IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 59

A Novel Information Search Approach for Languages Without Word
Delimiters

Lianlong Wu

School of Electronic Engineering and Computer Science, Peking University, Beijing, China

Summary

In many languages there are no word delimiters among the text.
It is very difficult to index articles in those languages. For
example, Chinese information search engines always encounter a
difficulty in segmentation of Chinese words from an article. In
this paper, a suffix tree based searching approach is proposed to
avoid the difficulty in segmentation of Chinese words. The suffix
tree algorithms are studied and a set of optimal algorithms for
index build are proposed. Based on the algorithms, a prototype of
Chinese information search system is developed and applied to
the Chinese Web Test collection with 100 GB Web pages (CWT-
100g). The experimental results show that the system is capable
of searching Chinese information without segmentation of
Chinese words and the speed of index build is reduced to the
theoretical limitation. part of summary.

Key words:

Search engine, segmentation of Chinese words, suffix tree,
information system.

1. Introduction

An index mechanism is at the core of an information
search system. Inverted list is a technique that is widely
used as an index mechanism [1]. However, there are
constraints on the use of such word-based lists in Chinese
information systems. Since there are no delimiters to
separate Chinese words, it is very difficult to segment
words from a text. If one wants to apply inverted list,
Chinese word segmentation has to be done at first. Firstly,
it takes time to segment Chinese words. This affects the
efficiency of index build. Secondly, the quality of word
segmentation severely affects the quality of index.

In this paper, a full-text index mechanism based on suffix
trees[2], [3] is applied to develop a new system, so the
segmentation of Chinese words is not necessary. Based on
properties of suffix trees, the search for phrases, sentences,
and even more complicated searches, such as a whole
paragraph search, are amazingly feasible. Moreover,
accurate results can be achieved.

As index build is very time consuming, a set of optimal
algorithms are studied in Section 3. The functionalities and
interface of the new search system is described in Section
4. The experimental results are provided in Section 5. A
conclusion is given in Section 6.

2. Problem of Inverted Files

Inverted files have been widely used as an index technique
[1] in information search systems. Inverted files are a text
index composed of a vocabulary and a list of occurrences.
Inverted indices assume that the text can be seen as a
sequence of words. In English, there are spaces to delimit
words, but in Chinese text there is no space between words
to separate them. Therefore, before an index is built, text
information has to be segmented into Chinese words first.
The segmentation of Chinese words not only takes longer
time than indexing itself, but also may make mistakes. For
example, the Chinese phrase ‘developing country’ can be
segmented in two sets of words shown in Figure 1. The
segmentation at the right column is correct. The
segmentation in the left column is wrong. The meaning is
changed to ‘to develop China’.

Chinese vocabulary 1.5%EB 2.BHBZ% 3. PH
The Chinese phrase ',ﬁ.&*‘@&' can be segmented

Segment] :&E ':F' E§ EE :F'E &
1 P 1 3

means |[developing country | to develop China

Correct Wrong

Figure 1. Difficulty of Chinese word segmentation.

3. Optimal Algorithms

3.1 Suffix Trees and Suffix Arrays

A suffix tree[2] is a data structure built over all the suffixes
of a text. Suffix is a string that goes from a position to the
end of the text. Each suffix is thus uniquely identified by
the position. For example, Suffix (8) of ‘mississippi” is
“ippi” as shown in Figure 2 (this example is from [4]).



1JCSNS Integ@tional Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

;0
DL

Figure 2. Suffix Tree of string “mississippi”

The data structure in a suffix tree can be easily applied to
solve many problems on string operations such as those
longest repeated substrings (2), (3), and (4). Any long
substrings can easily be searched in the text. In order to
take these advantages, a full-text index technique based on
suffix trees is applied to develop the new search system.
The system does not need to take time to do the
segmentation of words. Therefore, a full-text index based
on suffix trees can be built much faster than the index
based on inverted files.

As suffix arrays provide the same function as suffix trees
and occupy much less space, suffix arrays are proposed to
implement the search system. A suffix array is simply an
array containing all the pointers to the text suffixes listed
in lexicographical order. For example, the suffix tree of
string “mississippi” can be represented as a suffix array
shown in Figure 3.

The Unicode is applied to represent Chinese characters. A
content extraction module is developed to extract the
contents from the Web pages. The text contents are stored
in a Content File in the Unicode. The suffix array is stored
as integers in the Index Array. The system produces files
with file types as follows:

type Tldx= Integer, // 32Bits Integer
TCot = WideChar; // Unicode Character
var
CotFile : file of TCot; // Content File
IdxFile : file of Tldx, // Index File

B
4

3
4

Suffixes in Suffix Array
lexicographical Index | Value
order: 1 11

11:1 2 8
8: ippi 3 5
5: issippi 4 2
2: ississippi 5 )
1: mississippi

10: pi 6 10
9: ppi 7 9
7: sippi 8 7
4: sissippi 9 4
6: ssippi 10 6
3: ssissippi 11 3

Figure 3. Suffix Array of string “mississippi”

3.2 Suffix Array Building

Array Rank; is used for building the suffix array. Rank;[i]
is the rank number of the Suffix[i] according to the first &
characters of each suffix. Index, is the suffix array
corresponding to the Rank;.
An optimal algorithm for building a suffix array is
proposed as follows:

k< 1;

repeat

Quick Sort (Indexy); //according to first k characters
of each suffix

Count the Ranky, Array;
k<— 2k

until k>n,

Where n is the length of the text, the time complexity for
string comparisons in the Quick Sort is O (1), so the time
complexity of Quick Sort is O(n-logn). The variable k is
increasing exponential; the time complexity of loop is log
n. The total time complexity is O(n-log’n).

For long query strings, it is not necessary to do a complete
sort. The loop can be stopped when k>m, where m is the
maximum length of query strings. This length is enough for
the binary search. The time complexity is reduced to O
(n-logn-logm), where m is a small constant (m=16 or 32, in
most cases), so the time complexity is O(n-logn).



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 61

The Quick Sort can be replaced by Bucket Sort and Radix
Sort. A optimal algorithm is proposed as follows:

k—1;

Bucket Sort;
character only

/faccording  to  the

first

Count Rank; Array;
repeat

Radix Sort (Indexy); //according to first k characters

of each suffix

Count the Ranky, Array,
k—k2;
until k>n;

Both the Bucket Sort and the Radix Sort are linear, so the
total time complexity is reduced to O(n) that is theoretic
lowest bound.

Additionally, an approach for rolling array is applied to
recycle array memory. Scanning a static array is applied to
replace dynamic queue so that the spaces for pointers are
saved. Therefore, a high stable system is obtained. Because
the Web pages are scanned only once to perform the
extraction, the time complexity is O (n).

4. Development of Search System

A prototype of search system is developed in three
separate modules and runs on single PC. First module is
for extraction of content from Web pages. The CotFile is
created. Second module is for index build. The optimal
algorithms are applied in this module to build a suffix tree
based index. A efficient search algorithm is applied to third
module to search the information on the suffix tree based
index. The index building interface is shown in Figure 4.
The content files created by first module are listed in the
left box. Select the content files and click bottom ‘Suffix’.
A suffix tree can be generated. Click bottom ‘Index’. An
index based on suffix tree is built. Click bottom ‘Auto’. An
index is automatically built for the selected content. Based
on this interface, the information of the index can be
shown. For example, a list of positions of URL is shown in
the right box.

Figure 5. Shows searching interface of the prototype
system. Multiple indexes are listed in the left box. The key
words, phrase, or sentence can be input in the box beside
the bottom ‘search’. Results are shown in the middle boxes.
The right box are listed the test collection provided in The
CWT-100g[5].

3 Index Building =4
List |G:\C0ntent'\ |9_U4'| 10901 2229-C| | Laad | | Suffix | Index | | Auto | | Recaord | |http:.-".-"www.wh:-:x.net.-"whxx.-"zyk.-"ll [®] Show [ Loop
FileM ame Size (k) IEIH 0Z ] [15tap LRL Staart  End -~
S9_04110901 2025.cot | * BEEO0 FEFIEEE. EE B0 EE S o~ 1 449
9 041103012108.cat = 3220 f';‘f&——géﬁjﬁ?%ﬂﬁjhg&fﬁﬁ %fx’*ﬂf@ o http: £ A vmans whis. e 450 1163
9_041109012123.cat * 2162 s PR R A ST ER - Be L hittps: /fwnnes i e 1164 | 2009
=+ ’ 1= L] T r

3 0411030121 33.cot = 1981 SIS ETIEEEE IR, JEiEEEEEEE R ArR il = hittp: Adwenar v ne 20010 2930
9 04110301 21 44 cot | = 2204 hittp: A b ne. 2937 3303
9 041103071 2155.cot = 2497 "vds—s%meg‘. htﬁ : - -~ hittp: v whiss. e 3304 2484
9_041109012208.cot_* 2419 R SEEEEL A SErE hittp fvaor whis.ne 3485 | 3957
9 041109012219 cat = 2278 “EAEAEAL BERGP-ELSIESR hittp: Advenar v e 3958 4204

*1172 THERNESR C — ) A, TEE hittp: v whi ne 4805 5748

o .f - = Bl
9 041103071 2233.cot = 3773 wE"HAR 2 BahaEdE b s http: A Avmana whss. e 5747 5736
9 04110901 2246.cot | = 2178 ENE AT R http: A b ne 5797 5847
9_041109012257.cot | * 2195 | M M http: /v whi ne 5848 5292
9 041109012308.cot = 2662 FPoz: 355417 Order: 308050 ~ http: A Avmana whxs. e 5893 E51Z2
9 04110301 231 9.cot | = 3187 Foz: 58417 http: A Avwnan b, e B513 FOoa1
9 041710901 2333.cot = 2567 é.‘fﬂ:ﬁ)\}i*” R F AR B 1SS R A hittp: A vmana b, ne 7092 961
9 041109012345 cat = 2148 Url: http:,/fwww. whex. net/whooe zyk di ancin/ hittp: Advenas whss ne TI62 2389
9_041103012354.cot * 2562 iR A T hitp A fvawor whis.ne 3390 | 8431
9 04110301 2405, cot | = 2557 Pos: 358332 L. e hittp: A vwan b e 8432 8484
9_041109012415.cot_ * 3356 U ASEA T ERERNEES . HTRE " hittpvao whis.ne 3485 | 8988
9 04110901 2429.cot | = 2618 — hittp: A vwan b, ne 8989 9456
9_041109012447.cot = 2725 Get Tewt | 358332 B AR R | hittp vao whis.ne 3457 | 9329
3041109012450 .00t 1802 | [t Inde | [305080 [358417 | hitp://vmvwhisne 9830 10265 | w0
Time: Z.65359=s Time: 0.088390s Speed: 13185ki=

Figure 4. Interface of index build in the prototype system



62

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

Lizt

[G:\Content. 4 041109094702.cot | [ 47LFRFIH | [ search | T || Go | [ Loop [NPHP1-2850 | [ gat

FileM ame ize (k]

3_041103103935.cc 2251
3 041103103942 cc 2868
3 041109103949, cc 2264
3 0471109103955, cc 291
3 041103103956, cc 2663
3_041103104005.cc 2563
3_041103104013.cc 1653
3 _041103104019.cc 1486
3_041103104025.cc 561
4 041109094524 cc 1352
4 041109094531 cc 3349
4_041103034544.cc 1803
4041103034552 cc 2177
4_041103034600.cc 1425
4_041103034607.cc 1980
4 _041103094616.cc 2572
4 041109094625 cc 2327
4 041109094633 cc 2473
4_ 041103034642, cc 1731
4_041103034651.cc 2082
SRR e R 11848

4 049400004700 ful ={ah |

Index

o~ NS ]| Lead [ Show b
= TEMLREARER
AP EITIY VFIE) TUARani - - AR : i & ST T
e e e ! ERTAR S8 K S 4R T & Hu
J1a0s51, who, . m

404379 215. 75, 52. 36 P HEFEIR

HAEER B S REEES
SEE RIS e RSk 2/ s
http:/fwww. an—gzao. comf’bo—‘;krrzzfjijf RIS npS0
qiacsiwho/007. him TEENERRRRE) R
202,/20022 Z18.75.52. 36 Y B FHR S
(R ERIR FIE) TEE - BEN BR
http:/fwww. an-gao. comfbool/zzf i 0

v
MP291 93 http: /Awees, an-gao. comdbook./zz4/q/ =3k shrhFls e 04
giansiwho/ 026 htm o B
NP29 2 265 hitp: /v an-gao.com/back /224l ARER i T s SR BRI
Agiaosifwibo/ 007 htm 1 4 TEETiEFNEEEES:
MF29 3 525 hittp:/fvvow. an-gao.com/book /224 0 9 B BB s e
Agiaosifwho/ 026 htm ) : e .
NP23 4 279 hitps /v, an-gao. com/haok/zz/ji/ : s R i A
sshivianchuanfanbai/008 ki AR flE B EERR
MP29 5 9080 http: / Awvaw. an-gao. caomdbook./z24i = ERTIEE T IR Ifa ki3 1=l

g/giaozidwho /007 him = M IR

AR
EHETEEFIEA RS

W

Time: 4. 57181z 5 Time: 0.05T3Ts Speed: 206493k =
Figure 5. Searching interface in the prototype system
2500
L —— Indexing
2000 '//_4\.—\—_-\' Speed(KB/s)
1500 —— ~— | -=Disk Read
1000 — . Speed(KB/s)
— Disk Write
500 Speed(KB/s)
0

1 2

3

4 5 6 7 8 9 10
Data Size(MB)

Figure 6. Indexing speed vs. hard disk speed

Time 7 5
(=)

2

1.5

1

3 4 5 B T g 9 10
Size of data bhlock {(10Kh)

Figure 7. Indexing time shows linear increase with data size



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 63

5. Experimental Results

The new system was applied to the benchmark data set --
Chinese Web Test collection with 100 GB Web pages
(CWT-100g) proposed by Network Group, Peking
University [5]. The CWT-100g is a collection like TREC.
It is composed of three parts: the documents, the queries,
and relevance judgments. The CWT100g is designated as
the test collection of SEWM-2004 Chinese Web Track.

Based on the benchmark data set, 285 items of
home/named page finding tasks were done. Lists of URL

were obtained corresponding to different tasks respectively.

The total output for the 285 items of tasks is 4395 lines of
URL. The running speed of the system was tested. The
content was extracted from the 100GB Web pages with a
speed of 3MB/s. Index build worked at a speed of 1MB/s.
This is better than the speed of indexing based on inverted
lists. As the fastest word segmentation speed is only
0.6MB/s, the indexing speed for inverted list based system
is less than 0.6MB/s. The speed of indexing is highly
dependent on hard disk read/write speed. The test results
are shown in Figure 6. It can be seen that indexing speed is
very close to hard disk speed. If a high-speed hard disk is
applied, the higher indexing speed will be obtained. The
relationship between indexing time and data size is shown
in Figure 7. It can be seen that the indexing time shows
linear increase with data size. For some other index
mechanism, indexing time usually increases exponentially
with data size. Based on this relationship, the indexing
time for a huge number of Web pages can be predicted
easily.

6. Conclusion

In this paper, a suffix tree was applied to index Chinese
information in the information search system. As a result,
the difficulties of segmentation of Chinese words can be
avoided, and the system is independent of vocabulary
library. The information can be searched not only by key

words but also by any long substrings. The system supports
searches with phrases, sentences, and even a paragraph. A
set of improved algorithms was applied to the system so
that the system can build index and search information fast.
The index module was developed based on Unicode and is
applicable to information in wvarious languages, for
example, Korea and Japanese languages. Based on this
prototype system, a lot of further studies can be done. For
example, if gene data set is input to the prototype system,
frequency of gene sequence can be calculated by using the
system.

Acknowledgments

I would like to thank the Computer Networks and
Distributed Systems Laboratory in Peking University for
providing the Chinese Web Test collection with 100 GB
Web pages (CWT-100g).

References

[1] R. Baeza-Yates and B. Ribeiro-Neto, “Modern
Information Retrieval”, Essex: ACM Press, 1999.

[2] E. M. McCreight, “A Space-economical Suffix Tree
Construction Algorithm”, Journal of the ACM, 23(2):
pp. 262--272, 1976.

[3] Ukkonen E, “On-line Construction of Suffix Trees”,
Algorithmica, 14(3): pp. 249-260, 1995.

[4] http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Tr
ee/Suffix/

[5] http://www.cwirf.org/en_index.html

Lianlong Wu is a student in the
School of Electronic Engineering
and Computer Science, Peking
University, China. He is a student
member of ACM. His research
interesting  includes  information
retrieval, P2P network, dynamic
programming and network flow
algorithm.




