
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 200650

Fuzzy Green: A Modified TCP Equation-Based Active Queue
Management Using Fuzzy Logic Approach

Saman Taghavi Zargar† and Mohammad Hossein Yaghmaee††

†Department of Computer Engineering, Ferdowsi University of Mashad, Iran

††Institute for Studies in Theoretical Physics and Mathematics (I.P.M)

Abstract
 Congestion control provides quality of service over the best
effort networks. Congestion occurred when arrival rate to a
router is greater than its departure rate. In this paper, using
fuzzy logic approach, we have proposed a modified TCP
equation-based active queue management mechanism which is
based on traditional GREEN algorithm. Here we present our
fuzzy GREEN controller which is expected to act as a
congestion controller in the routers. We have simulated our
fuzzy method both with and without background Pareto traffic
and the results show the superiority of our fuzzy method
compared to the non-fuzzy one in both long-lived as well as
short-lived connections.
Key words:
Active Queue Management, Congestion Control, Fuzzy GREEN
Algorithm, Quality of Services.

Introduction

 Quality of Service (QoS) in current best effort Internet
still is a critical issue. The number of Internet users is
rapidly increasing and therefore the amount of data to be
carried also increases. Furthermore to support new
Internet applications such as voice over IP, it is necessary
to design effective Quality of Service approaches.
Congestion control provides quality of service over the
best effort networks. Congestion occurred when arrival
rate to a router is greater than its departure rate. Each
router in the network uses queue management and
scheduling as two classes of algorithms that are related to
congestion control.
The queue management algorithms try to control the
length of packet queues by dropping packets when
appropriate. Scheduling algorithms on the other hand,
determine which packet to drop next and which is to send
and also used to manage the allocation of bandwidth
among flows. Network congestion induced by traffic leads
to wasting all the resources that the packet consumed on
its way from source to destination.
Active Queue Management (AQM) techniques such as
RED [1], BLUE [2], AVQ [3], REM [4], and PI [5] try

actively to detect and react to the congestion that would
otherwise fill the queue and cause a burst of packet drops.
REM, PI, and AVQ are techniques to increase the link
utilization at a router while maintaining small queue sizes
but not providing fairness for each flow. RED and BLUE
were designed to stabilize queue sizes at low levels; Flow
Random Early Drop (FRED) [6] and Stochastic Fair
BLUE (SFB) [7] improve on their performance by
operating at the flow level. FRED and SFB try to enhance
throughput-fairness between flows by sacrificing flows of
higher bandwidth, while Apu Kapadia [8] showed that
these approaches do not perform well with flows that have
been widely varying Round-Trip Time (RTT).

2. Related Work

 In contrast with FRED and SFB that avoid congestion
by reacting to congestion early before it becomes too
problematic, GREEN (Generalized Random Early
Evasion Network) [9] is a proactive queue management
algorithm which regulates TCP flows over the same link
to a fair sending rate, and hence, prevents them from
including congestion, thus providing more stable QoS
over a best-effort network. GREEN applies knowledge of
steady-state behavior of TCP connections at the router to
intelligently drop or mark packet for congestion
notification [9]. By using this mechanism, a router can
give each connection its fair share of bandwidth while
preventing the build-up of packet queues. GREEN
calculates the drop probability (P) of each packet
regarding to the number of active flows (N), bandwidth of
a bottleneck link (L), maximum segment size (Mss), each

packet’s RTT, and ()tγ coefficient as parameters and a
constant c, in order to prevent congestion.
The constant c, depends on the acknowledgment strategy

we are using (i.e., delayed or every packet). ()tγ is an
adaptation parameter results in high utilization of the link
while providing high fairness between flows at time t.
When a packet is received at the GREEN router, GREEN

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 51

first obtains the packet's RTT and p, as a drop probability,
is then calculated. The RTT can be achieved either by
reading the TCP header (i.e., requires TCP senders to
embed their current RTT estimates within the TCP
header) or be estimated by using IDMaps [10]. The

adaption parameter ()tγ would be calculated upon
current utilization and queue drops at time t.
The procedure for the GREEN algorithm is shown below
[8]:

Algorithm 1: GREEN algorithm

Enqueue(Packet pkt)
()RTT obtainRTT pkt←

2

()

N Mss c
p

t L RTTγ

× ×
←

× ×

 
 
 

(0,1)u UniformRand←
if (u ≤ p) then

 drop(pkt)
 else
 addToQueue(pkt)
 end if

if (currentTime() – lastUpdate ≥ window) then
 update(currentUtil, N, queueDrops)

lastUpdate ← currentTime()
if (queueDrops > 0) then

0.95γ γ←

 else if (currentUtil < 0.98) then
1

2

currentUtil
currentUtil

γ γ
+

←
×

 end if
end if

2.1 Estimating RTT for Flows

 Excellent performance of traditional GREEN comes
with a tradeoff – the router must be able to infer a flow's
RTT. Feng et al. [9] presented preliminary results for a
GREEN router where the RTT was assumed to be known
at the router. There are several ways to observe flows at a
router and determine their RTTs, but these approaches
require the use of per flow state. GREEN must not use any
per flow state approach to provide any benefit over Fair
Queuing. Therefore, Apu Kapadia presented two
approaches for estimating RTTs without the need of per
flow state called Embedded RTTs and IDMaps [8].

2.1.1 Embedded RTTs

 The first approach to achieve RTT requires TCP senders
to embed their current RTT estimates within the TCP

header. This value of RTT is the ideal value since exact
drop probabilities for a given bandwidth can be calculated
for a flow. This requires that the TCP sender be modified.
There are two issues involved with Embedded RTTs. In
order to gain more information on these issues refer to
[8].

2.1.2 Estimating RTT by Using IDMaps

 The IDMaps is a proposed scalable Internet-wide
service that aims to provide internet distance estimates.
For example, the authors have suggested that IDMaps can
be used by hosts for nearest mirror selection. Such a
service is also well suited to GREEN, which can obtain
RTT estimates for flows using IDMaps. Apu Kapadia
proposed an architecture where GREEN routers are part
of the IDMaps framework, and therefore, can perform fast
lookups in a local IDMaps database. He also mentioned
that IDMaps was a theoretical service and GREEN could
not rely on IDMaps for actual deployment [8].

2.2 Using Fuzzy Logic in Congestion Control

 Fuzzy logic has been used in congestion control
algorithms such as Fuzzy RED [11] and Fuzzy BLUE
[12]. Each of which showed the superiority of fuzzy
approach versus the non-fuzzy one. Our main
contribution in this work is to provide a modified fuzzy
GREEN algorithm which is more practical to deploy and
maintains higher utilization and fairness, in the face of
flows with widely varying RTTs and in the presence of
short-lived connections, in contrast with the traditional
GREEN.
The rest of this paper is organized as follows. In Section
3, the proposed fuzzy GREEN is presented. In section 4,
describes our experimental setup and metrics for
comparing the various queue management algorithms. In
section 5, by using computer simulation, the performance
of the proposed mechanism is compared with traditional
GREEN algorithm. Section 6 intends to propose the
future works and finally section 7, concludes the paper.

3. Proposed Fuzzy Approach

 Apu Kapadia [8] proposed a simple negative feedback
control algorithm mentioned in algorithm 1, to estimate

the value of ()tγ at time t, which scale (up or down) the
sending rates of senders to adjust the overall link
utilization and showed how GREEN performs extremely
well by using this crisp value. We expected the fuzzy
system to be appropriate for TCP active queue
management technique, considering the uncertainty and

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 200652

adaptivity of the system. Our main goal in this work is to
solve this problem by using concepts and techniques from
fuzzy logic theory [14-15] as opposed to crisp set theory.
Here we present our fuzzy GREEN controller which is
expected to act as a congestion controller in the routers.
The proposed controller uses a two-input-single-output
fuzzy logic controller. The following steps are taken in
order to design any fuzzy system [15].

3.1 Membership Functions and Linguistic Variables

 Definition of membership functions and linguistic
variables are the first steps in fuzzy system designing.
Each linguistic variable contains terms which are
interpretation of technical figures. In our work we have
used experimental triangular membership functions for
coding and evaluation simplicity. The input linguistic
variables are queue drops and current utilization and the

output linguistic variable is the ()tγ according to the time
t. The membership functions of proposed fuzzy GREEN
are plotted in Fig. 1.

Fig. 1. Membership Functions

3.2 Fuzzy Rule Base

 The second step in designing a fuzzy system is the
creation of a fuzzy logic rule base which supplies the
knowledge of the system [15]. To build the rule base, we
need to present some standard methods. A fuzzy logic rule
is an IF-THEN rule. The IF part is a fuzzy predicate
defined in terms of linguistic values and fuzzy operators
Intersection (t-norm) and Union (s-norm). The THEN
part is called the consequent. In the proposed fuzzy
system, we used product t-norm for aggregation [15]. The
fuzzy rule base includes 9 experimental rules according to
Gamma formula, which are shown in Fig. 2.

If Drop is low and Util is high then γ is high
If Drop is low and Util is medium then γ is high
If Drop is low and Util is low then γ is high
If Drop is medium and Util is high then γ is low
If Drop is medium and Util is medium then γ is medium
If Drop is medium and Util is low then γ is high
If Drop is high and Util is high then γ is low
If Drop is high and Util is medium then γ is low
If Drop is high and Util is low then γ is medium

Fig. 2. Fuzzy Rule Base

3.3 Defuzzification Method

 The third step to design a fuzzy system is choosing an
appropriate defuzzification method [15]. The objective of
a defuzzification method is to derive the non-fuzzy (crisp)
value that best represents the fuzzy value of the linguistic
output variable. Center of area (CoA), center of maximum
(CoM) and mean of maximum (MoM) are some of the
defuzzification methods available. In the proposed fuzzy
controller we decided to employ CoM for final γ

assignment as the standard defuzzification is CoM which
delivers the "best compromise" for the inference result.

1

1

n
i ii

n
ii

Wµ
γ

µ
=

=

= ∑
∑

, where iµ is the T-norm of queue drops and utilization of

the rule i, and iW is the γ amount that results in iµ .

10 20 30 40 50 60 70

Low Medium High
1

0.5

0

(a) Queue drop’s membership function

 0.5 1 1.5 2 2.5 3 3.5 4

 Low Medium High
1

0.5

0

(c) γ Membership function

0.4 0.5 0.6 0.7 0.8 0.9

 Low Medium High
1

0.5

0

(b) Current utilization membership function

µ

µ

µ

γ

Utilization

Number of Drops

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 53

3.4 Algorithm Design

 Algorithm 2 shows our proposed method which consists
of two major parts. In the first while loop the T-norm is
calculated and then the crisp value iW would be
evaluated. The second loop generates CoM formula and
finally calculatesγ .
The procedure for the fuzzy GREEN algorithm is shown
below:

Algorithm 2: Modified fuzzy GREEN algorithm

Enqueue(Packet pkt)
()RTT obtainRTT pkt←

2

()

N Mss c
p

t L RTTγ

× ×
←

× ×

 
 
 

(0,1)u UniformRand←
if (u ≤ p) then

 drop(pkt)
else

 addToQueue(pkt)
end if
if (currentTime() – lastUpdate ≥ window) then

 update(currentUtil, N, queueDrops)
 lastUpdate ← currentTime()
 i ← 1

while (i<=9) do
 T-norm[i] ← µ(Q-Drop[i])*µ(Util[i])
 W[i] ← CrispValue(T-norm[i])
 i ← i + 1
 end while
 i ← 1

while (i<=9) do
 Numerator = W[i] * T-norm[i]
 Denominator = T-norm[i]
 end while

γ ← Numerator / Denominator
 end if

4. Experimental Setup and Metrics

 The proposed algorithm was implemented in C++ on
NS2 [16] network simulator. Experiments were done
under Linux SuSE 9.1 distribution operating system on a
desktop computer with Pentium 4 CPU 2.5GHz. To
compare the proposed mechanism with the traditional
GREEN, we have simulated the following experiments in
the same condition as Apu Kapadia did in his work [8]
which based on two experiments. The first one does not
include any background traffic to study fuzzy GREEN’s

behavior with long-lived connections, while the second
one includes background Pareto traffic in order to study in
case of short-lived connections such as web traffic.
 In all experiments, we assume that a router knows the
bandwidth (L) of the attached outgoing link. N is the
number of active flows, i.e., flows that have had at least 1
packet to go through the router within a certain window
of time. Since active flows not experiencing repeated
timeouts send several packets per RTT, we use window =
1sec, which results in near-perfect estimates in our
simulations. We leave more fine tuning of the window
parameter for future work. We vary the number of
foreground FTP flows from 50 to 400, and MSS equal to
1KB. We fix the value of constant c at 1.31, since we use
a "random dropping, acknowledgment per packet" model
according to [17]. We vary the RTT linearly from 72ms to
470ms. N sources and N sinks are connected to the
routers over 10Mbps links. The bottleneck link has a
bandwidth of 155Mbps and a delay of 30ms. We also set
the buffer size in fuzzy GREEN router to be 600 packets.
Fig. 3 shows the network topology used in the simulation.

Fig. 3. Network topology

While the background traffic of each experiment varies,
we start several FTP connections from the leftmost nodes
to the rightmost nodes and run the simulation for 180 sec
and evaluate the fairness between the FTP flows. We run
the simulations for that long because unfairness arises
from the long term effects of aggressive shorter RTT
flows grabbing bandwidth from longer RTT flows.
GREEN was implemented at the gateway, which is the
bottleneck router in our simulation. All of the metrics
such as link utilization, fairness, packet loss, average
queue size, and bytes sent are measured at this gateway.

4.1 Fairness

 We use Jain’s Fairness Index [18] to access fuzzy
GREEN’s ability to maintain equal bandwidths between

1

N-1

Fuzzy
GREEN

N-1

0 0

155 Mbps

30 ms

1 ms

10 Mbps10 Mbps

5 ms

200 ms

1

FTP Source FTP Sinks

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 200654

TCP flows. The fairness always lies between 0 and 1 and
thus a higher fairness index indicates better fairness
between flows. Given a set of throughputs (x1,x2,…,xn),
the fairness index is calculated as follows:

2
1, , ...,)1 2 2
1

()
(

n xii
n n xi i

f x x x
n

∑ =
∑ =

=

4.2 Link Utilization

 The overall link utilization we used in our simulation is
computed using the following equation:

_byte departurestutilization
bandwidth t

=
×

The numerator equals to the total number of bytes
delivered by the link during the interval of t sec, and the
dominator equals the total possible bytes that could have
left the link in the same interval. The bandwidth is
expressed as bytes/second.

4.3 Packet Loss

 Both GREEN and fuzzy GREEN were compared with
due regard to packet loss percentage. Since the overall
packet loss stays below a few percent in our simulation,
both GREEN and fuzzy GREEN are able to limit the rates
of flows to their fair share of bandwidth.

4.4 Queue Size

 The average queue size was calculated at the end of the
simulation. Queue sizes are sampled at 20ms intervals.
In fact, the more queue size an algorithm produces, the
More buffer space it will need.

5. Performance Evaluation

 We have simulated the following two experiments and
measured the metrics that we have been mentioned above
between GREEN and fuzzy GREEN.

5.1 Experiment 1

 Fig. 4 to Fig. 8 show simulation results of the first
experiment on GREEN and fuzzy GREEN for FTP flow
without background traffic. Fig. 4 indicates that fuzzy
GREEN behaves the same as GREEN in sending bytes
per flows which means all flows send almost the same
amount of data. At the end of our simulation with 200

FTP flows, we plot the number of packets sent by each
flow. We observe that both GREEN and fuzzy GREEN
have corrected TCP's inherent bias against larger RTT,
and all flows achieve roughly the same average
bandwidths at the end of the simulation.

Bytes Sent vs. Flow ID

0

5000

10000

15000

20000

25000

1 50 99 148 197
Flow ID

B
yt

es
 S

en
t

Fuzzy Green

Green

Fig. 5 shows that fuzzy GREEN provides significantly
better bandwidth fairness than traditional one. Better
fairness causes flows to use bandwidth fairly the same.

Fairness Index

0

0.2

0.4

0.6

0.8

1

Flows

Fa
irn

es
s

Fuzzy Green
Green

Fig. 6 indicates that packet loss in fuzzy GREEN is
mostly less than GREEN and always less than 2%,
resulting in fewer overflows at the queue.

Fig. 5. Jain’s Fairness Index vs. Number of Flows

 50 100 150 200 250 300 350 400

500 150 200100
Flow ID

Fig. 4. Bytes Sent vs. Flow ID (RTT increase as Flow ID increases)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 55

Fig. 7 shows that considering growth of flows, utilization
of both approaches would remain over 85% and in high
flow amount it would converge to 98%.

Overall Link Utilization

80

84

88

92

96

100

Flows

U
til

iz
at

io
n(

%
)

Fuzzy Green

Green

Fig. 8 indicates that queue buffer size is even less than
traditional GREEN. As the number of flows increases
(and hence the contention for bandwidth), fuzzy GREEN
is able to more effectively control queue sizes.

5.2 Experiment 2

 In the second experiment, we used Pareto traffic to
simulate the short lived connections. We pair each FTP
flows with a Pareto flow with the same link
characteristics. This is essentially two copies of the
topology shown in Fig. 3, sharing the same bottleneck
link and fuzzy GREEN router. One copy runs the FTP
flows discussed in the previous experiment, and other
copy runs Pareto flows with the following parameters:
packet size: 1000bytes, burst time: 2sec, idle time: 5sec,
and rate: 160Kbps.
Results in Fig. 9 to Fig. 13 show that fuzzy GREEN
behaves as well as the previous experiment even in facing
traffic background. Fig. 9 compares sending bytes per
flows. Indicates that fuzzy GREEN behaves the same as
GREEN in sending bytes per flows which means all flows
send almost the same amount of data.

Bytes Sent vs. Flow ID

0

5000

10000

15000

20000

25000

Flow ID

B
yt

es
 S

en
t

Fuzzy Green
Green

Packet Loss

0

0.002

0.004

0.006

0.008

0.01

0.012

Flows

P
ac

ke
t L

os
s

Fuzzy Green

Green

Fig. 7. Overall Link Utilization vs. Number of Flows

 50 100 150 200 250 300 350 400

 0 50 100 150 200

Fig. 9. Bytes Sent vs. Flow ID (RTT increase as Flow ID increases)

Fig. 6. Overall Packet Loss vs. Number of Flows

Avg. Queue Size

0

50

100

150

200

250

Flows

A
vg

. Q
ue

ue
 S

iz
e

Fuzzy Green
Green

Fig. 8. Average Queue Size vs. Number of Flows

50 100 150 200 250 300 350 400

 50 100 150 200 250 300 350 400

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 200656

Fig. 10 shows superiority of our fuzzy method compared
to the non-fuzzy one in fairness especially for less than
200 flows.

Fairness Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Flows

Fa
irn

es
s

Fuzzy Green

Green

Fig. 11, like the previous experiment, indicates that
packet loss in fuzzy GREEN is mostly less than GREEN
and always less than 2%.

Packet Loss

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Flows

Pa
ck

et
 L

os
s

Fuzzy Green

Green

Fig. 12 shows that considering growth of flows,
utilization of both approaches would remain over 88%
and in high flow amount it would converge to 98%.

Overall Link Utilization

80

82

84

86

88

90

92

94

96

98

100

Flows

U
til

iz
at

io
n(

%
)

Fuzzy Green

Green

Fig. 13 shows that the queue buffer size is remarkably less
than traditional GREEN. As the number of flows
increases, fuzzy GREEN provides superior average queue

size compared to traditional GREEN and keeps the
average queue sizes low.

6. Future Works

 More simulations are under process to reach better
tuned fuzzy approach. We are also intends to design a
more flexible controller by applying fuzzy approach not
only on Gamma parameter, but also on drop probability
and finally substitute all experimental formulas in the
traditional GREEN algorithm with fuzzy rules. We are
also planning to use genetic algorithm to best tune our
membership functions and we will prove that fuzzy
GREEN works better with tuned membership functions.

Avg.Queue Size

0

50

100

150

200

250

Flow

A
vg

.Q
ue

ue
 S

iz
e

Fuzzy green

Green

 50 100 150 200 250 300 350 400

Fig. 10. Jain’s Fairness Index vs. Number of Flows

Fig. 11. Overall Packet Loss vs. Number of Flows

 50 100 150 200 250 300 350 400

Fig. 12. Overall Link Utilization vs. Number of Flows

Fig. 13. Average Queue Size vs. Number of Flows
 50 100 150 200 250 300 350 400

 50 100 150 200 250 300 350 400

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 57

7. Conclusion

 In this paper, we have devised a modified TCP
equation-based active queue management using fuzzy
logic approach based on traditional GREEN algorithm,
and compared the efficiency of both fuzzy and non-fuzzy
methods. Two experiments were done using ns2 network
simulator and the outcome clearly showed the superiority
of the fuzzy GREEN method versus the traditional
GREEN one under simulation of bytes sent, fairness,
packet loss, average queue size and link utilization.
Furthermore, unlike other stateless approaches that
attempt to approximate Fair Queuing, our approach and
also traditional GREEN [8] do not require coordination
between routers, or significant modification to the TCP
implementation. Currently routers do not apply fuzzy
logic to control the congestion, however according to
previous works on Fuzzy RED and Fuzzy BLUE and also
our fuzzy GREEN; it is recommended router designers
apply this method as a better congestion control
algorithm.

References

[1] S.Floyd, V. Jacobson, “Random early detection gateways for
congestion avoidance”, IEEE/ACM Transactions on Networking,
1(4):397-413, Aug 1993.

[2] W. Feng, et.al. “Blue: a new class of active queue management
algorithm”, technical report, Apr 1999.

[3] S. Kunniyu, R. Srikant, “Analysis and design of an adaptive virtual
queue (AVQ) algorithm for active queue management” ACM
SIGCOMM, 2001.

[4] S. Athuraliya, et.al. “Rem: active queue management”, IEEE
Network, June, 2001.

[5] C. V. Hollot, et.al., “On designing improved controllers for AQM
routers supporting TCP flows”, In Proc. of IEEE INFOCOM, 2001.

[6] D. Lin, R. Morris, “Dynamics of random early detection” In Proc. Of
ACM SIGCOMM, Sept 1997.

[7] W. Feng, et.al., ”Stochastic fair blue: a queue management algorithm
for enforcing fairness”, In Proc. of IEEE INFOCOM, Apr 2001.

[8] Kapadia, W. Feng, R. H. Campbell, "Green: a TCP equation-based
approach to active queue management", UIUC Technical Report:
UIUCDCS-R-2004-2408/UILU-ENG-2004-1710, February 2004.

[9] W. Feng, A. Kapadia, S. Thulasidasan, "Green: proactive queue
management over a best-effort network," In Proc. of IEEE Global
Telecommunications Conference (GLOBECOM 2002).

[10] P. Francis, et.al., “Idmaps: a global internet host distance estimating
service”. IEEE/ACM Transactions on Networking, Oct 2001.

[11] M. H. Yaghmaee, “A modified random early detection algorithm:
fuzzy logic based approach”, JCN, Journal of Communication
Network, vol.7, No. 3, September 2005, pp. 337-352.

[12] M. H. Yaghmaee, M. Menhaj, H. Amintoosi, “A fuzzy extension to
the blue active queue management algorithm”, IAEEE, Journal of
Iranian Association of Electrical and Electronics Engineers, vol. 1,
No. 3, Winter 2005, pp. 3-14.

[13] Zadeh, L.A., “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Transaction Systems Man.
Cybern, vol SMC-3, no. 1, pp. 28-44, 1973.

[14] Zadeh, L.A., “Fuzzy sets", Information and Control, 1965. 338-353
[15] Wang, L., A course in fuzzy systems and control, Prentice-Hall,1997.
[16] Ns-2. Network Simulator. http://www.isi.edu/nsnam/ns.
[17] M. Mathis, J. Semke, J. Mahdavi, and T. Ott., "The macroscopic

behavior of the TCP congestion avoidance algorithm", Computer
Communication Review, 27(3), July 1997.

[18] D. Chiu, R. Jain, “Analysis of the increase and decrease algorithms for
congestion avoidance in computer networks”, Computer Networks
and ISDN systems, 17:1-14, 1989.

Saman Taghavi Zargar was born on
March 1980 in Mashad, Iran. He
received his B.S. degree in Computer
Engineering from Azad University of
Mashad in 2004 and he is currently the
M.S. degree student of Computer
Software in Ferdowsi University of
Mashad. He is an IEEE student
member and also member of IEEE

Computer society and International Association of
Engineers (IAENG). During 2005-2006, he stayed in
Computer and Communication Research Center, Ministry
of Posts and Telecommunications of Iran to work on his
M.S. project.

Mohammad Hossein Yaghmaee was born on July 1971 in
Mashad, Iran. He received his B.S. degree in
Communication Engineering from Sharif University of
Technology, Tehran, Iran in 1993, and M.S. degree in
communication engineering from Tehran Polytechnic
(Amirkabir) University of Technology in 1995. He
received his PhD degree in communication engineering
from Tehran Polytechnic (Amirkabir) University of
Technology in 2000. He has been a computer network
engineer with several networking projects in Iran
Telecommunication Research Center (ITRC) since 1992.

http://www.isi.edu/nsnam/ns.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 200658

November 1998 to july1999, he was with Network
Technology Group (NTG), C&C Media research labs.,
NEC Corporation, Tokyo, Japan, as visiting research
scholar. He is author of one book: Computer Networks
and Internet, in Persian, (Ferdowsi University of Mashad

Publishing, Mashad, 2003). His research interests are in
traffic and congestion control, high speed networks
including ATM and MPLS, Quality of Services (QoS) and
fuzzy logic control.

