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Summary 
This work presents a new Radial Basis Function/Multilayer 
Perceptron (RBF/MLP) modular structure, training with the 
efficient  Resilient Backpropagation (Rprop) algorithm, that has 
been used for nonlinear device modeling in microwave band. 
The proposed modular configuration employs three or more nets, 
each one with a hidden layer of neurons. This method was 
proposed on the basis of the different characteristics of the two 
networks types: The MLP networks construct global 
approximations to nonlinear input-output mapping, 
consequently they are able to generalize in those regions of the 
input space where little or no training data is available. However, 
RBF networks use exponentially decaying localized 
nonlinearities to construct local approximations to nonlinear 
input-output mapping. Simulations through the proposed neural 
network models for microwave waveguide and patch antenna on 
PBG (Photonic Bandgap) structures and gave answers in 
excellent agreement with accurate results (measured or 
simulated) available in the literature.  
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1. Introduction 

Since the beginning of the 1990s, the artificial neural 
networks have been used as a flexible numerical tool, 
which are efficient and accurate for the RF/microwave 
device/circuit modeling. The neural models, which are 
trained by means of precise data (obtained through 
measurements or by electromagnetic simulation), are used 
in the design/optimization phase of  devices and circuits, 
supplying fast and accurate answers. 

In the CAD (Computer Aided-Design) applications 
related to microwave engineering and optical systems, the 
use of artificial neural networks as nonlinear models 
becomes very common, [1]. Recent publications, in the 
literature about this subject, indicate that: the use of 
previously established knowledge in the microwave area 
(as empirical models) in conjunction with the neural 
networks, results in a major reliability of the resulting 
hybrid  model – with a major ability to learn nonlinear 
input-output mappings, as well as to generalize answers, 
when new values of the input are presented. Another 
important advantage is the data amount reduction 
necessary for the neural networks training used. Some  
modeling techniques have been proposed for the use with 
empirical models and neural networks, such as: Source 
Difference Method, [2], PKI (Prior Knowledge Input),  
 

[3], KBNN (Knowledge Based Neural Network), [4] and   
SM-ANN (Space Mapping Artificial Neural Network), 
[5].  

A disadvantage in the hybrid models use is the need 
of an empirical model. When this becomes a limitation, 
for example, when a new component does not have an 
empirical model or an equivalent circuit, the EM-ANN 
(Electromagnetic - Artificial Neural Network), [1] 
conventional technique, is usually used. In this case, a 
simple neural network, MLP or RBF, is trained directly 
through EM/physics data which represent the functioning 
nonlinear model of the analyzed component. 

The EM-ANN technique has been used in the neural 
network training as models of a  microwave active and 
passive components variety, which presents a nonlinear 
behavior considered smooth, for example: transistors, 
discontinuity in microstrip lines and passive components, 
[1].   

However, the EM-ANN technique presents some 
disadvantages which limit its application. For instance, as 
all the information is obtained through the ANN data 
training, a major amount of data is necessary to maintain 
the model accuracy. The increase of the  training dataset 
size in a complex learning problem may overload a neural 
network, making its dimension and training difficult. On 
the other hand, even with a sufficient amount of training 
data, the reliability of the resulting neural models, when 
used for extrapolation, is not guaranteed, and, in many 
cases, it is very poor, [1]. 

The majority of the problems found in the EM-ANN 
technique use can be handled through the neural networks 
combination in modular structures which increase the 
training efficiency and the resulting neural model 
accuracy, [6], [7]. This concept is based on the principle 
divide and conquer in which a nonlinear modeling 
complex problem is divided in smaller problems, which 
are solved among the neural networks of the modular 
structure.   

In this article an RBF/MLP modular structure is 
proposed through the combination of two expert RBF 
networks and an output MLP network. The development 
of models through the RBF/MLF modular structure is 
described in section 2. The applications of these neural 
models for microwaves devices with PBG periodic 
structures are described in section 3. A comparative study 
of the implemented models reliability through the MLP, 
RBF neural networks and RBF/MLP modular one is also 
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included. Section 4 gathers the conclusions of this 
research.   

2. Methodology through the RBF/MLP 
modular neural network 

The proposed modular structure uses three feed forward 
neural networks, each one with a hidden neuron layer: 
two expert networks of the RBF kind and an output 
network of the MLP kind. Figure 1 presents a diagram in 
RBF/MLP modular structure blocks. This choice was 
motivated by the individual characteristics of the MLP 
and RBF networks, when used for the function 
approximation: the RBF network performs a local 
approach, serving as an expert network, since it grasps the 
models’ nonlinearities; the MLP network performs a 
global approach and acts as an output network, since it 
favours the generalization capacity of the modular 
structure. The parameters of the model  input, designed by 
‘initial value’, ‘final value’ and ‘intermediary value’ are 
related to the interest region defined by the training data, 
Fig. 2. In order to receive additional information supplied 
by the pre-trained expert RBF networks, the  output MLP 
network has two extra inputs, Fig. 1. 

 

 

Fig. 1  The proposed modular network configuration. 

The modeling problem mentioned is established by 
means of a normalized set of  measured/simulated data, 
cited by S = {x(n), d(n)}, in that, 1 ≤ n ≤ N, and N is the 
total number of examples in the S training dataset. The x 
vector gathers the parameters of the model input (for 
instance, the gate length/width of a field effect transistor 
(FET); the length and the radius of a cylindrical antenna). 
The d desired answer describes the device EM/physics 
behavior under consideration (for instance, an FET drain 
current; the input impedance of a cylindrical antenna). 
The EM/physics theoretical  relation between x and d is 
given by, 

 
)(xfd =                                                            (1)

  
where, f represents the input-output mapping, which can 
be multidimensional and highly nonlinear. The aim is to 
develop a fast and accurate neural model for the f relation. 
The neural model is defined through the relation, 

w)(x,yy =                                                           (2) 
 
where, w represents the free parameters (or weights) of 
the neural network.  

The use of the RBF/MLP modular structure enables 
the division of a modeling problem in smaller and easier 
problems to be solved. To describe this division, the 
interest region is taken into account defined through the 
training data for a hypothetical device, Fig. 2. The data 
referred to the ‘initial value’ and the ‘final value’ 
parameters are used in the training of #1 and #2  expert 
RBF networks, respectively;  the training of the MLP 
output  network is done with all the training data, 
including the ‘intermediary values’ available. 

 
 

 

Fig. 2  Interest region defined by the training data. 

In the MLP and RBF network supervised training 
with the backpropagation algorithm [1], the adjustment of 
the free parameters is carried out through the steepest 
descent method, 

 
( ))1()1()( −∇η−−= nEnn www                  (3) 

 
where, ∇ is the gradient operator; η is a training 
parameter, called learning rate, that controls the 
adjustments applied to the ANN’s free parameters; and E 
is the square error, defined by, 
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in that, e(n) is the instantaneous error between the desired 
answer and the neural network output. The training is 
carried out until the mean square error (MSE) reaches a 
minimum pre-established value. The MSE is a parameter 
that measures the training performance, being defined by, 
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where, t is an index for the number of training epochs. An 
epoch is counted when all the training examples are 
presented to the neural network. 

Due to the training slowness with the 
backpropagation algorithm, in this work, the use of the 
Rprop algorithm (using the standard training parameters) 
was chosen. The Rprop algorithm, proposed by 
Riedmiller and Braun [8], belongs to the algorithm family 
derived from backpropagation, which satisfies Jacobs’ 
heuristics for the training acceleration, [9]. In an ANN 
training using the Rprop, just the gradient signs of the 
error function, Eq. (3), are taken into account. The 
negative influence elimination of the gradient amplitudes, 
as well as the use of adaptive and individual learning rates 
for each ANN free parameters, awards convergence speed 
and robustness as regards the choice of the training 
parameters of the Rprop algorithm, [8].   

3. Models of Microwave Devices with PBG 
Periodic Structures 

3.1 UC-PBG rectangular waveguide 

The UC-PBG (uniplanar compact – photonic bandgap) 
rectangular waveguide, proposed in [10] designed for 
functioning in the X band, has lateral walls with UC-PBG 
cell periodic structures, Fig. 3(a), which in the resonant 
frequency act as magnetic surfaces, [10]. The electric 
field intensity as a function of the frequency and the 
position inside an UC-PBG rectangular waveguide was 
modeled through the RBF/MLP modular structure. The 
waveguide L measure is worth 22.86 mm and d measures 
21.59 mm, Fig. 3(b). The UC-PBG metallic walls were 
built under a substrate of 0.635 mm thickness,  with a 
dielectric constant, εr = 10.2. 

In the neural models training for the UC-PBG 
waveguide, two input parameters were taken into 
consideration: the operation frequency, f, and the 
measurement position of the electric field, x. The 
measured values in the electric field make up the desired 
answers for the neural models. The training data were 
obtained through measurements presented in [10]. The 
information related to the RBF/MLP modular network 
training is presented in Table 1. 

Figure 4 shows the approximations made by the 
expert RBF networks for the measured values of the 
electric field concerning the frequency, in the ‘initial 
value’ positions (x = 0.25) and of ‘final value’ (x = l) of 
the UC-PBG waveguide. Figure 5 presents the answers of 
the RBF/MLP modular model developed. A good 
agreement between this model’s answers and the 
measured data was verified, with an excellent 
approximation capacity and generalization around          
9.6 – 11 GHz. 
 

 

Fig. 3  UC-PBG  Rectangular waveguide: (a) General view;                     
(b) Transversal section. 

 

Table 1: Information related to the RBF/MLP modular neural training 
for the UC-PBG waveguide. 

Neural Network 
 
Input parameter: 
# hidden neurons:
# training data: 
final MSE: 
# training epochs:

Expert 1 
RBF 
x = 0.25 
10 
10 
2.06E-6 
10000 

Expert 2 
RBF 
x = 1 
10 
10 
1.13E-5 
10000 

Output 
MLP 
x=[0.25  0.5  1] 
10 
40 
9.32E-5 
10000 

 
 
 
 
 

 

Fig. 4  Answers from the expert RBF  networks for x = 0.25 and x = 1. 
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Fig. 5  Model answers through the RBF/MLP modular structure. 

Aiming at verifying the reliability of the 
implemented models for the UC-PBG waveguide, through 
the MLP, RBF neural networks, and RBF/MLP modular 
ones, the number of hidden neurons in the single MLP 
and RBF networks and the MLP output network of the 
modular structure was noticed. This influences the 
generalization capacity of the resulting neural models. For 
each neural model, the mean square error was computed 
for a new test dataset (which was not used during the 
neural network training), corresponding to the position x 
= 0.75. Figure 6 presents the obtained results. It is noticed 
that, for the same number of hidden neurons, the 
RBF/MLP modular network has a major generalization 
capacity, showing an MSE smaller than the ones obtained 
with the use of the single MLP or RBF networks. 

 

 

Fig. 6  Generalization capacity test of the  MLP, RBF neural models and 
RBF/MLP modular for the UC-PBG waveguide regarding the number of 

hidden neurons. 

3.2 Patch antenna with PBG substrate 

One of the biggest disadvantages of the patch antennas is 
the loss due to the surface waves. The use of a PBG 
substrate enables the reduction of these losses. In this 
example, an RBF/MLP modular structure was used to 
shape the return losses in patch antennas with PBG 
substrate, through the mapping of the scattering parameter 

|S11| in function of the PBG substrate height and 
frequency.   

Figure 7 illustrates a patch antenna with PBG 
substrate, whose analysis was made through the FDTD 
(Finite Difference Time Domain) method, [11]. This 
method is used to directly solve Maxwell’s equations in 
time domain. Although it is a rigorous electromagnetic 
method, the FDTD presents a high computational cost, 
that, in general, its use in CAD applications becomes 
prohibitive. 

As indicated in Fig. 7, the PBG substrate is formed 
by dielectric blocks, εr = 10.2; for the substrate remain,         
εr = 2.2. The rectangular patch has dimensions of        
12.45 mm x 16 mm; the feeding line presents a width of 
2.46 mm and a length of 8 mm, [11]. 

In the RBF/MLP modular model elaboration for the 
PBG substrate patch, two input parameters were taken 
into consideration: the frequency, f, in the 2.5-20 GHz 
band, and the PBG substrate height, h, between 0.794 mm 
and 1.588 mm. The training data were obtained by means 
of electromagnetic simulation with use of the FDTD 
method, [11]. Table 2 presents the relative information to 
the modular structure RBF/MLP training. 

 
 

 

Fig. 7  Patch antenna with PBG substrate. 

Table 2: Information related to the RBF/MLP modular neural training 
for the patch antenna with PBG substrate. 

Neural Network 
 
Input parameter: 
 
# hidden neurons: 
# training data: 
final MSE: 
# training epochs: 

Expert 1 
RBF 
h = 0.794  
 
15 
47 
1.87E-4 
10000 

Expert 2 
RBF 
h = 1.588 
 
15 
46 
1.47E-4 
10000 

Output 
MLP 
h =[0.794 
0.953  1.588]
12 
139 
2.06E-4 
30000 

    
 
The approximations made by the expert RBF 

networks for the simulation results through FDTD method, 
referring to the heights of PBG substrate,             h = 
0.794 mm and h = 1.588 mm, are illustrated in Fig. 8.  
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Fig. 8 Answers from the expert RBF networks 

Fig. 9 presents the approximation performed by the 
RBF/MLP modular structure for the corresponding 
training data h = 0.953 mm. The results demonstrate the 
excellent capacity of the neural model approximation, 
even for a highly nonlinear mapping. 

 

 

Fig. 9.  Model answer through the RBF/MLP modular structure for            
h = 0.953 mm. 

Figure 10 presents the answer of the RBF/MLP 
modular structure for the test data, correspondent to           
h = 1.429 mm. The good agreement between the neural 
model answers and the simulation results through FDTD 
method, demonstrates a good generalization capacity of 
the model through the RBF/MLP modular structure, 
mainly in the 6-14 GHz band.  

In order to verify the trustworthiness of the models 
implemented for the patch with PBG substrate, through 
the  MLP, RBF neural networks and  RBF/MLP modular, 
it was verified as the number of hidden neurons of single 
MLP and RBF networks, and of the output MLP network 
of modular structure influences the  generalization 
capacity of the resultant neural models. For each neural 
model, the MSE test was computed for the height of PBG 
substrate, h = 1.429 mm. Fig. 11 presents the obtained 
results. In relation to the models through  MLP and RBF 
networks, it is verified that  RBF/MLP modular model  
learning with consistency and presents a major 
generalization capacity, practically independent of the 
number of hidden neurons used. 

 

Fig. 10.  Model answer through the RBF/MLP modular structure for          
h = 1.429 mm. 

 

 Fig. 11  Generalization capacity test of the  MLP, RBF neural models 
and RBF/MLP modular for the patch antenna with PBG substrate 

regarding the number of hidden neurons. 

4. Conclusions 

In this paper a new  RBF/MLP modular  structure of 
neural networks, trained through the Rprop efficient 
algorithm, and developed specially for use in modeling 
applications, was proposed. In particular, an UC-PBG 
rectangular waveguide and a patch antenna with PBG 
substrate were used. 

The RBF/MLP modular structure modules were 
organized in order to take advantage of the local and 
global approximation characteristics presented by the 
RBF and MLP neural networks, respectively. This kind of 
organization in conjunction with the modeling problem 
division, makes easier the expert RBF networks training 
and the output MLP network of modular structure. The 
neural models simulation results implemented, indicate a 
major learning  consistency, or  generalization, and a 
major reliability of the models developed through the 
RBF/MLP modular structure in relation to the ones 
developed through MLP or RBF single structures. 
Besides, the RBF/MLP structure, directly trained by 
means of measured/simulated data through the EM-ANN 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
    
 

 

86 

 

technique, is very flexible, and it still can be applied as 
models, mainly when new components/technologies for 
microwaves circuits arise. 
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