
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

59

A Novel Information Search Approach for Languages Without Word

Delimiters

Lianlong Wu

School of Electronic Engineering and Computer Science, Peking University, Beijing, China

Summary
In many languages there are no word delimiters among the text.

It is very difficult to index articles in those languages. For

example, Chinese information search engines always encounter a

difficulty in segmentation of Chinese words from an article. In

this paper, a suffix tree based searching approach is proposed to

avoid the difficulty in segmentation of Chinese words. The suffix

tree algorithms are studied and a set of optimal algorithms for

index build are proposed. Based on the algorithms, a prototype of

Chinese information search system is developed and applied to

the Chinese Web Test collection with 100 GB Web pages (CWT-

100g). The experimental results show that the system is capable

of searching Chinese information without segmentation of

Chinese words and the speed of index build is reduced to the

theoretical limitation. part of summary.

Key words:
Search engine, segmentation of Chinese words, suffix tree,

information system.

1. Introduction

An index mechanism is at the core of an information

search system. Inverted list is a technique that is widely

used as an index mechanism [1]. However, there are

constraints on the use of such word-based lists in Chinese

information systems. Since there are no delimiters to

separate Chinese words, it is very difficult to segment

words from a text. If one wants to apply inverted list,

Chinese word segmentation has to be done at first. Firstly,

it takes time to segment Chinese words. This affects the

efficiency of index build. Secondly, the quality of word

segmentation severely affects the quality of index.

In this paper, a full-text index mechanism based on suffix

trees[2], [3] is applied to develop a new system, so the

segmentation of Chinese words is not necessary. Based on

properties of suffix trees, the search for phrases, sentences,

and even more complicated searches, such as a whole

paragraph search, are amazingly feasible. Moreover,

accurate results can be achieved.

As index build is very time consuming, a set of optimal

algorithms are studied in Section 3. The functionalities and

interface of the new search system is described in Section

4. The experimental results are provided in Section 5. A

conclusion is given in Section 6.

2. Problem of Inverted Files

Inverted files have been widely used as an index technique

[1] in information search systems. Inverted files are a text

index composed of a vocabulary and a list of occurrences.

Inverted indices assume that the text can be seen as a

sequence of words. In English, there are spaces to delimit

words, but in Chinese text there is no space between words

to separate them. Therefore, before an index is built, text

information has to be segmented into Chinese words first.

The segmentation of Chinese words not only takes longer

time than indexing itself, but also may make mistakes. For

example, the Chinese phrase ‘developing country’ can be

segmented in two sets of words shown in Figure 1. The

segmentation at the right column is correct. The

segmentation in the left column is wrong. The meaning is

changed to ‘to develop China’.

Figure 1. Difficulty of Chinese word segmentation.

3. Optimal Algorithms

3.1 Suffix Trees and Suffix Arrays

A suffix tree[2] is a data structure built over all the suffixes

of a text. Suffix is a string that goes from a position to the

end of the text. Each suffix is thus uniquely identified by

the position. For example, Suffix (8) of“mississippi” is

“ippi” as shown in Figure 2 (this example is from [4]).

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

60

The data structure in a suffix tree can be easily applied to

solve many problems on string operations such as those

longest repeated substrings (2), (3), and (4). Any long

substrings can easily be searched in the text. In order to

take these advantages, a full-text index technique based on

suffix trees is applied to develop the new search system.

The system does not need to take time to do the

segmentation of words. Therefore, a full-text index based

on suffix trees can be built much faster than the index

based on inverted files.

As suffix arrays provide the same function as suffix trees

and occupy much less space, suffix arrays are proposed to

implement the search system. A suffix array is simply an

array containing all the pointers to the text suffixes listed

in lexicographical order. For example, the suffix tree of

string “mississippi” can be represented as a suffix array

shown in Figure 3.

The Unicode is applied to represent Chinese characters. A

content extraction module is developed to extract the

contents from the Web pages. The text contents are stored

in a Content File in the Unicode. The suffix array is stored

as integers in the Index Array. The system produces files

with file types as follows:

type TIdx= Integer; // 32Bits Integer

 TCot = WideChar; // Unicode Character

 var

CotFile : file of TCot; // Content File

IdxFile : file of TIdx; // Index File

3.2 Suffix Array Building

Array Rankk is used for building the suffix array. Rankk[i]

is the rank number of the Suffix[i] according to the first k

characters of each suffix. Indexk is the suffix array

corresponding to the Rankk.

An optimal algorithm for building a suffix array is

proposed as follows:

k ← 1;

repeat

Quick Sort (Indexk); //according to first k characters

of each suffix

 Count the Rank2k Array;

 k ← 2k

until k≥n;

Where n is the length of the text, the time complexity for

string comparisons in the Quick Sort is O (1), so the time

complexity of Quick Sort is O(n·logn). The variable k is

increasing exponential; the time complexity of loop is log

n. The total time complexity is O(n·log
2
n).

For long query strings, it is not necessary to do a complete

sort. The loop can be stopped when k≥m, where m is the

maximum length of query strings. This length is enough for

the binary search. The time complexity is reduced to O

(n·logn·logm), where m is a small constant (m=16 or 32, in

most cases), so the time complexity is O(n·logn).

Figure 3. Suffix Array of string “mississippi”

Suffixes in

lexicographical

order:

11: i

 8: ippi

 5: issippi

 2: ississippi

 1: mississippi

10: pi

 9: ppi

 7: sippi

 4: sissippi

 6: ssippi

 3: ssissippi

Suffix Array

Index Value

1 11

2 8

3 5

4 2

5 1

6 10

7 9

8 7

9 4

10 6

11 3

Root

mississippi

i

s

p

ssi

ppi

ppi

ssippi
1

2

5

1

8

i

si

ssippi

ppi

ssippi

ppi

3

6

4

7

pi

i

9

1

Figure 2. Suffix Tree of string “mississippi”

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

61

The Quick Sort can be replaced by Bucket Sort and Radix

Sort. A optimal algorithm is proposed as follows:

k ← 1;

Bucket Sort; //according to the first

character only

Count Rank1 Array;

repeat

Radix Sort (Indexk); //according to first k characters

of each suffix

 Count the Rank2k Array;

k ← k·2;

until k≥n;

Both the Bucket Sort and the Radix Sort are linear, so the

total time complexity is reduced to O(n) that is theoretic

lowest bound.

Additionally, an approach for rolling array is applied to

recycle array memory. Scanning a static array is applied to

replace dynamic queue so that the spaces for pointers are

saved. Therefore, a high stable system is obtained. Because

the Web pages are scanned only once to perform the

extraction, the time complexity is O (n).

4. Development of Search System

A prototype of search system is developed in three

separate modules and runs on single PC. First module is

for extraction of content from Web pages. The CotFile is

created. Second module is for index build. The optimal

algorithms are applied in this module to build a suffix tree

based index. A efficient search algorithm is applied to third

module to search the information on the suffix tree based

index. The index building interface is shown in Figure 4.

The content files created by first module are listed in the

left box. Select the content files and click bottom ‘Suffix’.

A suffix tree can be generated. Click bottom ‘Index’. An

index based on suffix tree is built. Click bottom ‘Auto’. An

index is automatically built for the selected content. Based

on this interface, the information of the index can be

shown. For example, a list of positions of URL is shown in

the right box.

Figure 5. Shows searching interface of the prototype

system. Multiple indexes are listed in the left box. The key

words, phrase, or sentence can be input in the box beside

the bottom ‘search’. Results are shown in the middle boxes.

The right box are listed the test collection provided in The

CWT-100g[5].

Figure 4. Interface of index build in the prototype system

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

62

Figure 5. Searching interface in the prototype system

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Data Size(MB)

Indexing
Speed(KB/s)
Disk Read
Speed(KB/s)
Disk Write
Speed(KB/s)

Figure 6. Indexing speed vs. hard disk speed

Figure 7. Indexing time shows linear increase with data size

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

63

5. Experimental Results

The new system was applied to the benchmark data set --

Chinese Web Test collection with 100 GB Web pages

(CWT-100g) proposed by Network Group, Peking

University [5]. The CWT-100g is a collection like TREC.

It is composed of three parts: the documents, the queries,

and relevance judgments. The CWT100g is designated as

the test collection of SEWM-2004 Chinese Web Track.

Based on the benchmark data set, 285 items of

home/named page finding tasks were done. Lists of URL

were obtained corresponding to different tasks respectively.

The total output for the 285 items of tasks is 4395 lines of

URL. The running speed of the system was tested. The

content was extracted from the 100GB Web pages with a

speed of 3MB/s. Index build worked at a speed of 1MB/s.

This is better than the speed of indexing based on inverted

lists. As the fastest word segmentation speed is only

0.6MB/s, the indexing speed for inverted list based system

is less than 0.6MB/s. The speed of indexing is highly

dependent on hard disk read/write speed. The test results

are shown in Figure 6. It can be seen that indexing speed is

very close to hard disk speed. If a high-speed hard disk is

applied, the higher indexing speed will be obtained. The

relationship between indexing time and data size is shown

in Figure 7. It can be seen that the indexing time shows

linear increase with data size. For some other index

mechanism, indexing time usually increases exponentially

with data size. Based on this relationship, the indexing

time for a huge number of Web pages can be predicted

easily.

6. Conclusion

In this paper, a suffix tree was applied to index Chinese

information in the information search system. As a result,

the difficulties of segmentation of Chinese words can be

avoided, and the system is independent of vocabulary

library. The information can be searched not only by key

words but also by any long substrings. The system supports

searches with phrases, sentences, and even a paragraph. A

set of improved algorithms was applied to the system so

that the system can build index and search information fast.

The index module was developed based on Unicode and is

applicable to information in various languages, for

example, Korea and Japanese languages. Based on this

prototype system, a lot of further studies can be done. For

example, if gene data set is input to the prototype system,

frequency of gene sequence can be calculated by using the

system.

Acknowledgments

I would like to thank the Computer Networks and

Distributed Systems Laboratory in Peking University for

providing the Chinese Web Test collection with 100 GB

Web pages (CWT-100g).

References
[1] R. Baeza-Yates and B. Ribeiro-Neto, “Modern

Information Retrieval”, Essex: ACM Press, 1999.

[2] E. M. McCreight, “A Space-economical Suffix Tree

Construction Algorithm”, Journal of the ACM, 23(2):

pp. 262--272, 1976.

[3] Ukkonen E, “On-line Construction of Suffix Trees”,

Algorithmica, 14(3): pp. 249-260, 1995.

[4] http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Tr

ee/Suffix/

[5] http://www.cwirf.org/en_index.html

Lianlong Wu is a student in the

School of Electronic Engineering

and Computer Science, Peking

University, China. He is a student

member of ACM. His research

interesting includes information

retrieval, P2P network, dynamic

programming and network flow

algorithm.

