
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

78

A Novel Greedy Computing Algorithm for Rectangle Packing
Problems

Yanbing LIU1,2 , Duanbing CHEN3

1 Chongqing University of Posts and Telecommunications,Chongqing 400065, P. R. China
2School of Computer Science, UEST of China, Chengdu 610054,P. R. China

3 College of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China

Summary
Rectangle packing problem often appears in encasement
and cutting as well as layout of homepage or newspaper,
etc. This problem has been shown to be NP hard. For
solving this problem, many compute algorithms based on
different strategies are presented in the literatures. A
novel-computing algorithm is proposed in this paper. The
novel match algorithm tested the instances that taken from
the literatures. The computational results demonstrate that
the novel algorithm is rather optimal and efficient for
solving rectangle block packing problem.
Key words:
Rectangle packing; packing; computing algorithm;
matching degree.

Introduction

Rectangle block packing problem often appears in
encasement and cutting as well as layout of newspaper or
homepage, etc. This problem belongs to a subset of
classical cutting and packing problems and has been
shown to be NP hard. For more extensive and detailed
descriptions of packing problem, please refer to Lodi
(2002)[1]and Pisinger (2002)[2]. For solving this problem,
various algorithms based on different data structures have
been suggested, for example, SP [3], TCG [4] and CBL
[5]. In order to improve the performance of the algorithm,
some literatures combine genetic algorithm or simulated
annealing with deterministic method and obtain hybrid
algorithm[6]. Recently, some robust heuristic algorithms
are presented [7][8]. These two heuristic algorithms are
fast and effective. Some people formalize the experience
and wisdom of human being and obtain the quasi-human
heuristic algorithm[9].
In this paper, a greedy-computing algorithm (GCA) for
rectangle block packing problem is proposed. The
objective is to minimize the dead space of the box. The
key point of this algorithm is that the rectangle block
packed into the box always matches the blank place, and
the matching degree should be as large as possible. In this
way, the blocks will be close to each other wisely, and the

spare space is decreased. As compared with literatures, the
results from MCA are much improved.

For instances ami33_R and ami49_R, the dead space
obtained by MCA are 4.82% and 4.58%, respectively,
whereas obtained by algorithm in [10] are 6.83% and
5.52%, respectively. For instances test1 and test2 provided
by Lin (2002)[4], we obtain the optimal solutions.
Computational results show that the MCA is rather
efficient for solving rectangle block packing problem.
The remaining of this paper is organized as follows.
Section 2 discusses problem descriptions and framework
of our method. Section 3 is computing procedure of the
algorithm. Computational results are presented in Section
4. Conclusions are drawn in Section 5.

2. Problem Descriptions and Framework of
Our Method

A rectangular container B0 of width w0 and height h0 is
given. And n rectangle blocks B1, B2,…, Bn of
deterministic shape and size are given. In the plane
rectangular coordinates, the bottom left of the container is
placed at (0, 0) with its four sides parallel to X- and Y- axis,
respectively. The objective is to pack as many rectangle
blocks into the container B0 as possible, that is, to
minimize the dead space of the container. The constraints
for packing rectangle blocks are:

-Each edge of a rectangle block must be parallel to X-
axis or Y-axis.

-There is no overlapping for any two rectangle blocks,
i.e., the overlapping area is zero.

2.1 Fundamental Conceptions

1) Matching movement (MM)
A packing movement is called a matching movement (MM),
if the edges of the rectangle to be packed overlap the
different directional edges with other already packed
rectangles including the box, and the overlapping lengths
are longer than zero. E.g., in Fig. 1, the shadowy rectangle
blocks have been packed, and the rectangle block d is

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

79

outside the box. The packing movement is a MM, if block d
is situated at place A, B or C; it is not a MM if situated at
place D or E.

In particular, a packing movement is called a perfect
matching movement if the rectangle block to be packed not
only matches a blank place, but also touches some other
previously packed rectangle blocks including the box. For
example, in Fig. 1, if rectangle block d is packed at place
A, it matches the blank place formed by rectangle block a
and b, furthermore, it touches the rectangle block c. Thus,
the movement of packing rectangle block d is a perfect
matching movement.

b

a
c

A
B

ED

C
d

Fig. 1 Matching movement

(a) (b)

l2

l 1

 Fig. 2 Distance between two rectangles

2) Distance between two rectangle blocks
For two given rectangle blocks Bi and Bj, let point Pi
belonging to Bi, and Pj belonging to Bj. Let the distance
between Pi and Pj be (,)i jd P P . The distance between Bi

and Bj is defined as ,min (,)
i i j jij P B P B i jd d P P∈ ∈= .

a

b

Bi

dmin

Fig. 3 Matching degree

For example, (a) to (b) as shown in Fig. 2, the distance
between two rectangle blocks is zero and l1+l2,
respectively.
3) Distance between one rectangle block and several
rectangle blocks
For a given rectangle block B and a set of rectangle blocks
{Bi| i=1,2,…, m}. Let the distance between B and Bi
(i=1,2,…, m) be di. The minimum of di (i=1,2,…, m) is
defined as the distance between B and m rectangle blocks
B1, B2,…, Bm.
4) Matching degree of MM
As shown in Fig. 3, if a rectangle block Bi is packed into
the box according to a MM, and let the distance between
rectangle block Bi and all the already packed rectangle
blocks including the box (except the rectangle blocks that
form this blank place) be dmin, the matching degree MDi of
the corresponding MM can be defined as:

 min1i
i

dMD
S

= − (1)

Where Si is the area of Bi.

2.2 Main Idea and Sketch of MCA Algorithm

If some rectangle blocks have been packed into the box
without overlapping. The question is which one is the best
candidate for the remainder, and which position is the best
one to be filled? According to the packing experience in our
daily life, we can find a match for a rectangle block and
pack it. So, we always pack a rectangle block according to
the following principle: The rectangle to be packed into the
box always matches a blank space, and the matching degree
should be as large as possible. At each step, we do the MM
with the largest matching degree until no rectangle block
is left outside the box or no rectangle block can be packed
according to the current configuration. In order to improve
the performance, we introduce the backtracking process.

3. Computing Procedure of MCA Algorithm

This paper makes the elucidation of the algorithm to
compute and solve rectangle block packing problem.

First stage is greedy computing procedure.

Step 1. Based on the current configuration, if there is no
rectangle block can be packed, return the dead space of the
box and terminate the program; otherwise, enumerate all
MMs, and calculate the matching degree for each MM.

Step 2. Select the MM with the largest cave degree and
pack the corresponding rectangle block. A new
configuration is obtained.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

80

Step 3. If all rectangle blocks are packed into the box,
output the packing result and stop successfully. Otherwise,
return to step 1.

Second stage is running the backtracking procedure.

Step 1. Based on the current configuration, if there is no
rectangle block can be packed, output the dead space of

Table 1: Computational results

Our method Yang et al (2004) Lin et al (2002)

Instance
Total
blocks

#Rectangular
blocks

Rectangle
blocks

Dead space
%

Time
Sec

Dead space
%

Time
Sec

Dead space
%

Time
Sec

Ami33_R 39 33 6 4.82 386.99 6.83 93.17
Ami49_R 55 49 6 4.58 1251.29 5.52 246.38

Test1 17 6 11 0.00 2.41 9.375 1224
Test2 29 22 7 0.00 1.12 6.944 1409

the box and terminate the program; otherwise, enumerate
all MMs as candidates

Step 2. For each candidate MM, pseudo-pack (just pack
the rectangle block into the box temporarily, it will be
removed from the box future) corresponding rectangle
block and get a new configuration. Based on this new
configuration, pseudo-pack the remainder rectangle blocks
according to the greedy computing procedure. If all
rectangle blocks can be packed, output the packing result
and stop successfully. Otherwise, calculate the dead space
of the box according to the tentative end configuration as
the penalty score of corresponding candidate MM.

Step 3. Select the MM with the lowest penalty score. If
there is just one MM with the lowest penalty score, pick
this one and pack the corresponding rectangle block.
Otherwise, select the MM with the largest matching degree
and pack the corresponding rectangle block. A new
configuration is obtained, return to step 1.

4 Computational Results

The algorithm MCA is implemented by C#.net
programming language. Performance of the MCA has
been tested with four instances taken from [4] and [10].
Instances ami33_R and ami49_R are taken from Yang
(2004)[10]. There are 33 rectangular blocks and 6
rectangle blocks for ami33_R, 49 rectangular blocks and 6
rectangle blocks for ami49_R, as shown in Table 1.
Instance test1 and test2 are taken from [4], and the optimal
solutions for these two instances are known. The details of
test1 and test2 please refer to Lin (2002)[4]. The layouts of
ami33_R, ami49_R, test1 and test2 are shown in Fig. 4.
The comparisons between [4], [10] and our method are
shown in Table 1. For instances ami33_R and ami49_R,
the dead space obtained by our method is 4.82% and
4.58%, and the runtime is 386.99 and 1251.29 seconds,
respectively. Whereas, the dead space obtained by Yang

(2004)[10] is 6.83% and 5.52% with the runtime is 93.17
and 246.38 seconds, respectively. For instances test1 and
test2, the optimal solutions can be obtained by our method,
that is, the dead space is 0%. In the Lin (2002)[4], the dead
space is 9.375% and 6.944%, respectively. The runtime
used by our method is shorter than that by Lin (2002)[4],
as shown in last two rows of Table 1.

5 Conclusions

In this paper, an optimal computing algorithm for
rectangle block packing problem is proposed. This
algorithm within reasonable runtime can obtain low dead
space of the box. For instance ami33_R and ami49_R
taken from Yang (2004)[10], the dead space obtained by
our method is 4.82% and 4.58%, respectively; and for
instance test-1 and test-2 taken from Lin (2002)[4], the
optimal solutions are obtained. The computational results
demonstrate that the optimal algorithm proposed in this
paper is rather efficient for solving rectangle block
packing problem.

Acknowledgments

The authors would like to thank Dr. Y.Y. Yao and Dr. J.T.
Yao for their help during my visit in Canada. We also wish
to express my sincere thanks to all those who have worked
or are currently working with me for their helpful
discussions. The Natural Science Foundation of CQMEC
under Grant No.KJ050507, and the Natural Science
Foundation of CQUPT, CSTC under Grant
No.2005BB2060 supported the work.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

81

Instance: Ami33_R
Box dimensions: 1433x1067
Dead space: 4.82%

Instance: Test1
Box dimensions: 8x8
Dead space: 0.00%

Instance: Ami49_R
Box dimensions: 6990x6550
Dead space: 4.58%

Instance: Test2
Box dimensions: 12x12
Dead space: 0.00%

Fig. 4 The layouts of instance ami33_R, ami49_R, test1 and test2

References
[1] Lodi A, Martello S and Monaci M (2002). Two-dimensional

packing problems: a survey. European Journal of
Operational Research 141: 241-252.

[2] Pisinger D(2002). Heuristics for the container loading
problem. European Journal of Operational Research 141:
382-392.

[3] Kang M Z and Dai W W-M (1998). Arbitrary rectangle
block packing based on sequence pair. ICCAD98, San Jose,
CA, USA, 259-266.

[4] Lin J-M, Chen H-L and Chang Y-W (2002). Arbitrary
shaped rectangle module placement using the transitive
closure graph representation. IEEE transaction on Very
Large Scale Integration System 10(6): 886-901.

[5] Ma Y, et al (2003). Arbitrary convex and concave rectangle
block packing based on corner block list. IEEE 2003, V493-
496.

[6] Leung T W, Chan C K and Troutt M D (2003). Application
of a mixed simulated annealing-genetic algorithm heuristic
for the two-dimensional orthogonal packing problem.
European Journal of Operational Research 145: 530-542.

[7] Wu Y L, Huang W, Lau S, Wong C K and Young G H
(2002). An effective quasi-human based heuristic for
solving the rectangle packing problem. European Journal of
Operational Research 141: 341-358.

[8] Zhang D, Deng A and Kang Y (2005). A hybrid heuristic
algorithm for the rectangular packing problem. Lecture
Notes on Computer Science (ICCS 2005) 3514: 783-791.

[9] Huang W, Li Y, Akeb H and Li C (2005). Greedy
algorithms for packing unequal circles into a rectangular
container. Journal of the Operational Research Society 56:
539-548.

[10] Yang Z, Dong S, Hong X and Wu Y-L (2004). Arbitrary
rectangle block packing based on less flexibility first
principles. Chinese Journal of Semiconductors 25(11):
1416-1422.

Yanbing LIU received M.S. degree in computer application
from Beijing University of Posts and Telecommunications,
Beijing, China, in 2001. He is working toward the Ph.D. degree
at University of Electronic Science and Technology of China.
Since 2002, he has been an Associate Professor at the Chongqing
University of Posts and Telecommunications. He also serves as a
teacher of CISCO Network Technology Academy. His current
research interests lie in the study of the evaluation and planning
of the capacity and performance of wireless networks, traffic
analysis of wireless, traffic modeling, resource assignment and
resource allocation.

