
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

38

Fiscal Cash Register Embedded System Test with Scenario
Pattern
REN Yu†

†Faculty of Computer College, Hangzhou Dianzi University, Zhejiang, 310018 P. R. China

Summary
This paper presents a new way that testing fiscal cash
register embedded system with a scenario pattern-based
method. It also introduces to some concepts of scenario
and scenario patterns, and formalizes the embedded
system with scenario model ACDATE. The verification
patterns are built the fiscal cash register embedded system,
and are tested with the samples of basic scenario pattern
and complex scenario pattern. This paper shows the whole
process how to verify the embedded system with scenario
patterns.
Key words:
Embedded System, Scenario Pattern, Verification Pattern,
ACDATE, Fiscal Cash Register

1. Introduction

The number of embedded systems in areas such as
telecommunications, automotive electronics, office
automation, and military applications is steadily
growing[9][10]. How to test the embedded systems which
contains many functions in short time, and how to evaluate
the quantity of each embedded system are a key problem
to must be considered when build embedded systems both
producers and customers. Designers can no longer develop
high-performance from scratch but must use sophisticated
system modeling method[1]. Software testing methods and
objectives differ in the other computer software
applications. Embedded software development uses
specialized compilers and development software that offer
means for debugging. Programmer development
application software on more powerful computers and test
the application in the target processing environment. By
using scenario patterns the system necessary of the
embedded system can be described clearly. The embedded
systems can test the scenario patterns by using some
patterns that are called verification patterns[2].

Each scenario pattern of embedded systems has the
number of attributes such as pre-condition, reason,
post-condition and result, restricted conditions of system
and selected time limited[3]. The scenario patterns can be
defined from the system requirements specification, which
designers can reuse to access the design at all stages of the

design process about time setting, and can be defined as
reason and result which based on system necessary and
relationships that limited in time. Usually, each embedded
system test must create a lot of scenarios, but using 8 kind
of abstract-test-patterns which defined by Weitek Tsai and
Lian Yu’s got the coverage probability that reached up
95% to the whole system scenarios[2][5]. With the method
of scenario patterns, scenario examples are extracted from
the fiscal cash register embedded software at first. Then
these differing in scenario examples are divided into
different scenario patterns with standard pattern ACDATE.
Scenario patterns are analyzed different system scenarios,
and a unifying and reusing the script apply scenarios that
have the same patterns[7]. This approach has several
benefits: more efficacious, save time to debug the system,
and reliable model test components. Scenario patterns of
the fiscal cash register embedded software are checked
with an existing script, and most of them will keep the test
continuously. When the system test requirements are
changed, it just changes the corresponding scenarios, and
finds the matched patterns. For designers, the scenario
patterns design with object-oriented program. Design
pattern is the bases of reused object-oriented software
designing, it also makes the designs successfully and
system reused constructions basically and conveniently.
Designer and producers apply design patterns in the
software test, and make a decision to the advantage of
reused software system, which will be the system design
and the test quickly and perfectly.
 This paper introduces the fiscal cash register embedded
software test with scenario patterns method. The
organization of the paper is divided into 3 parts. In the first
part, it introduces the definition of scenario examples and
the expressed method of scenario patterns; in the second
part, it analyses the scenario test in the fiscal cash register
embedded software, and gives two examples that contains
a basic scenario and a complex scenario; in the third part,
it concludes the previous jobs and give a point of view on
embedded software test with scenario pattern in the future.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

39

2. Scenario and scenario pattern

2.1 Scenario definition
Definition 1: A scenarioε is a atom aggregate <ν,ζ,θ,start,

finish >, andν is a order aggregate. Each element ofν
is called the attribute of ε . θ is the condition
constraints of the basic scenario. While start and
finish is the beginning time and the finishing time of
the scenarioε . Here is defined the basic scenario
and complex scenario:
1. A basic scenario is a atom aggregate <θ,ζ,θ,start,

finish >. The aggregate of the attribute of the
basic scenarioν together with start and finish is
decided by the system monitor.

2. One complex scenario is a atom aggregate
<ν,ζ,θ,start, finish >, ζ is the aggregate of other
scenario, andθ is the aggregate constraints of
other scenario, which is called son scenario
aggregate. Andν the aggregate of the attribute is
deduced by all the son scenario aggregate.
start = min(s.start), finish = max(s.finish),

s ξ∀ ∈ .
Definition 2: The corpora of the scenario are V, which is a

infinitude aggregate. It introduces all scenarios
which will come out later.
The scenario can be obtained from the system. And

they often present the end-user some functions. The
scenario may be the basic scenario which can not be
divided any more. Basic pattern can only judge
weather the system has some function, and it has
single function[6].Take a basic scenario for example:
A cash register system saves the vendition data
correctly, and the constraints condition is the
hardware equipment has enough space. And such is
the instance of a basic scenario. Correspondingly, a
complex scenario can be composed of some
sub-scenarios. Commonly, the complex scenario may
finish the system functions which the basic scenario
can not finish. A complex scenario may be
constructed by basic scenario through the logic
relation, for example successively order, condition
expression, synchronization manner etc.

start:
 Scenario 1; // scenario 1 is the basic scenario
 If ((environment variables setting correctly) &&

embedded system initialization has finished))
 {
 scenario 2; // scenario 2 is the basic scenario
 }
 else if (environment variables setting incorrectly)
 {
 scenario 3; // scenario 3 is the basic scenario
 }
 else

 {
 scenario 4; // scenario 4 is the basic scenario
 }
finish

Most of the scenario pattern test uses the scripts which
have been used before, and they may guarantee the
continuity of the test. Thus we reuse those scripts which
may save much of the debugging time.

2.2 Scenario expression
The scenarios are usually expressed with the standard

model ACDATE (Actor, Condition, Data, Action, Time,
Event)[2][9]. ACDATE model is a standard model, so each
embedded system standardizes ACDATE model when the
embedded system want to express scenarios at first. Then
the scenarios of ACDATE model will be standardized in
the embedded system.

Actors

Conditions
Action

Events

Timing

Data

Figure 1 ACDATE defining scenario pattern

There in to:

Actors – an actor is among an external user, system,
device, an internal system, device, component
and object;

Conditions – a condition is a predicate used to trigger
an action;

Data – the attribute of actor, and presenting the
semantic of condition, event and action;

Actions – specified by the trigger event, guard
condition, the way to change the status of
actors, and sent event(s) to some actors;

Timing – a semantic statement about the relative or
absolute value of time or duration;

Events – external/internal significant occurrences that
may trigger action(s).

Taking an example as the fiscal cash register embedded
software; each fiscal task can be treated as an Actor. Each
actor (fiscal task) may have its own Data such as “some
merchandise trade data” and its own Conditions such as if
there is its fiscal item. The given condition example is
constructed on the Data “there exists the merchandise
fiscal item”. An Event could be fired when there is not
such merchandise fiscal item. An Action would be “extend
mange extensions”.
A system scenario would then be specified with the
ACDATE model elements: if the event “out of the mange
items” occurs, the actor “fiscal task” shall perform action

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

40

“extend the mange items” within the time specified by the
Timing Attribute “within 20 days”.

3. Scenario pattern test in fiscal cash register
system

There is a common abstract testing pattern that was been
mentioned in the paper of Feng Zhu[2]. Usually we can
make some testing template by using it to test the
embedded software. There are 8 kinds of abstract testing
patterns. They are basic scenario patterns; key incident
driving scenario patterns; time-limits key incident driving
scenario patterns; key incident driving scenario patterns
with time slice; order and respond scenario patterns;
pattern-choose scenario patterns; review scenario patterns
and interlock scenario patterns. For example, we can
compare two scenarios for fiscal cash register embedded
software:

Example 1: when the boot of the fiscal cash register
embedded software is finishing, the horn
will have a short sound two times;

Example 2: if the bill printer has some problems,
for example more heat of loss some pieces
of paper, the printer will be locked.

If these two examples have the same scenarios, the test
workers can make a test template to test these scenarios
that have the same patterns. What mentioned above is a
normal example. The scenario patterns are used to describe
the different system scenarios, and the test script that is
unified and reused can test the scenario that has the same
patterns. This will be saved lots of human power in
embedded software test.

3.1 Basic scenario patterns test
In the fiscal cash register embedded software, the basic

patterns have the most useful and have the most coverage
probability. It can be described that when A have a
pre-condition, B always correct before time T. As to the
fiscal cash register embedded software, the drive of printer
can make the printer have some functions that include
two-sides logic mapping; the compensation of acceleration
displacement; the test of printer’s temperature and loss
papers; the explanation of ESC/P; 16*16 lattice print
between Chinese and ASCII codes. The LCD display drive
mainly solve a problem that about chars and data. When
send chars, chip-select, the writing signals and data must
have the time synchronism in bus. It must make the data
locked to an I/O port within 5ms after the succession is
send, or the LCD will be out of order; if the hardware’s
time orders is satisfied, the problem of this mistake will be
solved. In this scenario, we can lock the access data on to a
I/O port, and we can solve the problem by restricts the

LCD’s drive in a time. If all scenario patterns test
completed, the LCD functions will be passed. On the
contrary, the drive is failed. It is showed in Figure 2.

Pre-condition

Post-condition

t0 t1

Time
Time setting

Figure 2 test with basic scenario patterns

As compared with basic scenario patterns are the basic
test patterns. The basic test patterns provide a unified and
verifying pattern in a basic scenario pattern. It verifies the
content that is conveyed by the basic scenario patterns. It
has single pre-condition, post-condition and selected time
limits. Figure 3 shows a necessary logic state. This state
can be applied to the entire needed items that can be
classified to a pattern and added in the test processing.

check restricted
condition

check system
running

restricted condition == true

if time contended, result is true

if time is exceeding, result is false

Figure 3 verifying logic states with basic verifying patterns

3.2 Complex scenario pattern test
In the fiscal cash register embedded software, although

the basic scenario pattern can test most scenarios of the
software, we still need complex scenarios verification
pattern to test the software for the purpose of the coverage
of the test. There are still seven complex scenarios
verification pattern excluding the basic scenario
verification pattern. In out target systems, we can distill
different complex scenarios and then match them with
these seven scenario verification patterns so that we can
finish the software test with those verification templates
which have been done. Take the fiscal cash register system
software for examples; the saving of power-off is the most
important thing. But actually, for some anticipation cause,
the power turns off all of sudden. The system should save
the manage data, fiscal data, sorts of parameters and
correlation registers within 100ms. The system can turn off
only after the flash save them talked above. When the
systems reset next time, it should check and recover the
saved data and then it carry on with the new task. We use
the Timed Key-Event Driven Pattern to test the software.

Timed key-event driven requirement pattern requires a
duration after the key event occurred. In this pattern, the
pre-condition is a combination of the key event and series

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

41

events that occurred during the specified duration. Look at
Figure 4.

Precondition (key event)

Event1 Event2 Event3 EventN

t0 t1

Time
Time setting

......

Figure 4 test with complex scenarios pattern

So the scenarios distilled from the fiscal cash register
system software match the Timed Key-Event Driven
Pattern. The system save the manage data, tax data, sorts
of parameters and correlation registers within 100ms. The
system can turn off only after the flash save them. The
time constraint for this scenario is 100ms. The flash passes
the test only after it can save the data with the setting time,
otherwise it fails.

The pattern-based verification process follows the steps:
1. Collect the system scenarios and specify scenario

patterns using the ACDATE model.
2. Match each scenario with one scenario pattern. For

example the two examples mentioned above
paragraphs have the same pattern: when the
condition is true, if the event E is true, then
something happen. If there is not any pattern
matching the scenario, we can create a new scenario
pattern to specify the scenario.

3. Generate test scripts from verification pattern. So
when they finish, we just change the parameter of
the code template but not every line.

4. Use the test scripts to test and gain the test result.
We only need change the correlation scenarios when the
systems change, and search for the matched pattern. The
changed scenarios also adapt to the existing pattern for
most of the time.

4. Conclusion

In this paper, we use scenario pattern and by the means
of verification pattern and we use the thought of design
pattern to finish the test of the fiscal cash register system
software. This method has high efficiency. We just need
some templates that we may reuse them to finish the test
efficiency. And this method has covered most of the
software, because all the system scenarios are covered.
Using the OOP methodology makes the test much easily.
We can expect that this method will develop fast in
embedded system in the future.

References
1. D. Gajshi et al., “Specification and Design of

Embedded Systems”, Prentice Hall, Englewood Cliffs,
N. J., 1994

2. W. T. Tsai, L. Yu, F. Zhu, “Rapid Verification of
Embedded Systems using Patterns”, Computer
Software and Applications Conference, 2003, P.466 –
471.

3. W. T. Tsai, L. Yu, X. X. Liu, A. Said, Y. Xiao,
“Scenario-Based Test Case Generation for
State-Based Embedded Systems”, Performance,
Computing and Communications Conference, 2003,
P.335-342.

4. Schmidt D. C., Huston S D., “C++ network
programming (I)-mastering complexity with ACE and
patterns”, 2001, 4.

5. Wei Tek Tsai and Lian Yu, Feng Zhu, “Rapid
Embedded System Testing Using Verification
Patterns”, Software, IEEE Volume 22, Issue 4, Aug.
2005, P.68-75.

5. Xu Hui, Feng Jinwen, Pan Aimin, “One kind of time
scenario recognize arithmetic and its applications in
the safety alarm system”, Bei Jing University
transaction (natural science), Volume 41, Issue 3,
May, 2005.

6. Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, “The basis of reuse object oriented
software ”,［M］translated by Li Yingjun, Mechanic
Industry Publishing, 2000.

7. Raymond A. Paul, W. T. Tsal, John S. Mikell,
“Rapid simulation evaluation from scenario
specifications for command and control systems”,
June 2004.

8. Xiaoying Bai, Wei-Tek Tsai, Ray Paul, Ke Feng,
Lian Yu, “Scenario-Based Modeling And Its
Applications”, Proceedings of the Seventh
International Workshop on 7-9 Jan., 2002, P.253-260.

9. Ren Yu, Wan Jian, “Software Simulator of Embedded
Application System”, Computer Application, Vol. 11,
No. 7, July. 2004, P.144-146.

10. Ren Yu, “Threads Communication Performance of
Embedded Simulator”, Computer Application, Vol.
25, No. 25, Dec. 2005, P.12-14.

REN Yu received the B.E. and
M.E. degrees, from Zhejiang
University in 1985 and 1989,
respectively. After working as a
research assistant (from 1986), an
assistant professor (from 1991) in the
Department of Computer Science and
Technology, Hangzhou Dianzi

University, and an associate professor (from 1999). His
research interest includes embedded system and software
optimization technology, real-time OS, and system control.

