
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

100

Manuscript received April 5, 2006.
Manuscript revised April 25 , 2006.

Comparing Semantic Web Service Frameworks in a Context of
Auction Services

Naoki Fukuta,† and Takayuki Ito††,

†Shizuoka University, Hamamatsu, Shizuoka, Japan
††Nagoya Institute of Technology, Nagoya, Aichi, Japan

Summary
In this paper, we compare Semantic Web Service (SWS)
description framework WSMO and SWSF, and highlight their
advantages for e-commerce services. The comparison mainly
covers logical expression of services in the two frameworks. The
contributions of this paper are 1) to evaluate the capabilities and
the limits of those frameworks; 2)to clarify familiarity and
mismatches of expected usage in SWS languages and
combinatorial auction services; and 3)to investigate a novel
usage of SWS technologies for e-commerce.
Key words:
semantic Web, auction mechanism, semantic Web services

Introduction

Automation mechanisms for building e-commerce
systems are currently a hot topic. Automated Web service
composition is a scenario for realizing such automation of
building e-commerce systems by combining existing Web
services. Semantic Web Services (SWS) has been
proposed in [1] to realize automated composition of
complex Web services by using semantic descriptions that
are constructed using the Semantic Web technology. The
advantage of using semantics in Web service composition
is that we can compose services without any probabilistic
approach and the composed services will run without
semantic errors. To control these composition processes,
rule languages are used to describe business rules and
conditions for using services to realize valuable and
economically valid service compositions.

To date, some important SWS frameworks and
related technologies are proposed[2][3][4][5][6][7]. In this
paper, We focus on SWSF[5] and WSMO[6][7]. Both
frameworks have their own ontology and description
languages for rules and logics that are needed for
sufficient description of e-commerce services. SWSF
means Semantic Web Service Framework, it includes the
ontology SWSO(Semantic Web Service Ontology)[8] and
the description language SWSL(Semantic Web Service
Language)[9]. WSMO means Web Service Modeling
Ontology. WSMO is an ontology but it includes the
modeling language WSML(Web Service Modeling

Language)[10] and the execution environment WSMX
(Web Service eXecution Environment)[11]. WSMO has
WSMF (Web Service Modeling Framework)[12] as its
conceptual background. The rule language used in WSML
has been submitted as an independent language
WRL(Web Rule Language)[13]. Here, it is confusing that
the structures and naming rules are different from SWSF
and WSMO. In this paper, we use SWSF and WSMO, as
the meanings of the whole frameworks1.

Since the concepts, the ontologies, and the languages
of these two frameworks are different, it is meaningful to
compare the two frameworks and to understand the
differences and advantages of them.

Although comparisons between SWSL and WSML
are provided briefly within the W3C submissions of
SWSF[5] and WSMO[6], the focus is on distinguishing
the differences of purposes and approaches between the
two; the W3C submissions do not provide an actual
comparison in a certain business application context in the
submission documents. However, it is valuable to
understand which language is better suited for what types
of business contexts. To the best of our knowledge, no
comparison has been performed for expressiveness of
SWSF and WSMO in the same e-commerce context.

In this paper, we compare the two frameworks,
SWSF and WSMO in a context of using an auction
mechanism. Here we focus on a comparison among logical
expressions in two important conditions used for the
winner determination problem in combinatorial auctions.

The rest of this paper is organized as follows. In
Section 2, we show the relationships between SWS and
auction mechanisms. Section 3 explains how to describe
an auction and bids in the ontological expression used in
SWS. In Section 4, we compare two different SWS
languages with respect to logical expressiveness in the
context of using services for determining winners for
combinatorial auctions. We also briefly discuss the

1 Recently, the WSMO team began to use W<Triple> as
the name of whole framework including WSMO, WSML,
WSMX, and additionally Triple Space Computing. We did
not use this term in this paper since it did not appear in the
W3C submissions.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No4, April 2006

101

comparison results presented in Section 4. Finally, in
Section 5 we present our conclusions and outline future
work.

2. Relationships between SWS and auction
mechanisms

2.1 SWS and auction

 Semantic Web Services(SWS) technology has a
potential to enhance auction mechanisms for making
contracts among agents by using semantics. Using
auctions is a good candidate for making (semi-)optimal
contracts in a simple and open way. However, in most
current auction mechanisms, a bid is represented as an
assignment of price for one item or combination of items.
It is possible to assign bids to semantically represented
items such as `a flight from Tokyo to Vienna'. Also, by
using semantic information, some additional application
might be possible, such as using trust information about
bidders for assigning items in an auction.

 Furthermore, there exist potential needs for using
auction services in SWS Systems. There are plenty of
online auction services on the Web and these auction
services can be used in composing new services within an
SWS system. For example, it is possible to implement
intelligent multiple-bidding system like BiddingBot
system[14] as an SWS system: it will obtain the desired
items from multiple auction sites in lower price.

 Here, an important issue will arise to combine SWS
technology and auction mechanism: how do we express
items, bids, sellers, buyers, auction processes, conditions
to determine winners in auctions, etc. in a Semantic Web
framework.

2.2 Implicit assumptions on the current major SWS
frameworks

Through our survey, we understand that most SWS
frameworks have a certain implicit assumption regarding
processing tasks (in other words, queries). That is ``All
tasks processed at the SWS execution engine are
independent of each other, though these tasks should be
processed separately.''

This assumption is suitable for client-side
applications such as finding and obtaining a desired item
from auction sites. In a client side application, the goal
that represents the task (in the above scenario, the item we
want to obtain is the goal) is given by the user. Here, other
users' goals (such as other people's color preference for the
item) should not be reflected in the goal. Therefore, the
assumption will work well in this situation. It is also

possible to apply this assumption to server-side
applications when the requests (goals) are not closely
related each other and can be solved independently.

This assumption is also good for keeping an SWS
framework and its implementation simple and easy to
monitor and handle. This assumption is easily adopted for
the event-driven architecture that is often used for
implementing SWS execution environments.

This assumption does not however cover the situation
where we need to solve multiple requests (goals) from
multiple users when the requests are strongly related to
each other.

This assumption in particular is incompatible with the
initial motivation for multi-agent problem (task) solving,
which is how to solve closely related problems
(constraints) optimally. This mismatch will cause a
problem when we use auction services on SWS
frameworks. A contradiction is that we need all queries (in
this case, a query is a bid assigned for an item by a bidder,
or an item proposed for sale by a seller) to solve the
problem (in this case, to determine who are the winners of
the auction). However, each query is treated as an
independent one and there is no way to know about other
queries. In consequence, the problem will not be solved
(and the winners of the auction will not be determined)
while keeping this assumption.

The most important problem is that requests (goals)
for SWS systems are so often represented as temporal
messages just like an invocation parameter of a Web
service. These temporal messages are not persistent
therefore we need a storage mechanism for these messages
in or outside of the SWS system.

2.3 Treating auction services as winner determination
services

Here, we propose a solution for the problem pointed
out in Section 2.2, which is simply treating auction
services as those for determining auction winners.

From the viewpoint of the bidding process, there are
two major process types in auction mechanisms. One is
``interactive'' auctions, which are constructed in multiple
rounds to interact to bidders. Ascending (English) auction
is an example of interactive auctions. In interactive
auctions, bidders can update their bids after the temporal
bidding prices for items are opened. The auction will end
when the conditions for closing are met, such as there
being no updates of bids. In contrast to interactive
auctions, ``one-shot'' auctions are used in Vickley
Auctions, Combinatorial Auctions, etc. In one-shot
auctions, there is no chance for bidders to get information
about other bids until the winners are determined. There is
only one chance to place a bid, though in some cases the
bid prices will not be the price to pay (Vickley Auction),

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

102

or it may be possible to place multiple patterns of bids at
the same time (Combinatorial Auction). In this paper, for
simplicity we only consider one-shot auctions. Note that,
in many cases we can extend one-shot auctions to the
equivalent interactive auctions by employing proxy
bidding or other appropriate mechanisms. In this paper,
Combinatorial Auction[15] is used as an example of one-
shot auctions.

Also, we assume that all bids for an item are gathered
and stored in a place that can be accessed from the SWS
system. This is possible when we use triple-space
computing[16], which provides a persistent message
storing mechanism for SWS.

To date, the idea of triple-space computing has only
been proposed for WSMO-based frameworks. In this
paper, however, we assume that this mechanism is
available for all SWS frameworks. Extending the process
of collecting bids in the auction is also possible by
extending triple-space computing with certain user-
interaction capabilities.

Here, SWS mechanisms are used to realize services
that employ external auction winter-determination services.
Selection of appropriate auction mechanisms is done in the
SWS system by using descriptions of features of auction
mechanisms. Here, a remaining problem is how to
describe features of various auction mechanisms in those
SWS languages.

3. Ontological expression of a combinatorial
auction

3.1 List representation vs. triple-based representation

Before beginning an exploration of detailed auction
descriptions, we need to understand the existence of a gap
between the logical definition of auctions and Description
Logic(DL)-based representation used in the Semantic Web
world.

 In the realm of Web Services world (in other words,
in the world of ordinal programming), multiple variable-
length data are typically treated as an ordered list. Here,
input bid sets and winners' bid sets are often represented
as ordered lists. Here, an important point is that such lists
also implicitly contain meta-data such as shared attributes
or relations of containing data. For instance, a list for input
has implicit meaning that the containing data is input bid
set, and a list for output has implicit meaning that the
containing data will be a bid set of winners'.

In SWS world, all information is treated as
knowledge (assertion) and that is represented as triples,
the standard representation form on the Semantic Web. In
this world, we should not use list representation used in
the Web Services world. Instead, we just represent such

implicit attributes or relations as triples. So we need to
have a form and conversion to represent them in triple
format. For example, a bid should have a relation to a
certain bid set, and may have a relation to a bid set of
winners' on a certain auction.

3.2 Triple-based representation of bid sets

 In this section, we provide an example of triple-
based representation of bids, bid sets and auctions. All
those data are represented as resources, attributes and
relations. Here we do not distinguish between attributes
and relations, we just use properties that are normally used
in Semantic Web languages such as OWL and RDF.

 There is a bid set X and a bid Y. The bid set X has a
property includedIn that represents a bid included in this
bid set. Here, we denote that the bid set X has a property
includedIn and the value is a certain bid, for example, a
bid Y. In pseudo-triple format, the example is denoted as
hasValue(id_of_X, includedIn, id_of_Y) .

 When a bid set X is a winners' set in a certain
auction Z, we denote it in the same way using a property
hasBidSetOfWinners of the auction Z, by using a triple
hasValue(id_of_Z, hasBidSetOfWinners, id_of_X).
Here, we can infer that a bid Y is a winner's bid and we
can obtain the item(s) won by the bid Y.

 The question may arise that ``Here we have only
one bid in a bid set X. Is this really valid?''. In response,
we introduce the concept of cardinality, which is often
used in the Semantic Web world: A resource possesses
two or more properties that have same name, but they
should be lower than, or greater than, the provided
cardinality constraints in the ontology. Here, we give a
cardinality constraint that a bid set has one or more
properties of includedIn. We will show how such
cardinality constraints are represented in an ontology
definition later. Now we can represent that the bid set X
has other bids T, U, and V, by using triples such as
hasValue(id_of_T, includedIn, id_of_X),
hasValue(id_of_U, includedIn id_of_X), and
hasValue(id_of_V, includedIn, id_of_X). These
properties are stored and used in the knowledge base of a
SWS system.

3.3 Ontology for representing bid sets

In Figure 1, we provide a concrete example definition
of an ontology to represent bid sets, bids, and auctions.
Here, for better readability, we use WSML as the ontology
definition language rather than OWL. The definition
below can be easily converted to another major ontology
language such as OWL.

 Here, we give example instances of auctions and
bids in Figure2.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No4, April 2006

103

 Note that we provided only essential parts of our
ontology here. For example, in real usage we need a more
detailed ontology and instances for items and owners, but
those parts are omitted in this paper.

Fig. 1 Combinatorial Auction Ontology written in WSML

Fig. 2 Example of instances defined by the combinatorial auction
ontology

4 Example descriptions of combinatorial
auction service

4.1 Basic model of an auction-winner determination
service

First of all, we present a (process) model for an
auction-winner determination (AWD) service of
combinatorial auctions. An AWD service has a bid set as
input and will produce a bid set as an output. The output
bid set should follow the two conditions: the partitioning
condition and (optionally) the covering condition. The
output bid set should also be a (semi-)optimal solution to
maximize the total utility of sellers. The AWD service's
process is just to have an input bid set and obtain the
resulting bid set as output. An AWD service may include
further processes to register items for the auction, or to
find items that are related to a buyer, etc. Here, we omit
those additional processes from the process of AWD
service to keep the descriptions of the process (we will
show them later) simple.

 The two conditions are described in logical formulae
as follows.

(1) Partitioning condition

 Let M be the set of items to be auctioned. Then any
bidder, i, could place any bid bi (S) for any combination

MS ⊆ .
 Let X be a valid outcome, an outcome where each

item is allocated to only one bidder:
andbiddersiSbMSX ,),(|{ ∈∃⊆=

 }',' XSSeveryforSS ∈= φI

(2) Covering condition

The covering condition means that all possible items
should be sold:

UU
'MmXx

mx
∈∈

=

}),(|{' biddersiSbMSMthatsuch i ∈∃⊆=

In the next two sections, we will explain how these

logical expressions can be represented in the two major
service description languages used in WSMO and SWSO.

 instance auction01
 memberOf combinatorialAuction
 hasInitialBidSet hasValue bidSet01
 hasItem item01
 hasItem item02
 hasItem item03
 instance bidSet01 memberOf bidSet
 hasBid hasValue bid01
 hasBid hasValue bid02
 hasBid hasValue bid03
 instance bid01 memberOf bid
 hasItem item01
 hasItem item02
 hasBidPrice 310
 hasOwner owner01
 instance bid02 memberOf bid
 hasItem item03
 hasBidPrice 100
 hasOwner owner01
 instance bid03 memberOf bid
 hasItem item01
 hasItem item03
 hasBidPrice 3000
 hasOwner owner02

concept bid
 // has one or more items
 hasItem impliesType (1 *) item
 // just one bid price for the items
 hasBidPrice ofType (1) _integer
 hasOwner impliesType (1) owner
 concept bidSet
 // has one or more bids
 hasBid impliesType (1 *) bid
 concept combinatorialAuction
 hasInitialBidSet impliesType (1) bidSet
 hasBidSetOfWinners
 impliesType (0 1) bidSet
 hasItem impliesType (1 *) item
 concept item
 hasName ofType _string
 hasOwner impliesType (1) owner
 concept owner
 hasName ofType _string

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

104

4.2 Example in WSMO

WSMO (Web Service Modeling Ontology) is a set
comprising an ontology and a description language for
composing Web Services. WSMO is based on WSMF[12].
It has been submitted to W3C to be discussed in relation to
the next-generation semantic Web services standard.

Figure 3 shows an example description of the AWD

service in WSMO. In WSMO, Web services are described
in four parts: the ontology to be imported, mediators to be
used, capability of the service, and the interface. In the
context of the AWD service, only one simple process is
considered and no mediator is used here. The interface
part of WSMO is mainly used for multiple complex
processes but not for representing the input and output
parameters of each service process. Thus, we focus on
presenting the capability part, omitting the interface part.

Notice that in WSMO, a service is NOT modeled as a

function that has certain input and output parameters,
rather, the input parameters are provided through the
current state of the knowledge base and the output will be
reflected in updates of the knowledge base. Therefore, the
service's capability is modeled as the conditions in the
knowledge base which should be satisfied before, through,
or after the service invocation.

In the example, the precondition is just checking for

the presence of a target bid set for determining winners,
and the assumption and effects are always true since we do
not consider a real buying process that includes payment
by credit card, etc.

The most important part here is the postcondition part

of the capability. In the postcondition part, we provide two
conditions to be satisfied after invocation of the AWD
service. Here, we employ logical expressions in WSML to
describe those two conditions. In WSML, F-logic level
logical expressions can be used. Note that, roughly
speaking, the F-logic is a combination of first-order logic
formulae and frame-based descriptions for objects that
have slots and slot values. Here, variables are noted as
identifiers that start with the ‘?’ character. The frames are
denoted using ‘[’ and ‘]’. For example, the
notation ?somebid[hasItem ?item] represents that the
instance indicated the variable ?somebid has a slot
hasItem and its value is bound to the variable ?item.
Here we can use forall, exists, and implies operators to
describe the conditions since the description language
allows first-order description without any limitation. The
notion of naf means ‘Negation As Failure’, that treats
negation as the failure to find the satisfied conditions.

Fig. 3 Example Description of AWD Conditions inWSML

4.3 Example in SWSO

In contrast to WSMO, SWSO uses the concept of
input and output of services explicitly. In SWSO,
conditions are separately described (defined) and attached
to the input or output of a service. Below is an example of
the AWD service in SWSO. Here, we only show the
process part; other parts such as profile and grounding are
omitted. The AWD service is modeled as a simple service

webService WinnerDeterminationService~
ForCombinatorialAuctionsWebService
 importsOntology
 _"http://example.org/Ontology/Combinatorial~
AuctionsOntology"
 capability WinnerDeterminationServiceFor~
CombinatorialAuctionsCapability
 sharedVariables{?resultSet,?inputSet}
 precondition
 definedBy ...
 assumption
 definedBy ...
 postcondition
 definedBy
 // partitioning condition
 forall {?bid, ?anotherBid}
 (?resultSet[
 hasBid hasValue ?bid,
 hasBid hasValue ?anotherBid]
 and
 naf (?bid equivalent ?anotherBid)
 implies
 forall {?x, ?y}
 (?bid[hasItem hasValue ?x]
 and ?anotherBid[hasItem hasValue ?y]
 implies
 neg (?x equivalent ?y)))
 and
 // covering condition
 forall {?item}
 (exists {?somebid} ?inputSet[

hasBid hasValue ?somebid]
 and ?somebid[hasItem ?item]
 implies
 (exists {?bid}
 (?resultSet[hasBid hasValue ?bid]
 and ?bid[hasItem hasValue ?item])).
 effects
 definedBy ...

Note: the line which ends with char ‘~’ means that
the line continues to next line without any spaces.
This is not the ordinal syntax of WSML, only used
for this figure.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No4, April 2006

105

that has a certain input and output. Note, however, that we
treat the input and output as only IDs that indicates the
input and output. Actual information about the input and
output are represented as resources that have certain
relations to the IDs. This is because it is very difficult to
clearly distinguish between the input, the output and
existing information. For example, in ordinal Web-based
auction sites, the name of an item already exists before the
bidding begins, but the resulting output may contain this
name as duplicate information. This is useful for avoiding
mistakes such as identifying two different items as the
same one. However, when the service is ready for
semantic Web, these identification problems will not occur.
Therefore, we only need certain IDs to determine the input
and output data when all data and services become
semantic Web ready. In WSMO, this idea is deeply
embedded into the modeling process, but in SWSO, it can
be used but is not be a necessary requirement for modeling
services.

The example description shown in Figure 4 is in a
human-readable format. The actual description of it will be
like a triple-based representation in the RDF format. Since
SWSO only allows condition descriptions for outputs as
conditional outputs, here, we used a small trick to
represent the output's postcondition. The predicate
get_winner_allocation/2 invokes the actual winner-
determination service and obtains the resulting winners,
but it will only be the final output when the two conditions
(partitioning_condition/1 and covering_condition/2) are
satisfied. The actual definitions of these two conditions are
described following the service process definition
independently. The definitions of conditions are described
in Prolog-like format, but, will be encoded in RuleML-
OWL or another appropriate format when in the actual use.
The notions of variables are just same as in WSMO, where
IDs starting with the ‘?’ character denotes variables. The
notion of naf means ‘Negation as Failure’, the meaning
of which is equivalent to the same notion in WSMO. Note
that we use a predicate equivalent/2 to determine whether
two IDs are equal instead of using the same variable name
for them, since two different IDs may point to the same
thing(resource, in the term of OWL/RDF) in the OWL
ontology description format. Here we do not use full-spec
F-Logic description but employ the Horn logic layer
instead. Consequently, the condition descriptions are very
simple and easy to understand for ordinal Prolog
programmers. (This expression is called SWSL-Rules.
Note that it is possible to use a full-spec F-Logic format
here. This is called SWSL-FOL. It is not possible to use
these two different description languages in a same
description: a special bridge description is additionally
required with two different descriptions separately. This
limitation does not exist in WSMO. In WSMO, it is

possible to use different layers of WSML descriptions in a
document seamlessly.)

Fig. 4 Example Description of AWD Conditions in SWSL

4.4 Comparison of descriptions in WSMO and SWSF

Table 1 shows the comparison between WSMO and
SWSF in four aspects: expressiveness of rule and logic,
unified logical descriptions, expressiveness of formal
processes, and controllability of process execution.

 WSMO and SWSF are not very different from the
perspective of how they describe services: They both have
ontological expressions and allow logical expressions for
behaviors of services. Both languages are based on a
layered approach, that comprises several layers, each of
which has a different level of expressiveness.

determine_combinatorial_auction_winners {
 Atomic
 input input_bidset_id
 output (get_winner_allocation(

input_bidset_id,result_bidset_id),
 partitioning_condition(result_bidset_id)
 and covering_condition(

input_bidset_id,result_bidset_id)),
 winner_allocation(

input_bidset_id,result_bidset_id)
}

// below are definitions of conditions used above in
// `pretty print' format

 partitioning_condition(?ResultBidSet) :-
 naf partitioning_condition_violation(

?ResultBidSet)

partitioning_condition_violation(?ResultBidSet) :-
 hasBid(?ResultBidSet,?Bid) and
 hasBid(?ResultBidSet,?AnotherBid) and
 naf equivalent(?Bid,?AnotherBid) and
 hasItem(?Bid,?X) and
 hasItem(?AnotherBid,?Y) and
 equivalent(?X,?Y)

covering_condition(?InputBidSet,?ResultBidSet) :-
 naf

convering_condition_violation(?InputBidSet,
?ResultBidSet)

convering_condition_violation(?InputBidSet,
?ResultBidSet) :-

 hasBid(?InputBidSet,?Bid) and
 hasItem(?Bid,?Item) and
 hasBid(?ResultBidSet,?ResultBid) and
 naf hasItem(?ResultBid,?Item)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

106

WSML, the language for WSMO has 5 layers, named
WSML-CORE, WSML-DL, WSML-Flight, WSML-Rule,
and WSML-Full. In WSML, a stacking approach is used
so that WSML descriptions are seamlessly extended to
higher-layer expressions. In contrast, SWSL uses a branch
approach with stacking. In SWSL, there are two
independent description language lines, SWSL-FOL and
SWSL-Rule(In [5], SWSL-FOL is treated as a subset of
SWSL-FOL, but these two languages have different
interpretations of the same expression. Therefore, they
cannot be used in a same document or fragment of it. Thus
we argue it is better to treat the two languages as two
independent languages.) Although the two languages share
many portions of the syntax, the underlying semantics are
slightly different. In SWSL, compatibility of descriptions
of classical rule languages is very highly prioritized. This
choice causes a semantic incompatibility between SWSL-
FOL and SWSL-Rule. In SWSL, the separate descriptions
of two languages and the use of a bridge description
between them is recommended. Although the SWSL's
approach has an advantage in describing rules for current
rule-description specialists, it will cause some frustration
and confusion for newcomers.

Process descriptions in WSMO and SWSO are quite
different. In WSMO, a process is described as a multiple-
state-machine in which state transitions are controlled by
logical (and procedural) expressions in WSML, so it more
closely resembles programming rather than ontological
definitions of a process. Therefore, WSMO features good
controllability in expressing actual executions of service
processes. The control flow of a process in SWSO, on the
other hand, is more ontological, and it follows a
concurrent computation theory. In SWSO, a process is
formulated by pi-calculation. Since a process in SWSO
may contain branches, splits and joins of two or more
concurrent sub processes, etc, SWSO has higher-level
expressiveness for describing processes, but pays less
attention to the actual executions of services.

Table 1: A comparison chart of WSMO and SWSF

 WSMO SWSF

Expressiveness of rule and
logic ** ***

Unified logical descriptions *** *

Expressiveness of formal
processes * ***

Controllability of process
execution *** *

5 Conclusions

In this paper we compared two next-generation SWS
framework -- SWSF and WSMO -- from the perspective
of describing logical expressions for auction winner
determination services. Two examples demonstrated that
both languages are sufficiently expressive to represent two
conditions for winner determination in a combinatorial
auction. Through our comparison, we found that one
advantage of SWSL is its compatibility with legacy rule
description formats, making rule description easy for users
who are specialists in existing rule languages such as
Prolog. The advantages of WSMO are that it effectively
controls process execution and seamlessly describes of
different syntax layers for F-Logic and rules.

A possible future work is how do we describe
reputation information in WSMO and SWSF. In current e-
auction systems, using reputation information about
bidders and sellers is essential. Currently, reputation
information is represented as an integer number, and the
users themselves take into account such reputation in their
information in their bidding. Once agent-based proxy
auctioning becomes predominant, it is likely that
information that reflects reputation will be considered by
bidder and seller agents. By using Semantic Web
technology, agents will be able to infer much more about
the reputation of buyers and sellers for their bidding
processes.

 It is also possible to consider reputation information
in the AWD process itself. For example, if one bidder has
won an item but will not pay for it, it is possible to re-
assign the item to another bidder. This mechanism is
already implemented in some existing e-auction systems.
Rejecting such irrelevant bids to prevent item assignment
to inappropriate winners can be included in next-
generation AWD mechanisms by using Semantic Web
technology. In such cases, it will also be a challenge to
represent and describe such reputation information in the
world of the Semantic Web.

References
[1] McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services.

IEEE Intelligent Systems 16 (2001) 46—53
[2] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott,

D., McIlraith, S., Narayanan, S., Paolucci, M., Parsia, B.,
Payne, T., Sirin, E., Srinivasan, N., and Sycara, K., OWL-S:
Semantic Markup for Web Services. W3C Member
Submission 22 November 2004 (2004)
http://www.w3.org/Submission/OWL-S/

[3] Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt,
M., Sheth, A., Verma, K., Web Service Semantics - WSDL-S,
W3C Member Submission 7 November 2005 (2005)
http://www.w3.org/Submission/WSDL-S/

[4] Verma, K., Sivashanmugam, K., Sheth, A., Patil, A.,
Oundhakar S., and Miller, J., METEOR-S WSDI: A Scalable

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No4, April 2006

107

Infrastructure of Registries for Semantic Publication and
Discovery of Web Services. Journal of Information
Technology and Management, Special Issue on Universal
Global Integration, Vol. 6, No. 1 (2005) pp. 17-39. Kluwer
Academic Publishers.

[5] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger,

M., Hull, R., Kifer, M., Martin, D., McIlraith, S.,
McGuinness, D., Su, J., Tabet, S.: Semantic web services
framework (swsf) overview. W3C Member Submission 9
September 2005 (2005)
http://www.w3.org/Submission/SWSF/.

[6] de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M.,
Keller, U., Kifer, M., Konig-Ries, B., Kopecky, J., Lara, R.,
Lausen, H., Oren, E., Polleres, A., Roman, D., Scicluna, J.,
Stollberg, M.: Web service modeling ontology (wsmo). W3C
Member Submission 3 June 2005 (2005)
http://www.w3.org/Submission/WSMO/.

[7] Roman, D., Keller, U., Lausen, H., de~Bruijn, J., Lara, R.,
Stollberg, M., Polleres, A., Feier, C., Bussler, C., Fensel, D.:
Web service modeling ontology. Applied Ontology 1 (2005)
77--106

[8] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger,
M., Hull, R., Kifer, M., Martin, D., McIlraith, S.,
McGuinness, D., Su, J., Tabet, S.: Semantic web services
framework (swso). W3C Member Submission 9 September
2005 (2005) http://www.w3.org/Submission/SWSF-SWSO/.

[9] Battle, S., Bernstein, A., Boley, H., Grosof, B., Gruninger,
M., Hull, R., Kifer, M., Martin, D., McIlraith, S.,
McGuinness, D., Su, J., Tabet, S.: Semantic web services
language (swsl). W3C Member Submission 9 September
2005 (2005) http://www.w3.org/Submission/SWSF-SWSL/.

[10] de Bruijn, J., Fensel, D., Keller, U., Kifer, M., Lausen, H.,
Krummenacher, R., Polleres, A., Predoiu, L.: Web service
modeling language (wsml). W3C Member Submission 3 June
2005 (2005) http://www.w3.org/Submission/WSML/.

[11] Bussler, C., Cimpian, E., Fensel, D., Gomez, J.M., Haller,
A., Haselwanter, T., Kerrigan, M., Mocan, A., Moran, M.,
Oren, E., Sapkota, B., Toma, I., Viskova, J., Vitvar, T.,
Zaremba, M., Zaremba, M.: Web service execution
environment (wsmx).W3C Member Submission 3 June 2005
(2005) http://www.w3.org/Submission/WSMX/.

[12] Fensel, D., Bussler, C.: The web service modeling
framework wsmf. Electronic Commerce Research and
Applications 1 (2002) 113--137

[13] Angele, J., Boley, H., de~Bruijn, J., Fensel, D., Hitzler, P.,
Kifer, M., Krummenacher, R., Lausen, H., Polleres, A.,
Studer, R.: Web rule language (wrl). W3C Member
Submission 9 September 2005 (2005)
http://www.w3.org/Submission/WRL/.

[14] Ito, T., Fukuta, N., Shintani, T., Sycara, K.: Biddingbot: A
multiagent support system for cooperative bidding in
multiple auctions. In: Proc. of the Fourth International
Conference on Multi Agent Systems (ICMAS'2000). (2000)
399--400

[15] Cramton, P., Shoham, Y., Steinberg, R.: Cmobinatorial
Auctions. The MIT Press (2006)

[16] Fensel, D.: Triple-space computing: Semantic web services
based on persistent publication of information. In: Proc. of
Semantic Web Services: Preparing to Meet the World of

Business Applications -- a Workshop at the 3rd International
Semantic Web Conference(ISWC2004)--. (2004)

Naoki Fukuta received B.E. and M.E.
from Nagoya Institute of Technology in
1997 and 1999 respectively. He received
Doctor of Engineering from Nagoya
Institute of Technology in 2002. Since Apr.
2002, He has been working as a research
associate at Shizuoka University. His main
research interests includes Mobile Agents,
SemanticWeb, Knowledge-based Software

Engineering, Logic Programming, and WWW-based Intelligent
Systems. He is a member of ACM (Association for Computing
Machinery), IEEE-CS(IEEE Computer Society), JSAI (Japanese
Society for Artificial Intelligence), IPSJ (Information Processing
Society of Japan), IEICE (Institute of Electronics, Information,
and Communication Engineers), JSSST (Japan Society of
Software Science and Technology), and ISSJ(Information
Systems Society of Japan).

Takayuki Ito received the B.E.,
M.E, and Dr. of Engineering from the
Nagoya Institute of Technology in 1995,
1997, and 2000, respectively. From 1999
to 2001, he was a research fellow of the
Japan Society for the Promotion of
Science (JSPS). From 2000 to 2001, he
was a visiting researcher at USC/ISI
(University of Southern California /
Information Sciences Institute). From

2001 to 2003, He was an associate professor of the Center for
Knowledge Science in Japan Advanced Institute of Science and
Technology (JAIST). He joined the Division of Computer
Science and Engineering, the Graduate School of Engineering,
Nagoya Institute of Technology in April 2003. He is a Founder, a
Senior Vice President, Chief Operating Officer of Wisdom Web
Co., Ltd. from July 13, 2004.From 2005 to 2006, he is a visiting
scholar at Faculty of Art of Science, Division of Engineering and
Applied Science, Harvard University. From Sep. 2005 to Feb.
2006, he is a visiting researcher at Center for Coordination
Science, Sloan School of Management, Massachusetts Institute
of Technology. He also joined the Master Course of Techno-
Business Administration (MTBA), Nagoya Institute of
Technology from April 2006. His main research interests
include Multi-Agent Systems, Computational Mechanism Design,
Game Theory, Auction Theory, Intelligent Agents, Distributed
Artificial Intelligence, Computational Biology, Bioinformatics,
Group Decision Support Systems, Agent-mediated Electronic
Commerce, Information Economics, and Reasoning under
Uncertainty. He is a member of AAAI(American Association for
Artificial Intelligence), ACM(Association for Computing
Machinery), JSAI(Japanese Society for Artificial Intelligence),
IPSJ(Information Processing Society of Japan), IEICE(Institute
of Electronics, Information, and Communication Engineers),
JSSST(Japan Society for Software Science and Technology), and
SICE(Society of Instrument and Control Engineers).

