
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

114

The Design and Implementation of a Multimedia Data Management and
Monitoring System for Digital Rights Protection Using Shared Key Pool

Jae-Pyo Park, Moon-Seog Jun

School of Computing, Soongsil University, Korea

Summary
In this paper we first propose an encryption scheme for
encryption of MPEG video data using PKI, second, we propose a
shared key pool and encryption/decryption of multimedia data.
Third, to reduce huge play-out delay time which occurs when
performing decryption on large capacity multimedia data, a
double buffer configuration is adopted and a real-time decryption
scheme using efficient buffer scheduling is proposed. After
designing and implementing the proposed system, tests were then
performed using video data files of various sizes for performance
evaluation. We verified that the proposed system significantly
reduces delay time, including decryption time, when playing
back video data files in the client system compared with existing
systems.
Key words:
DRM, PKI, Shared key pool, Licensing agent, Double buffer

1. Introduction
Recently, various researches are being performed to
protect digital contents from intellectual property
infringement. Further studies are concentrating on the
implementation of comprehensive measures to manage the
distribution of such contents using DRM (Digital Rights
Managements) technology so that production, distribution
and use of contents can be performed within a trusted
environment[1, 2]. Existing DRM implementations do not
take privacy protection into consideration for the reason
that user privacy protection is not directly necessary for
copyright protection. Therefore, user information leaked
during user authentication for license issuing, and usage
details reporting the process of monitoring against illegal
content usage has caused user privacy infringements [3, 4].

Methods for implementing security for digital contents can
be divided in two categories: upper-level security and
lower-level security [5]. Upper-level security schemes
relate to user authentication, while lower-level security
relates to the protection of the data itself. User
authentication means that an authenticated user is not
subject to limitations in content usage [6]. Therefore, a
function used for monitoring the amount of content usage
in order to maintain information on the number of users
accessing a specific multimedia content is required [7].
However, since in this scheme an authenticated user can
obtain illegitimate copies of data that can be distributed, it

cannot provide perfect protection of distributed data. As
such, protection in the data itself performs encryption on
the content to restrict user's access to the content.
Therefore, in DRM, security is implemented by
performing encryption on the content data itself.

The algorithms used for encryption are the private key
algorithm and public key algorithm. The secret key
algorithm is an algorithm which performs encryption at
high speed by using a single key for encryption. However,
in this method, there is the problem of key distribution;
that is, the sender and recipient have to exchange their
private keys beforehand. In addition, if large capacity
moving images are transferred, a large amount of
processing time is required if a transfer is carried out
simultaneously with encryption. The public key algorithm
offers the advantage of using separate keys for encryption
and decryption so that the sender and recipient can safely
exchange keys. However, its drawback is slow execution
speed. Therefore, when encrypting large capacity moving
image files, encryption on data using a secret key must be
performed first, then the secret key is encrypted using the
public key.

In this paper, we propose a shared key pool scheme which
encrypts the secret key using each user's private
information in order to prevent exposure of the secret key
by the user while performing authentication for digital
content users. This proposed scheme prevents the
exposure of the secret key by the user while encrypting
contents beforehand to improve transfer speed. In addition,
by using a licensing agent, a license is downloaded from
the licensing server which manages the licenses within a
database when executing content so that offline execution
is possible. For security of the transmitted key pool
information, the key pool information is encrypted using a
secret key and the relevant secret key is encrypted using
the user's public key in order to improve the encryption
speed and security of the encrypted key pool which is
being transmitted.

Since the agent needs large amounts of time for
performing decryption of high capacity moving image data,
we propose a comprehensive DRM system which
implements a buffer control for seamless replay of moving
images, enables real-time decryption by the user through
efficient buffer scheduling, and prevents illegal execution

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

115

of contents through online and offline-based user
authentication on multimedia contents and encryption of
the source data itself.

The rest of this paper organized as follows. Section 2
describes related work for DRM system. In Section 3, we
propose an integrated DRM System using shared key pool.
Section 4 presents implementation of system. Performance
evaluation is explained in section 5, followed by
conclusion in section 6.

2. Related Works
Using DRM technology, international companies such as
InterTrust and Microsoft, as well as Korean companies
such as Digicap, offer various types of DRM solutions [8].
However, since existing DRM solutions perform
encryption using secret keys when the user downloads
files, a large amount of encryption time is required. In
addition, decryption must be performed first for large
capacity contents so that the user cannot perform the
playback of the file in real-time. Besides, if the key used
for encryption and decryption is exposed by the user, the
copyrighted content can no longer be protected.

Existing DRM solutions perform static copyright
management by inserting information such as data
protection conditions or copyright management into
moving image data. As such, dynamic copyright control is
difficult and data needed to prove illegal activities in case
of copyright infringement is difficult to obtain. Therefore,
existing DRM solutions use software agents to monitor a
user's data usage in order to solve this problem, but this
solution is subject to the functional constraints present in
off-line usage environments. Hence, a digital copyright
management technology which is applicable to all types of
contents in both online and offline environments, and is
capable of dynamic copyright management and real-time
management and tracing, should be developed.

Microsoft's WMRM (Windows Media Rights Manager) is
an end-to-end DRM system which provides safe
distribution of digital media files to content providers and
consumers [9, 10]. WMRM delivers media such as music,
video, etc., that is protected in encrypted file format, to
content providers through the Internet. In WMRM, each
server or client instance receives a key pair through an
individualization process, and instances that are
determined to be cracked or unsafe are excluded from
service through the certificate cancellation list. WMRM is
widely used in embedded form with the Windows Media
Player, but it shows limited adaptability to dynamic

environment changes, is only applicable to the Windows
Media Player, and only supports a limited range of file
types. In addition, it has the disadvantage of potential
leakage of user information such as user ID or e-mail
address since no particular protection technology is
applied on the certification stage for issuing licenses.

3. Integrated DRM System Using
Shared Key Pool

• 3.1 System Architecture

For data protection and authentication of original content,
data should be protected not only by simple access
restriction or password authentication, but also through
user authentication and data encryption implemented by
PKI technology. The proposed system is a client/server
configuration and its overall layout is illustrated in Figure
1.

 Fig. 1 System Architecture

When content is registered on the system server through
the external interface, content monitoring processing is
performed by the agent module and an encryption is
placed on the content. When the user accesses the content,
user authentication is performed by the licensing agent
that is dispatched by the server. If the user is authenticated,
the content is executed by an application program;
otherwise, a warning message is displayed. Monitoring
against illegal usage is performed on the content by the
licensing agent, and all illegal user activities are stored on
the server interface through the monitoring interface. Even
in the case of authenticated users, content is protected by
encryption of the content itself to restrict content usage
according to access privilege levels.

3.2 Encryption and Decryption of Video Data

The content's author sends the generated content to the
server. The server then encrypts that content using an
arbitrary secret key (Ks) and stores the encrypted content

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

116

C together with the secret key (Ks) on the server's content
database.

][dataEKsC = (1)

The user can download a desired content from the server
through the authentication process or copy it from another
user. However, downloaded content is encrypted and
therefore has to be executed through the agent. The server
generates a shared key pool for encrypting the secret keys
in order to prevent leakage of the secret key through the
user. As shown in Figure 2, the server encrypts the I-frame
of the content's GOP using a secret key through either
AES or SEED algorithm and stores that content's ID and
secret key on the server's database. An arbitrary shared
key pool applicable in the encrypted content is then
generated and is also stored on the database. If a user is
registered, the server performs user authentication using
the user's certificate, and then extracts the user's
information from the private key pool using the user's
certificate in order to generate the user's key.

Fig. 2. Encryption & Decryption Processing

In addition, an encrypted shared key pool is generated by
performing a bitwise XOR operation on each bit column
of the secret key (Ks) and the shared key pool. Private
information and the encrypted shared key pool are stored
on the server's database and also on the user's database
using the user agent.

3.2.1 Configuration of the Shared Key Pool

To generate a shared key pool, the content producer can
encrypt the content to be distributed using a secret key
(Ks) and divide it into k bit columns as in Equation 2.

kKsKsKsKs |...|| 21= (2)

Generally, in secret key encryption, a secret key (Ks) with
a length of 128 bits is used. The shared key pool consists

of k
n

k 2* bits and is generated according to Equation 3.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −−−

,,...,,,,,...,,...,,,,,...,,,
111

22102
2

2
2

1
2

0
2

2
1

2
1

1
1

0
1

k
n

k
n

k
n

kkkk aaaaaaaaaaaa

 (3)
In order to adapt to the key's size, an array with k rows

and k
n

2 columns can be expressed as in Table 1.

0
1a 0

1a …
1

2
2

−
k
n

a

0
1a 0

1a …
1

2
2

−
k
n

a

: : … :

0
1a 0

1a …
1

2
2

−
k
n

a
Table 1. Shared Key Pool of Ks

The private key of each user, Kp, is a set of bit columns
consisting of k bits as in Equation 4.

kb
k

bb aaaKp ||| 21
21 L= (4)

Here, ib corresponds to the value of each i th row of the
key pool, as shown in Equation 5, and it is an important
value determining each user's private key. ib is extracted
from the public key of the user certificate.

 kbbbB |.....|| 21= (5)

The length of the user's public key is 512 bits if required
secrecy is low. For critical information requiring high
secrecy, a key length of 1024 bits is used. In general, if a
public key of n bits length is used, the value of each item

within the key pool falls in the range of)12~0(2 −k
n

k
n

.
For example, if the public key's length is 512 bits while
the private key's length is 128 bits, 512/128=4; therefore,
each item is 24=16 which corresponds to a value range of
0-F in hex. Therefore, the individual rows of the actual
private key are determined by the public key's value which
is in the range of 0-F. The range of each key's value
according to the length of the secret key and the length of
the public key is summarized in Table 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

117

Size of Secret Key
Size of Public Key 128 256 512

512 0～F 0～3 0, 1
1024 0～255 0～F 0～3
2048 0～65535 0～255 0～F

Table 2. Value of Key Pool

Therefore, since each user's private key is determined by
each user's unique public key, the key value selected from
each row by the public key guarantees that each user is
assigned a different key. When the shared key pool is
generated, a bitwise XOR is executed for encryption of the

secrete key (Ks) on
1

210 ,...,,
−

k
n

iii aaa (k
n

2 bits) with each bit

of iKs for each i th row of the shared key pool, as shown
in Equation 6.

00' iii aKsa ⊕= , 11' iii aKsa ⊕= , ………..,
F
ii

F
i aKsa ⊕=' (6)

The shared key pool in an encrypted form can be obtained
through the calculation of Equation 6 as shown in Table 3.

Table 3. Encrypted Shared-key Pool by Ks

0
1'a 0

1'a …
1

2
2'

−
k
n

a

0
1'a 0

1'a …
1

2
2'

−
k
n

a

: : … :

0
1'a 0

1'a …
1

2
2'

−
k
n

a
Table 3. Encrypted Shared-key Pool by Ks

Then, the encrypted shared key pool is forwarded to the
user agent through the network. The agent finds the secret
key (Ks) using the user's public key (Kp) from the
encrypted key pool in order to decrypt the encrypted
content. The moving image content file is decrypted using
this secret key (Ks) and then displayed to the user. How
the agent finds the secret key (Ks) by using the encrypted
key pool and the private key (Kp) is summarized in
Equation 7.

Since kb
k

bb aaaKp |...|| 21
21= and ;' j

ii
j
i aKsa ⊕=

i
b

i
bbb KsaKsaaa =⊕⊕=⊕ 1111

1111 ' (7)

For example if n=4, k=4, 222 14
4

===b , which has the

value ranging between 0 and 1. The key pool is shown in
Table 4.

0 1

1a 1 1

2a 0 1

3a 0 0

4a 1 1
Table 4. Secret Key Values

If b=0,0,1,0, the user's private key is { 0

4
1
3

0
2

0
1 ,,, aaaa } =

{1,0,0,1}. If the secret key Ks={1,1,1,0}, the encrypted
key pool can be obtained as shown in Equation 8, through
a bitwise XOR with the secret key iKs . The encrypted
key pool is shown in Table 5.

{1, 1, 1, 0}⊕ {1, 0, 0, 1} = {0, 1, 1, 1}
 {1, 1, 1, 0}⊕ {1, 1, 0, 1} = {0, 0, 1, 1} (8)

0 0
1 0
1 1
1 1

Table 5. Shared-Key Pool

The user agent can be obtained using the encrypted key
pool and the private key (Ks) as in Equation 9.

{1, 0, 0, 1}⊕ {0, 1, 1, 1} = {1, 1, 1, 0} (9)

3.2.2 License Certification Method

(1) User Authentication Protocol

In order to use copyrighted content, user authentication is
required as illustrated in Figure 3. User authentication is
carried out through member enrollment, and members can
log in to download files. However, users who have
received moving image data from other users can also
redistribute contents, and therefore, anyone can join and
login through PKI-based certificates. While a separate
login scheme using ID and password is also supported,
even in this process, the PKI-based certificate is always
verified for login. If authentication is made through
ID/password- or certificate-based login processes, moving
images can be downloaded.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

118

Fig. 3. User Verification Protocol

The user connects to the system server and transmits his
certificate Cert_u. The system server verifies the user's
certificate Cert_u through the authentication path in the
CA server. If the certificate is correct, the user agent
program and the server's certificate are transmitted to
notify the user that authentication has been completed
successfully. However, the moving image data is
encrypted, and therefore cannot be executed directly after
a download. The agent downloaded during the
authentication process must be installed so that the
execution of the moving image content can be requested
through the agent. When the user executes copyrighted
content, the licensing agent verifies the user's license. If a
license exists, it is authenticated through the server; if
there is no license, a license is issued.

(2) License Issuance Protocol

As shown in Figure 4, the user installs the licensing agent
(LA) program and runs the licensing agent. The licensing
agent installed on the user's PC verifies the user's license if
the user executes an encrypted content. If there is a license
present, the license is authenticated using the server; if not,
a license is issued by connecting to the server.

Fig. 4. License issue Protocol

The server extracts personal information from the shared
key pool according to the relevant certificate's information
extracted from personal information and the encrypted
moving image's secret key (Ks) the encrypted shared key
pool is then sent to the user together with the license.

As illustrated in Figure 5, the license is a digital document
in which license ID, user ID, content ID, expiration date,

license verification period, the user's public key
information, server identification information, privileges
etc., are stored; it is signed by the server using its private
key to guarantee validity.

Fig. 5. Architecture of License

The serial number is the serial number of the license. The
user ID is information for identifying individual users.
Since users are identified by the user's public key
certificate, the same value as the cert ID, which is the
certificate's identification number, is used. Validity is the
period of validity for the license: it specifies the license
start date and the license end date. Period is the
verification period for verifying the validity of the license
for the client system. User certificate information shows
the public key and the public key algorithm used for the
public key certificate. The server unique identifier is
information needed for identifying the server, while
extensions refer to the value of the extended area. The
server's signature is the value signed by the server to
authenticate the license.
The user agent that receives a license then executes the
moving image if the license is valid, and the license is then
authenticated using the server's public key. Here, for
security, the data to be transferred is signed by the server's
private key and encrypted using the user's public key as
follows so than exposure during transfer can be prevented.

Ekp_s [Eku_u (licence||ESKP||Kr)]

Here, ESKP is the encrypted shared key pool, and Kr is
the user's private information extracted from the user's
certificate and the shared key pool. Kp and Ku are the
public key system's private key and public key,
respectively, and Kp_s is the server's private key while
Ku_u is the user's public key.

(3) License Authentication Protocol

As illustrated in Figure 6, when the user executes an

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

119

encrypted content, the licensing agent checks whether a
license is present. If it is not present, a license is issued
according to the license issuing protocol. If a license is
present and the client is on-line, authentication for the
relevant license is requested to the server. If off-line, the
license is authenticated for the client according to the
information stored in the user's database, supporting the
execution of up to a specific number of content.

Fig. 6. Licence Authentication Protocol

The system server, when it receives a license
authentication request from a licensing agent, compares
the relevant license's information stored in the database
with the client's license information, and then corrects and
authenticates the license information. The license storage
database status is shown in Table 6.

Licence
ID user ID Data ID Auth. Auth.

Value
Conn.
Count System num. Private Info.

1 11111 s11111 1 10 2
203.253.21.174

162.192.56.39
12345678

2 22222 a11111 2 04-3-12 1 203.253.27.162 87654321

3 33333 k11111 1 5 1 223.65.198.45 33333333
: : : : : : : :

Table 6. License Information in Database

The system information of the user's license is verified and
added to the server's database. If the license is time-
limited up to a certain date, it checks whether the license
has expired, and if the license is a count-limited one, the
license information is corrected, the corrected license is
encrypted using the user's public key, and it is then
transmitted.

 Eku_u [Licence']

The user agent which has received the corrected license
from the server corrects the client side database
information based on that license and generates the secret
key (Ks) based on the license's private information and the
shared key pool's value. It then decrypts the encrypted
content using the secret key (Ks) for display to the user.

4. Implementation

The proposed environment for development is based on an
Intel(R) Pentium-IV CPU (2.4GHz), 512MB RAM, and
the MS Windows 2000 Server operating system. The
programming languages used for implementation were
Visual C++ 6.0 and Delphi 7.0; we also used MS-SQL
2000 as the DBMS. The server can view the client side
moving image file storage folder as in Figure 7, and real-
time monitoring is possible through the user agent.
Therefore, it is possible to monitor illegal usage and
calculate statistical information on illegal activities.

Fig. 7. Data Monitoring of Client Side

The encryption of moving image data is performed as
shown in Figure 8. The encryption key and the position of
the moving image information to be encrypted are entered
to perform encryption. The information used for
encryption is stored on the DBMS. The proposed system
was implemented so that either the SEED or AES can be
selected as the encryption algorithm.

Fig. 8. Encryption Processing for Video Data

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

120

The decryption of the moving image is performed as
illustrated in Figure 9, and is done by the agent when the
user executes the moving image. When executing the
user's content, the user agent decrypts the moving image
using a key.

Fig. 9. Decryption Processing for Video Data

5. Performance Evaluation

To evaluate the performance of the system proposed in
this thesis, we measured the encryption time of the video
itself and the initial play-out delay time according to the
decryption time. The conventional method of first
decrypting an already encrypted video data file (non-real-
time decryption method), and the method proposed in this
thesis, that is, playing out while performing decryption in
real-time (real-time decryption method), were
implemented and their respective execution times were
measured with the results shown in Table 7. For accurate
time measurement, the video file was divided by minutes.

File Size
(MBytes)

Execution
Time

(Minutes)

Decryption
Time

(Seconds)

Delay Time
of

Existing
Method

(Seconds)

Delay Time
of

Proposed
Method

(Seconds)
6.83 1 0.76 2.42 2.42

13.66 2 1.57 5.50 2.42
20.49 3 3.00 9.24 2.42
68.31 10 9.05 25.01 2.42
204.94 30 24.31 49.11 2.42
423.94 60 41.62 82.06 5.50
635.92 90 59.46 104.72 5.50

Table 7. Delay Time Comparison for Execution Time

Each delay time is the time required for decrypting the
encrypted video data file and play-out. This time is the
sum of the video data file's decryption time and the
loading time. In general, the video file's loading time
differs for each video player; therefore, in this experiment,
the loading time was processed together with the decoding
time to calculate the delay time. In the proposed method,
video data files are played out concurrently while
performing execution by using double buffer scheduling.
Therefore, we can see that the play-out delay time
significantly decreased compared with the conventional
method. Figure 10 illustrates the measured encryption time
and the play-out delay time of the conventional method
and the proposed method in graph form

Fig. 10. Encryption Time and Delay Time Comparison.

We see that, in the conventional method, both decryption
time and play-out delay time increase proportionally with
file size. However, in the proposed method, the actual
delay time is decreased since decryption is performed
concurrently with play-out while the decryption time
increases with file size.

6. Conclusion

In this paper, first, we have proposed a new encryption
scheme which encrypts the video data's I-frame for
encryption of moving image data. Second, a licensing
agent which enables automatic user authentication and
data decryption when multimedia data is encrypted at the
system server is executed at the client system. The
licensing agent performs PKI-based user authentication
and encryption/decryption of moving image data using a
shared key pool when executing the user's multimedia data.
After encrypting a moving image file using a secret key,
the user's private information is extracted from operations
with the PKI certificate and the shared key pool, and then
the secret key is transmitted to the user hidden within the
shared key pool so that the user cannot expose the key to
the outside by accessing the secret key. If a key is exposed,
the path of exposure can be traced. The shared key pool
system is a methodology for effectively countering the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.4, April 2006

121

exposure of the key by a user. Third, to reduce the huge
playout delay time occurring due to decryption when
executing high capacity multimedia data, a double buffer
configuration was implemented and a real-time decryption
method using efficient buffer scheduling was proposed. If
a user executes a moving image file, the licensing user
authenticates the license at the system server, calculates
the secret key based on the user's personal information and
the shared key pool information, and then the moving
image file can be decrypted for play-out. Here a double
buffer is employed, which enables execution if a part of
the file is decrypted, so that decryption can be performed
in real-time for the user.

The proposed system was designed, implemented, and
tested using video data files of various sizes for
performance evaluation. We confirmed that the proposed
system can significantly reduce delay time including
decryption time compared with existing systems when
playing out large capacity moving image files in the client
system.

The proposed system will be effective if deployed as a
DRM system for moving images such as protecting the
copyright of Internet-based movies and music videos, and
CF. In addition, further research needs to be done to
improve support for wireless network devices such as
PDAs.

Acknowledgments

Insert acknowledgment, if any.

References
[1] Joshua Duhl and Susan Kevorkian, "Understanding

DRM system: An IDC White paper," IDC, 2001.
[2] Jai Sundar B., Spafford E., "Software Agents for

Intrusion Detection," Technical Report, Department of
Computer Science, Purdue University, 1997.

[3] J.Dubl,"Digital Rights Management: A Defination",
IDC 2001.

[4] J.Dubl, S.Kevorkian, "Understanding DRM system:
An IDC White paper", IDC, 2001.

[5] Kentaro Endo, “The Building up of national Regional
and International Registers for works and objects of
related rights," Proc. of International Conference on
WIPO, Seoul, Korea October 25-27, 2000.

[6] V. K Gupta, "Technological measures of protection,"
Proc. of International Conference on WIPO, Seoul,
Korea October 28-29, 2000.

[7] P. Vora, D, Reynolds, L. Dickinson, J. Erickson, D.
Banks, "Privacy and Digital Rights Managements", A

Position paper for the W3C Workshop on Digital
Rights Management, January 2001.

[8] D. K. Mulligan and A. Burstein, “Implementing
Copyright Limitations in Rights Expression
Languages,” in 2002 ACM Workshop on Digital
Rights Management, Washington DC, November 18
2002.

[9] J. S. Erickson, “Fair use, DRM, and trusted
computing,” Communications of the ACM, vol. 46, no.
4, pp. 34–39, April 2003.

[10]Microsoft's press releases of the PocketPC 2002
launch, Oct 8, 2001. Available at
ww.microsoft.com/presspass/events/pocketpc2002/de
fault.asp.

[11] John Linn, "Trust Models and Management in Public
Key Infrastructures," Technical Notes and Reports of
RSA Laboratories, November 2000.

[12] Russ Housley and Tim Polk, Planning for PKI, John
Wiley & Sons, 2002.

Moon-Seog Jun received his B.S.
at Soongsil Univ, M.S. and Ph.D
degrees in computer science from
University of Maryland, USA, in
1985, 1988. He taught computer
Network at Morgan State
University and researched Physical
Science Lab. New Mexico, USA.
He has been taught and researched
as a full professor at Soongsil
University. His research interests
include Network Security,
Cryptography, Computer
Algoruthms, and Network Protocol.

Jaepyo Park received his BS, MS
and PhD degrees in computer
science from Soongsil University,
Seoul, Korea, in 1996, 1998 and
2004, respectively. Currently he is a
Part-time Instructor in Soongsil
University, Seoul, Korea. His
research interests include multimedia
security, PKI, network security,
cyber forensic, and mobile network.

