scheduling, Particle swarm optimization, Energy 
function 

1. Introduction 

The job-shop scheduling problems have been classified to 
NP-complete problems. The augmentation of the number 
of jobs to be processed, the number of operations for each 
job and the number of flexible machines performing the 
processes, causes the exponential increase of the time 
required to obtain an optimal solution. Because of the 
exponential growth, the exhaustive search for global 
optimal schedules is very difficult or even impossible. To 
generate good-quality schedules instead of global optimal 
schedules, adaptive search approaches have been 
implemented. In our previous work, 1999 and 2001, to 
schedule multiprocessor job with resource and timing 
constraints, an energy function for the HNN was proposed 
by Huang and Chen [1][2]. Then, in 2001, we integrated 

fuzzy c-means clustering strategic into a HNN to solve 
scheduling problems [3]. Recently, stochastic search 
techniques such as particle swarm optimization have 
shown the feasibility to solve the job-shop scheduling 
problems. In 2004, Weijun Xia and Zhiming Wu proposed 
a new algorithm based on the principle of PSO approach to 
solve job-shop scheduling [8]. In 2005, Hong Zhang et al. 
applied PSO to solve resource-constrained project 
scheduling problem [9]. In this paper, we attempt using 
discrete binary PSO-based approach with a feasible energy 
function to solve multi-processor task scheduling problem 
with timing and resource constraints. The original version 
of PSO approach which is clever at solves continues linear 
problems; the pure PSO algorithm need to be specially 
designed or some other schemes may be combined to solve 
the energy function. This remainder of the paper is 
organized as follows: In Section 2, the definition of the 
energy function of the scheduling problem is presented. In 
Section 3, the PSO and discrete binary PSO algorithms are 
reviewed, and then proposed approach applied to the 
energy function is illustrated. After this, the simulation 
examples and experimental results are presented in Section 
4. Finally, conclusions of this paper are discussed in 
Section 5. 
 
2. Energy Function of Problem 
 
Job-shop scheduling problems are different from case to 
case. The scheduling problem domain in this paper has the 
following definition. Suppose N jobs are considered, each 
of which can be segmented, and M machines that are 
capable of performing the operations of all jobs, are also 
considered. The execution time required by each job is 
predetermined and can be estimated by calculating the 
machine cycles. It is supposed that different machines do 
not possess different segments of a job, and assumed that 
the job migration between machines is prohibited. 
Moreover, the deadline constraint for each job is imposed 
on the proposed system, and a resource to be shared by two 
jobs simultaneously is not allowed. According to the above 
assumptions, we attempt to generate legal schedules. 
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To solve this problem, the energy function of the problem 
regarding all constraints is derived [1][2]. The energy 
function is modified and reduced in this work. A state 
variable ijkV is defined as representing whether the job i  

is executed on machine j at a certain time k or not. 

Moreover, the state ijkV  = 1 denotes that the job i  is run 

on machine j at the time k; otherwise, ijkV = 0. Because a 

machine j can operate only one job i  at any certain 
time k , the energy term can be formulated as the 
following: 
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ijkV  are defined as above; i  ( i = 1,…,N) represents the 

total number of jobs to be scheduled; j (1 to M) represents 
the total number of machines to be assigned; k represents a 
specific time from 1 to T, the latest deadline of the job. The 
same notations are used hereinafter. The minimum value of 
this term is zero, which occurs when either ijkV  or 

jkiV 1 equals zero. As mentioned earlier, if a job is assigned 
on a dedicated machine, then all of its segments must be 
executed on the same machine. According this constraint, 
the energy term is defined as follows: 
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Since a job i  can be processed on either machine j or 

machine 1j , at any time, the minimum value of this term is 

zero, which occurs when either ijkV or 1ijkV equals as for 
the resource constraint, two jobs are not allowed to utilize 
the same resource instance simultaneously. Besides, the 
resource is non-preemptive so that the energy term can he 
defined as follows zero.  
As for the resource constraint, two jobs are not allowed to 
utilize the same resource instance simultaneously. Besides, 
the resource is non-preemptive so that the energy term can 
he defined as following: 
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where F denotes the quantity of available resource 
instances, isR and siR 1  are the elements of the resource 

requested matrix for job i and 1i , respectively. The value 

isR = 1 means that job i requires resource s while siR 1 = 1 

implies that job 1i requests resource s. When two distinct 
jobs are scheduled to be processed on different machines j 
and 1j at the same time k (say ijkV =1 and jkiV 1  =l), 

machines j and 1j cannot share the same resource at the 

time k . Hence, either isR  or siR 1 is zero. This 
observation implies that the energy term becomes zero if 
the resource constraint is satisfied. Correspondingly, the 
total energy function with all constraints can be induced as 
Eq.(4) 
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where 1c , 2c and 3c refer to weighting factors and are 
supposed to be positive constants in our work. This study 
concentrates mainly on scheduling problems with 
constraint satisfaction. In the following section, PSO 
algorithm is introduced to solve the constraint satisfaction 
of the scheduling problems. 
  
3. Experimental Consideration  
 
Particle Swarm Optimization (PSO), one of the modern 
heuristic algorithms, is a population-based stochastic 
optimization technique developed by Eberhart and 
Kennedy in 1995[6], and was developed through 
simulation of a simplified social system. It has been found 
to be potent when it solves continuous nonlinear 
optimization problems. In our previous work, the energy 
function is set in discrete space. In this paper, we introduce 
a method of converting energy function to PSO. 
 
3.1 Standard PSO Algorithm 
 
PSO is an optimization tool providing a population-based 
search procedure in which individuals, called particles, 
change their positions, or states, with time. Particles in a 
PSO system fly around in a multidimensional search space. 
During the flying process, each particle modifies its 
position according to earned experience and the experience 
of nearby particles, and makes use of the best position met 
by it and other neighboring particles. The PSO method 
generates high-quality solution within shorter calculation 
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time and the more stable convergence feature than other 
stochastic methods [4]. Let ix xi and iv  represent the 
coordinates and the corresponding flight speed of the 
particle i  in a search space, respectively. The 
particle-updating mechanism for particle flying can be 
formulated as 
 

)(**)(** 2211 iipbestiigbestii xXrandcxxrandcvwv −+−+⋅= (5) 

iii vxx +=  (6) 
 
w : inertia weight factor 
c1, c2: acceleration constant  

21,randrand : uniform random value in the range [0,1] 

igbestx : the best particle among all individuals in the 
population 

ipbestX   : the best history position of particle  ix . 

 

The parameter determined the resolution, or fitness, with 
which regions are to be searched between the max present 
position and the target position. When   value is too high, 
max particles might fly past good solutions. Contrarily, 
particles may not explore sufficiently beyond local 
solutions when is too small. Experiences with PSO 
indicated that was often set at 10-20% of the dynamic 
range of the variable on each dimension. The constants c1 
and c2 can describe the weighting of the stochastic 
acceleration terms that pull each particle xi toward x and x 
positions. Low values allow pbesti  and gbesti particles to 
roam far from the target regions before being tugged back. 
On the other, high values result in abrupt movement 
toward, or past, target regions. Hence, the acceleration 
constants c1 and c2 were often set to be 2.0 according to 
past experiences.  

iter
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where maxw  and minw are both random numbers 
called initial weight and final weight respectively. In 
addition, maxiter is the maximum number of iterations, 
and iter is the current iteration. The standard PSO 
algorithm was described as following: 
PSO algorithm 
Begin  
Initialize  

Particles to multidimensional scope with randomly 
While the maximum of iterations is not reached 

For each particle  
Using Fitness function calculate fitness value  

If the fitness value is better than the best fitness value 
according to past experiences 
Set current value as the new pbest 

End For 
Choose the particle with the best fitness value of all the 
particles as the gbest 
For each particle 

Calculate particle velocity, V, according Eq. (5) 
Update particle position, present, according Eq. (6) 

End for 
End While 

End Begin 
 
The output state in the energy function is 0 or 1 only, thus 
it is not suitable to apply the original version of PSO that is 
clever at operating the real values. A clever method for 
establishing a discrete binary version of the PSO (BPSO) 
was presented by Kennedy and Eberhart [5]. The 
dimensional value of BPSO must stay in values of 0 or 1 
only. The velocity iV  will determine a probability 
threshold. If iV  is higher, the individual will be more 
likely to choose 1; lower values will favor the 0 choice; 
such a threshold needs to stay in the range [0.0, 1.0]. One 
familiar sigmoid function in neural network achieves this 
goal; the function is defined as the following: 
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The function scales the Velocities iV  between 0 and 1 and 
has a value that makes it agreeable to be used as a 
probability threshold. Finally we update the dimension d of 
the particle iX shown in the following:  
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Particles velocities on each dimension are limited to a 
maximum velocity maxV . If the sum of accelerations may 
cause the velocity on that dimension to surpass maxV , which 
is a parameter specified by the user, then the velocity on 
that dimension is limited to maxV . 
 
 
 
3.2 Particle Encoding 
 
To establish a “solution mapping” and “generate solution” 
mechanisms are critical issues in applying PSO for solving 
a specified domain problem. If these two issues are 
dissolved successfully, it is possible to find a good-quality 
solution. In section 2, the energy functions of our previous 
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work are formulated with timing and resource constraints. 
In this work, the purpose of energy function is to evaluate 
the energy value of candidate solution of each particle, and 
then chose best candidate solution into next iteration 
according to the energy value. However, energy function 
clever on dissolving discrete matrix which is a 0-1 form; 
thus how to encode the particle for mapping a 
multi-dimension discrete matrix is an important issue in 
applying energy function to PSO. In our work, we use an 
one-dimension array to denote a three-dimension discrete 
matrix of candidate solutions. In a swarm, a particle iP  is 
represented by a s dimension and can be defined 
as ],...,,[ 21 si pppP = . The s denotes the size of the 
three-dimension matrix of candidate solution, Eg. job=4, 
resource = 2, time=2, the s dimensional vector of each 
particle is calculated by Job*Resource*Time. In this case, 
the s = 16, the three-dimension matrix of a candidate 
solution can be illustrated as Fig 1:  
 

 
 

Fig. 1 The three-dimension matrix of a candidate solution 
 
In Fig. 1, the “x” axis denotes the “job” variable and I 
represents a job with a range from 1 to N, the total number 
of jobs  to be scheduled; where the “y” axis denotes the 
machines variable and any point j on the axis represents a 
dedicated  machine identified  from 1 to M, the total 
number of machines to be operated; where the z axis 
denotes the time variable and k represents a specific time 
which should be less than or equal to T, the deadline of the 
job. Thus, a state variable ijkV is defined as representing 
whether the job i is executed on machine j at a certain time 
k. However, it is difficult to operate and understand the 0-1 
permutations in three-dimensional matrix, thus we 
transform all permutations of a candidate solution into a 
two-dimensional matrix, mapping one-dimension array as 
Fig. 2: 
 

 
 

Fig. 2 three-dimension matrix is mapping to one-dimension array 
 

In Fig.2, it illustrated representation of the solution; the 
three-dimension matrix is transformed into two-dimension 
matrix and then maps a candidate solution via 
one-dimension array. The job, resource and time fields of 
two-dimension matrix denote the axes of x, y and z in 
Fig.1, and all permutations are listed in two-dimension 
matrix. The field iP  denotes the code of a particle and is 
mapping the state value of the three-dimension matrix. 
Therefore, a candidate solution is encoded as a particle 
successfully. In order to calculate the energy value for each 
particle, these two simple equations are derived for 
operating the state value of iJob  in one-dimension array. 
The equations are illustrated as the following: 
 
Lower Bound = (s /Total Job * iJob ) – (s /Total Job-1) (10) 
Upper Bound = (s /Total Job * iJob )               (11) 
 
For example, the candidate solution of a particle is 
computed by Eq. (1), initial iteration iJob  =1, the lower 
and upper bound of iJob  is computed by Eq.(10) and (11), 
the example is illustrated as following Fig3: 
 

 
 

Fig. 3 the upper and lower bound for each job 
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In the Fig. 3, the lower and upper bound are calculated by 
Eq. (10), (11). Then energy value of a candidate solution is 
calculated by Eq. (1) in this simplify numerical 
demonstration. 
 
While iJob =1 then 
Lower Bound = (s /Total Job * iJob ) – (s /Total Job-1) 
= (16/4 * 1)-(16/4-1) = 1  
Upper Bound = (s /Total Job * iJob ) = (16/4*1) = 4 
For 

iJob =2, Lower Bound = 5, Upper Bound = 8 

iJob =3, Lower Bound = 9, Upper Bound = 12 

iJob =4, Lower Bound = 13, Upper Bound = 16 
As above, the lower and upper bound of job1, 2, 3, 4 are 
calculated (10), (11). In order to simplify the calculate 
process, thus only list the permutations of iJob =1 and the 
energy value is calculated according to Eq.(1) shown as 
following: 
 

 
 

Fig. 4 three-dimension matrix is mapping to one-dimension array 
 
Finally, the energy-based PSO algorithm is illustrated 
following: 
 
Step1. Initialization 
The initial candidate solutions of particles in the swarm 
are generated randomly according to timing and resource 
constraints, and calculate energy value for each particle 
by eq.(4), then set the pBest and gBest of swarm. 
 
Step2. Generating new velocity  
New velocities for all the dimensions in each particle are 
generated by eq. (8). 
 
Step3. Updating pBest & gBest Particle 
The new position for each particle is generated by eq. (9); 
pBest & gBest are calculated and updated. 
 
Step4. Stopping criteria 

Energy values are calculated for each particle, if the 
stopping criteria are met, otherwise jumps to Step2. 
 
4. Experiment Result 
 
Three sets of resource and timing constraints are applied 
for the simulations. The constants of the energy function, 

1c , 2c , and 3c , are all given to 1 in this work. Each 
population of individual of the PSO algorithm is initialized 
randomly. The resource requested matrix and the timing 
constraints matrices for three cases are shown in Table 1 
and Table 2.  
 

Table 1: Resource Requested Matrix 
Case1 
 R1 R2 R3 
Job1 1 0 0 
Job2 0 0 1 
Job3 0 1 0 
Job4 1 0 0 
 
Case2 
 R1 R2 R3 R4 
Job1 1 0 0 0 
Job2 0 0 1 0 
Job3 0 1 0 0 
Job4 1 0 0 1 
Job5 1 0 0 1 
 
Case3 
 R1 R2 R3 R4 
Job1 1 0 0 0 
Job2 0 0 1 0 
Job3 0 1 0 0 
Job4 1 0 0 1 
Job5 1 0 0 1 
Job6 0 1 0 0 
Job7 0 0 0 1 
Job8 0 0 1 0 
Job9 0 0 0 0 
Job10 0 0 1 0 

 
Table 2: Timing Constraints Matrix   

Case1 
 Time Required Time Limit 
Job1 4 6 
Job2 3 4 
Job3 3 6 
Job4 2 3 
 
Case2 
 Time Required Time Limit 
Job1 2 3 
Job2 3 8 
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Job3 3 4 
Job4 4 8 
Job5 2 5 
 
Case3 
 Time Required Time Limit 
Job1 5 10 
Job2 3 5 
Job3 3 9 
Job4 2 5 
Job5 3 9 
Job6 2 6 
Job7 3 10 
Job8 2 5 
Job9 3 9 
Job10 4 10 
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Fig. 5  The Energy curve of the iteration in the population. (a)Case1 (b) 

Case 2 (c) Case 3. 
 

Fig. 5 displays the energy curve of the best member in the 
population for 3 cases during iterations. The simulated 
scheduling results are graphically represented by the Gantt 
charts and are shown in Fig 6. To estimate the quality of 
the scheduling results, we can calculate the makespan, the 
sum of the maximum completion time of each job. The 
energy function used by the latter is simplified in this work, 
the computation time can he reduced. 
 

 
 

Fig. 6 the good-quality solution in case (1) 
 
 
5. Conclusion 

 
The job-shop scheduling problems have been categorized 
as NP-complete problems. It is a complex optimization 
problems, the exponential growth of time required to 
obtain an optimal solution. In our previous work, we used 
HNN to solve the energy function of the scheduling 
multi-processor task problem. In this work, we attempt 
using PSO algorithm to solve the energy function of HNN. 
However, some barriers must be overcome in applying 
energy function to PSO. Fist, the multi-dimension 0-1 
matrix of a candidate solution is mapping in an 
one-dimension 0-1 array; the candidate solution is encoded 
in each particle successfully. Next, the discrete state value 
0 or 1 is throughout the state scope of energy function, thus 
original version of PSO that applied on real value is not 
suitable to solve the energy function. The sigmoid function 
is utilized to produce probability threshold from velocity of 
each particle, then generating new candidate solution. In 
the three simulated cases, the proposed scheme converges 
rapidly. Results show that the energy function is applying 
PSO successfully. The energy-based PSO is a competent 
method to solve the scheduling multi-processor task 
problem. In future work, we attempt to derive our energy 
function for describing the complex problem in various 
industries, and make efforts to improve our PSO approach 
 
References 
[1] Yueh-Min Huang and Ruey-Maw Chen “Scheduling 

Multiprocessor Job with Resource and Timing Constraints 
Using Hopfield Neural Networks”, IEEE Transactions on 
Sysrems, pp. 490-502, 1999. 

[2] Ruey-Maw Chen and Yueh-Min Huang, “Competitive 
Neural Network UI Solve Scheduling Problems”, 
Neurocompuring, pp. 177-l96,2001. 

[3] Ruey-Maw Chen and Yueh-Min Huang, “Multiprocessor 
Task Assignment with Fuzzy Hopfield Neural Network 
Clustering Technique”, Neural Computing and Applications, 
pp. 12-21, 2001. 

[4] Y. Shi and R. C. Eberhart, “Empirical Study of Particle 
Swarm Optimization,” Proceedings of the 1999 Congress on 
Evolutionary Computation, pp. 1945-1950, 1999. 

[5] J. Kennedy, R. Eberhurt, “A discrete binary version of the 
particle swarm algorithm,” Proc. 1997 Conf. Systems, 1997. 

[6] Eberhart, R. C., Kennedy, J., “A new optimizer using 
particle swarm theory,” Proc.  Sixth Intl. Symposium on 
Micro Machine and Human Science,  pp. 39-43, 1995 

[7] T. O. Ting, M. V. C. Rao., C.K. Loo, “A Novel Approach 
for Unit Commitment Problem via an Effective Hybrid 
Particle Swarm Optimization”, IEEE Transactions on Power 
Systems, pp. 411-418, 2006. 

[8] Weijun Xia, Zhiming Wu, “An effective hybrid optimization 
approach for multi-objective flexible job-shop scheduling 
problems”, Computer h& Industrial Engineering, pp. 
409-425, 2005. 

[9] Hong Zhang, Xiadong Li, Heng Li and  Fulai Huang, 
“Particle swarm optimization-based schemes for 
resource-constrained project scheduling”, Automation in 
Construction, pp. 393-404, 2004. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4,April  2006 
 

 

77

 
 

Tzu-Chiang Chiang received his B.S. 
degree in Engineering Science from the 
National Cheng Kung University, 
Taiwan, R.O.C., in 1987. He received 
his M.S. degree in computer science 
from University of Southern California, 
Los Angeles, USA in 1992. He worked 
in Computer Center at National Chung 
Cheng University, Taiwan from 1993 to 
2002. Since 2002, he has been a lecturer 
in Department of Information 

Management of Hisng-Kuo University of Management, Taiwan, 
R.O.C. He is currently a Ph.D. student in Department of 
Engineering Science of National Cheng Kung University, Taiwan, 
R.O.C. His current research interests include security and routing 
protocol issues in wireless ad hoc networks and multi-objective 
optimization with genetic algorithms, multimedia 
communications. 
 

Po-Yin Chang received the B.S. 
degree in Information Management 
from Husing-Kao University of 
Management, Taiwan, R.O.C., in 2002. 
He received his MBA degree in 
Graduate Institute of Commerce 
Automation and Management from 
National Taipei University of 
Technology in 2005. He is a lecturer in 
Department of Applied Internet 

Science of Hisng-Kuo University of Management, Taiwan, 
R.O.C. His current research interests include scheduling, 
optimization in wireless ad hoc networks, web-services and 
above issues using particle swarm optimization, genetic 
algorithms 

 
Yueh-Min Huang was born in Taiwan, 
R.O.C., in 1960. He received the B.S. 
degree in Engineering Science from the 
National Cheng Kung University, 
Taiwan, R.O.C., in 1982, and both the 
M.S. and Ph.D. degrees in electrical 
engineering from the University of 
Arizona, Tucson, AZ, in 1988 and 1991, 
respectively. He has been with National 
Cheng Kung University since 1991, and 

is currently a professor of the Department of Engineering Science. 
His research interests include wireless ad hoc networks, 
distributed multimedia systems, data mining, and real-time 
systems. Dr. Huang is a member of IEEE Computer Society, the 
American Association for Artificial Intelligence, and the Chinese 
Fuzzy Systems Association. 
 
 


