
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

93

Deriving Differential Auxiliary Information for Self-maintainable
Views

Wookey Lee, Myung Keun Shin*

Sungkyul University, Anyang 8 dong, Kyongkido, Korea
*Graduate School of Management, KAIST, Dongdaemun-gu, Seoul 130-012, Korea

Summary
We present an innovative method of deriving an auxiliary view
from the running databases. During view maintenance, our
method minimized to accesses base relations as well as not to re-
execute the view definition again. Using this approach, long
transactions from the materialized view maintenance
intermingled with database transactions can be committed
without fear of abort. We use a formal algebraic approach and
develop relevant theorems and proofs. For comparison purposes,
four corresponding methods are compared: the bottom line base
relation method (Base), incremental base relation method
(BaseInc), auxiliary view method (AV), and differential file
method (DF). We also consider the handicapped cost of storing
information as we examine the worst as well as the best case
scenarios of our method. Experimental analyses show that the
DF method is superior to the other methods in a large data
environment of up to 10 Terabyte tuples of relations. The results
show that compared with the other methods, the DF method can
considerably reduce the number of IO’s. Our most important
finding is that the DF method can successfully update the
aggregate SPJ views (practically) self-maintainable in the tuple
level as well as (theoretically) is independent of the DBMS.
Key words:
Referential Integrity, View Maintenance, Differential Files, Self-
maintainability.

1. Introduction

Views are materialized to provide fast access to
information that is usually integrated from several
distributed data sources. One of the critical weaknesses of
materialized views (MV) is that the views are liable to
become outdated or desynchronized with the source data
as changes are made to the source data upon which the
views are defined. In order to guarantee the correctness (or
currency) of the MV, all changes to source data have to be
applied to the views. Many studies have been extensively
undertaken on what is called the view maintenance
problem or the materialized view update [13, 14, 20].

In response to source changes, a view can be either
recomputed from the source data or maintained

incrementally without accessing the source data (called
self-maintenance).

We propose an innovative view update algorithm that
does not access base relations. We use a differential file
and an Auxiliary Integrated File to fully maintain
materialized views without accessing base relations. The
DF is the changed portion of a base relation, which is
sometimes called the delta of a base relation. The AIF is
defined as auxiliary information derived from a base
relation through the referential integrity constraints
between relevant base relations.

The rest of the paper is organized as follows. Section
2 discusses the related works. Section 3 introduces a
formal approach to materialized view maintenance. The
formal algebra is in section 4. We present cost functions
with the parameters and performance analyses in section 5,
and section 6 concludes our paper.

2. Related Works

Self-maintenance is a notion that can be defined as
maintaining views by materializing supplementary data so
that the view can be maintained without (or at least mostly
without) accessing base relations. The notion was
originally introduced by Blakeley [2]. The main idea is
based on a Boolean expression with sufficient and
necessary conditions on the view definition for
autonomously computable updates that can be called self-
maintainable views. Blakeley’s algorithm is a special case
of the counting algorithm applied to select-project-join
expressions (no negation, aggregation, or recursion).
Theodoratos et al. [20] summarize issues extensively
related to self-maintainability, and suggest a view
selection approach based on a DAG (Please write out the
whole word DAG then put abbreviation in parentheses)
method. Several notable articles that deal with self-
maintenance aim to develop algorithms related to the
integration and the maintenance of information extracted
from heterogeneous and autonomous sources [11, 18].

Algebraic approaches for maintaining materialized
views are discussed in [2, 19, 7, 11, 9, 20]. Excluding

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

94

conventional database approaches, [2], Quian &
Widerhold [19] present an algorithm for incremental view
maintenance based on finite differencing techniques (later
corrected in [8]). The algorithm derives the minimal
incremental changes in an arbitrary relational expression
for a view modification by replacing the original relational
algebraic expression with an efficient and incremental re-
computation. They considered two types of operations:
insertions and deletions. However, the algorithm uses
source relations and thus it lacks the self-maintenance
notion. Griffin & Libkin in [7] extend the techniques in
[19]. [11] proposes to include functional dependencies. [9]
integrates outer joins. These references do not consider the
concepts of referential integrity for the maintenance of
materialized views. In this paper, some of the common
notations (mainly from [19], [7], and [8]) are extended to
present some propagation rules for materialized views
based on referential integrity constraints.

There has been some research that considers the
database system as a rule system [6, 5]. Widom et al. [5]
(enhanced from [6]) present a comprehensive survey on
the roles played in materialized views. In that paper, the
rule is classified as a constraint or a trigger in that the
constraint is descriptive while the trigger is procedural.
(However, in this paper we use the term ‘constraint’
interchangeably with ‘rule trigger.’) Though not directly
related, there are several works [16, 10, 11] corresponding
to this method that have the potential to extend referential
integrity constraints to the maintenance of database views.
When a referential integrity rule invokes cascade among
database rules in the DBMS, [16] presents the run time
execution problem and the safeness condition respectively.
[15] investigates the view maintenance problem with
inclusion dependency but no referential integrity rules.

Entity and referential integrity rules are the most
fundamental constraints that any relational database
should satisfy [15]. The entity integrity rule starts from the
selection of a candidate key and referential integrity starts
from the selection of a foreign key. Codd’s definition of
referential integrity is ‘No component of a foreign key is
allowed to have an I-maked value,’ where an I-marked
value means a null value of the type ‘value does not exist,’
or ‘ value at present exists but is unknown,’ or ‘value is
inapplicable’.

Database rules, including referential integrity
constraints, are utilized in maintaining materialized views
in several articles such as [17, 18]. Quass et al. [18] and
Mohania et al. [17] use the referential integrity constraint
to determine whether a base relation is participating in the
views, and [18] extends the works of [19] and [7] to
transform change propagation equations into more
efficient ones. They use an auxiliary view (in [17]
‘auxiliary relation’, in [12] ‘auxiliary data’, and
‘complements’ in [14, 15]) in order to maintain a select-

project-join (SPJ) view without accessing base relations at
the sources. However, the validity and the performance of
these methods are strongly dependent upon query types, as
long as the view conditions can screen the corresponding
base relation. This is discussed in the motivational
examples in Section 2.

In applying referential integrity to view maintenance,
the work of Quass et al. [18] (called, ‘AV method’ in this
paper) is slightly related to our approach, but there are
several differences. While Quass et al. assume that the
structure of the referential integrity conditions should be a
tree; our approach does not assume it. Thus in the AV
method, any kind of cycles in a database schema,
including self-join, cannot be supported. For example, a
transitive closure algorithm [18] cannot support the
schema in Section 2. Another difference is that it can be
said that the AV method uses the rule in a macroscopic
way (i.e., using the rule to find a corresponding ‘relation’),
but our method uses it in a microscopic way (i.e., using it
to find a corresponding ‘tuple’ in the relation). This is one
of the innovative features of our approach that
differentiates it from others.

3. Algebraic Representation

It is assumed that the materialized view in this paper
is not from independent relations, but from referentially
integrated relations. Thus, a relation has an attribute called
a foreign key such that it has a referential integrity
condition with the key of some relation. (We will call it a
RI condition or a RI constraint.) In that case, one relation
is called a referenced relation (e.g., DEPT) and the other a
referencing relation (e.g., EMP). The referencing relation
can be called a fact table and the referenced relation a
dimension table. From this point of view, they are called a
star schema or a snowflake schema in the materialized
environment. Let s represent a referencing relation and r
be a referenced relation respectively throughout this
Section. The condition of the RI is typically assumed to
have one of the representative RI conditions such as
restrict, cascade, and nullify [16]. We have a focus on the
RI condition that can also be extended to a modified form
or a nested form.

We explain the view updates in terms of the changes
to base relations and how these changes affect other
relations. They are classified as follows: the insertion in
the referenced relation case, the deletion in the referenced
relation case, the deletion in the referencing relation case,
and the insertion in the referencing relation case, including
these changes with base relations. The orders are not
significant. The last case is the most complicated one to
solve. Thus a new schema called an AIF in terms of
referential integrity conditions is presented.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

95

The following notations and algebraic expressions on
the data base schema Ri are introduced:

Ri := Ø empty set
 |σp(r) selection with condition P
 |∏A(r) projection over an attribute A
 |r⊕r disjoint union
 |r⊖r contained difference
 |r⋈r natural join

Definition 1 Let a tuple t defined on a relation ri for i ∈ ψ
be represented as t(ri). An inserted tuple △t(ri) and a
deleted tuple ▽t(ri) belong to the insertion △ri and the
deletion ▽ri of the relation ri respectively. It can be
specified by a key and by a foreign key (fk) as t(ri.key)and
t(ri.fk) respectively. �

Definition 2 A differential file DF(ri) of a base relation ri
={key, ai1, ai2, … , aim} can be defined as {key, ai1, ai2, … ,
aim , operation, sysdate} for i, m ∈ ψ, where operation is
an operation type having two possible values i.e. ‘insert’,
‘delete’. A modification is a deletion and an insertion in
series having the same sysdate. The sysdate is the
timestamp recorded by a committed transaction to the base
relation ri. Then the differential file consists of insertions
and deletions represented algebraically as DF(ri) = △ri
⊖▽ri . �

Example 4.1 Let’s consider the instance of relations Pt,
Su, and Sp defined as those in Section 2. The
corresponding differential files of Pt and of Sp (i.e.,
DF(Pt) and DF(Sp)) are respectively as shown below.
There are no changes in the other tables. The first tuple of
DF(Pt), say {P4, printer, red, 300, delete, 10/08/06},
represents that a ‘printer’ with price ‘300’ supplied by the
manufacturer ‘red’ was deleted at time ‘10/08/06’.
Similarly, in the differential file of Sp DF(Sp), we can tell
that the first and the second tuples indicate that the product
‘P1’ supplied by ‘S1’ was modified at time ‘05/08/06’.
Then a product ‘P6’ supplied by ‘S4’ was inserted.

Table 4.1: Differential file DF(Sp)

Table 4.2: Differential file DF(Pt)
pk pn mfr price operation sysdate
P4 printer red 300 delete 10/08/06

Corollary 3 A new base relation (after image) ri

new
 can be

expressed as the base relation (old image) ri and its DF(ri)
as follows: ri

new = ri ⊕DF(ri) = ri ⊕(△ri ⊖▽ri)= (ri
⊕△ri⊖▽ri) for i ∈ ψ □

Notice that the schema adjustment between a base relation
and the corresponding DF is assumed to be exchangeable
in this paper. Since the DF has two more columns (i.e.,
operation and sysdate) than the corresponding base
relations. For simplicity, we do not create an additional
operator to adjust between them. In this paper, we follow
the notation used in previous research [7, 8, 18, 19].

Example 4.2 The new relation Ptnew is derived from Pt (in
example 2.1) and with DF(Pt) in Table 4.1 as:
Pt new = Pt ⊕ DF(Pt) = {(P1, computer, red, 2000), (P6,
DVD, yellow, 200), (P7, computer, green, 3000)}

Definition 4 A relation ri satisfies a RI condition, which
can be represented as: ri

RI•[condition], where the superscripted
[condition] can optionally represent a RI condition detail.
□

For example, an insertion in s due to an RI condition of a
deletion in a relation r can be represented: △sRI•[▽r].

Example 4.3 Note that there is an RI condition between
the relations Cu and Or in section 2. If the RI condition is
‘On delete Cascade’ and a deletion in Cu (e.g., ‘C2’) may
affect the relation Or, then the corresponding tuple in Or,
(e.g, O2, C2, 5, 2500) should also be deleted. It can be
represented as follows:
▽Or RI•[▽Cu] ={(O2, C2, 5, 2500, delete, 05/08/06)}

A change in a relation can cause other changes in turn due
to the referential integrity constraints. The nested changes
of base relation can be represented in general as follows:
In that case, the changes can be represented as a nested
form in terms of RI conditions.

Corollary 5 A change in the referenced relation (r1) can
generate a change due to the RI condition to the
corresponding referencing relation (r2) that results, in turn,
in a change recursively to rn and finally it may effect a
change in the relation s. The generalized deletion and
insertion due to RI condition in s can be represented
respectively:

▽s RI• [▽rn • • •[▽r2•[▽r1]]]
and △sRI• [▽rn • • •[▽r2•[▽r1]]] □

Example 4.4 Note that there also is an RI condition
between the relations Or and Sp in section 2. In addition to
the above example, a deletion in Or will also affect
relation Sp, thus the corresponding tuple, i.e., (P1, S4, O2,

pk sk ok qty sprice operation sysdate
P1
P1
P6

S1
S1
S4

O1
O1
O2

10
20
40

2500
2800
3000

delete
insert
insert

05/08/06
05/08/06
08/08/06

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

96

5, 2500) should also be deleted. Therefore in order to
(successfully) delete a tuple in Cu, two more deletes in Or
and in Sp are needed: ▽SpRI•[▽Or •[▽Cu]] ={(P1, S4, O2, 5,
2500, delete, 05/08/06)}

 Note that by the RI conditions, the cascading RI
representations of a deletion and an insertion are one of
the DF tuples of the corresponding relation:

▽sRI• [▽rn • • •[▽r2•[▽r1]]] ⊆ ▽s
and △sRI• [▽rn • • •[▽r2•[▽r1]]] ⊆ △s

For example, there are the two more deletes in the above
examples (4.3 and 4.4) that did not originate from their
own transactions, the deleted tuples are included among
the DFs of their own, i.e., DF(Or) and DF(Sp)
respectively.

Theorem 6
△rRI•[▽s] = ▽rRI•[▽s] = △rRI•[△s] = ▽rRI• [△s] = ∅
Proof. If there is no change in a referencing relation s, i.e.,
△s = ▽s = ∅, then the above equations trivially hold. If
there exists an insert transaction in s, then it will be committed
if the relevant key exists in the referenced relation r, unless the
transaction will be aborted. In the two cases, there is no
change due to RI in the relation r. If there is a delete
transaction in s, then the transaction commits without an
inquiry to r. Therefore no changes happen in r due to the RI
by the changes of s. □

From the above theorem, we can get the following trivial
result.
Corollary 7 ▽s ⋈ r ▽s □

Theorem 8 A deletion in r triggers a change in s by the RI
condition. Then the following rule holds:

(s –(△sRI•[▽r] ⊖▽sRI•[▽r])) ⋈ ▽r ∅
Proof: If there is no deletion in the referenced relation r, then
the above holds. Suppose that there exists a deletion but there
exists no insertion by RI or no deletion by RI in a
referencing relation s. Further suppose that there exist some
tuples in the referencing relation corresponding to the deleted
tuple of the referenced relation. This is a referential integrity
violation. It contradicts the above assumption. Thus, as long
as there remains a foreign key in a referencing relation, there
will be two cases with respect to the RI condition: (1) If the RI
condition is ‘restrict’, then the deletion in the referenced
relation cannot be committed, (which means ▽r = ∅). (2) If
the RI condition is ‘cascade’ or ‘nullify’, then the changes
caused by the RI will occur in the referencing relation s (say,
△sRI ⊕▽sRI). This represents that the above rule holds. �

Example 4.4 (Or ⊖ ▽Or RI•[▽Cu]) ⋈ ▽Cu =∅

Theorem 9 s ⋈ △r = ∅
Proof: For some tuples t1 such that t1(△r.key) = s.fk, if ∃t
such as ∃t2, t2(△r.key) = t1(r.key), this violates uniqueness of
key. �

Theorem 10 s ⋈ ▽r ▽s⋈ ▽r
Proof: s⋈▽r → (snew ⊕ △s ⊖ ▽s)⋈ ▽r →
(snew ⋈▽r) ⊕ (△s ⋈▽r) ⊖ (▽s⋈▽r)
→ ▽s⋈ ▽r The proof is based on Corollary 3, and
Theorem 4.2 respectively. �

Therefore, for all the RI conditions, the join of the deleted
tuple(s) (i.e., ▽r) in the referenced relation with the tuples in
referencing relation s should be Null or equivalent to the
deltas.

Example 4.5 Suppose that a product ‘P6’ is not to be
deployed in the previous example, i.e., a delete transaction
for the tuple {P6, DVD, yellow, 200} is issued at time
01/09/06. The transaction will then be executed in terms of
the RI conditions:
1) If the RI condition is ‘On delete restrict’ on the key of Pt,

i.e., t(▽Pt)RI•[‘restrict’], the transaction will be aborted
due to RI in Sp.

2) If the RI condition is ‘On delete cascade’ on the key of
Pt, i.e., t(▽Pt)RI•[‘cascade’], it will delete a tuple in Sp (i.e.
{P6, S1, O3, 20, 250} will be deleted).

3) If the RI condition is ‘On delete nullify’ on the key of Pt,
i.e., t(▽Pt) RI•[‘Nullify’], it will modify another tuple in
Sp as {P6, S1, O3, 20, 250, delete, 01/09/06} and
{NULL, S1, O3, 20, 250, insert, 01/09/06}are
appended to DF(Sp) in series.

Note that the last case (‘On delete nullify’) leaves
something (the nullified tuple) in the base relation (Sp).
However, the tuple left behind is null-valued, and thus, the
join yields nothing.

If there is an insertion in the referencing relation,
there exists a sort of integrity function of RI check among
referential integrity constraints to acknowledge the
insertion to the referenced relation. The RI check can be
found between the foreign key of the referencing relation
(say, s.fk) and the key of the referenced relation (say,
r.key).

Definition 11 An RI check condition is a Boolean function
that there is an insertion transaction in the referencing
relation s, and there follows an RI check to see if the
foreign key in s corresponds to the key of the referenced
relation r. The RI check condition is:

t1(△s.fk RI•[check]) is true, if ∃t2, t1(△s.fk) = t2(r.key), o/w, false �

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

97

Lemma 12 An insert transaction in the referencing
relation is committed, the RI check condition
corresponding to the insertion is true.
Proof: Suppose the RI check condition is false but an
insertion transaction in the referencing relation is committed.
The RI check condition is false, △s.fk ≠ r.key. It violates fk
integrity. �

Example 4.6 There are two RI constraints in the relation
Cu. Thus the RI check is fired to check the relevance of
the insertion in Cu. When a tuple {C3, BC, R&D, C2} is
inserted in Cu, and then the relevant two RI constraints are
fired. One is to acknowledge Cu.{BC} = Ar.{BC}, and
Cu.{C2} = Cu.{C2}. If the results of both RI checks are
true, the insertion transaction will be committed. If any of
the two RI checks are not true, the transaction will be aborted.
�

Example 4.8 If there is a committed insertion {P6, S4, O3,
10, 350} in Sp, then three RI check tuples are appended
(one each) to the RI differential file of Pt, that of Su, and
that of Or. A tuple {P6, DVD, yellow, 200} is appended
to AIF called AIF(Pt), a tuple {S4, A, CA} to AIF(Su) and
a tuple {O3, C1, 30, 300} to AIF(Or). �

The descriptions of the equations are the propagation
rules slightly modified from the rules based on [19, 7, 8].

5. View Maintenance

The view self-maintainability (SM) is one of the
important considerations in this paper, defined as
maintaining a view in response to changes of database
relations using only the view and the differential files to
the base relations, without accessing the base relations.
The SP view satisfies SM [9] (we will show this
algebraically in the next section), but join views might
need some auxiliary information from other relations [18].
In order to achieve SM of views, auxiliary relations might
be prepared before executing view expressions. In other
words, with this, auxiliary views can satisfy SM in view
execution time. The auxiliary view [18], auxiliary relation
[17], auxiliary data [12], and complements [15] all need
access to base relations in making their auxiliary
information.

A view is a mapping between a query and data. If a
join query is issued, then the join condition is mapped to
RI constraints and is substituted with the data. Notice that
the data is assumed to synchronize via corresponding DFs
of database relations. Duplicated tuples in DFs should be
eliminated by some algorithm that all the tuples are
removed except the first and the last. The AIF is derived
from the corresponding base relation, so the tuples of AIF

may be duplicated with tuples within the AIF as well as
those of DF of the corresponding relation. Thus the
duplicated tuples should be eliminated. Notice that if the
delta is refreshed immediately, there will be no duplicated
tuples (within the AIF). In general, the duplicated tuples
should be minimized in any view update policy (e.g.,
immediate update, periodic update, and deferred update,
etc).
 The schema of AIF (ri) of a base relation ri ={key, ai1,
ai2, … , aim} can be defined as {key, ai1, ai2, … , aim, sysdate}
for i, m ∈ ψ, where sysdate is the timestamp recorded by
the RI check condition if answered true. It is assumed that
the timestamp recorded by the RI check condition
answered is the same as the relevant committed transaction
to the base relation ri. So the AIF is appended by the order
of sysdate.
 Given an RI (e.g., s.fk ⊆ ri.key) and view refresh time,
the algorithm for duplicate elimination on the AIF (ri) is:
at first within the AIF (ri) and then DF (ri).

Algorithm 1: Duplicate Elimination of AIF
Input:
• DF(ri) for i ∈ ψ
Output: consistent DF(r)
Procedural Steps:
1. t1 last refresh time; t2 current refresh time; s

m
2. (Duplicate elimination within AIF) Get next tuple of

AIF(ri) with t1 < AIF(ri).sysdate ≤ t2.
If no tuple found, go to Step 6.

3. Delete AIF(ri).key from the hash index if there exists.
Go to Step 2.
Else continue.

4. (Duplicate elimination with DF) Get next tuple of
DF(ri) with t1 < DF(ri).sysdate ≤ t2.

If no tuple found, go to Step 6.
5. Delete AIF(ri).key from the hash index if there exists.

Go to Step 4.
Else continue.

6. If s = 1, then stop.
Else do: s s – 1; Go to Step 2.

In this paper, it is assumed that the AIF has index on the
candidate key. It is not a hard assumption, for the
duplicated tuples in AIF can easily be deleted, even if
there is no index. The index may be a hash index or a filter
bit vector where it can contain only a key value. In terms
of storage requirements, the hash index approach requires
approximately 20*8/0.7 = 228.57 bits per key values,
where the size of key is assumed 20bytes and 70% storage
utilization of the hashing scheme, while the bit vector
requires one bit per key.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

98

5. Performance Analyses

The following values are assigned to the parameters
for the analysis. The block size is generally assumed to be
B = 4000 bytes, and the I/O cost CI/O = 25 ms/block. The
cardinalities of the base tables are assumed to be examined
from 1,000 and 10 Terabyte tuples respectively, and the
size of the differential file is varied in the experiment. The
communication speed varies from a very low case to a
high-speed case, that is Ccomm = 100Kbps ~ 10Mbps.
Tuples are filtered from a no screening case (αs = 1.0) and
a highly screened case (αs = 0.001). According to the
above parameters and cost functions presented in Section
6, the following four methods are analyzed: (1) the base
table method (Base), (2) the base table incremental method
(BaseInc), (3) the auxiliary view method (AV), and (4) the
differential file method (DF).

Fig. 6.1 and Fig. 6.2 show that the total costs of the
three methods are strongly dependent on both the
selectivity with the screen factor and the communication
speed. Fig. 6.1 represents deleted the costs of all methods
are decreased along with communication speed, and the
cost of DF is consistently less than 10% of base method in
any communication speed. This shows that the size of the
data per se is the most critical factor. If the tuples are
filtered highly (up to about 0.01), as in Fig 6.2, the Base
method and the BaseInc method are less advantageous
than the DF method or the AV method. However, if
tuples are less screened (so, the screen factor is up to
about 1.0), the DF method is less advantageous than the
AV method and, in some cases, even less advantageous
than the Base method.

0

2000

4000

6000

8000

10000

12000

14000

100K 400K 700K 1M 4M 7M 10M
communication speed

co
st

Base

BaseInc

AV

DF

Fig. 6. 1 Cost traverses of Base, BaseInc, AV, and DF with
changing communication speed

0

1000

2000
3000

4000

5000

6000
7000

8000

9000

0.01 0.1 0.4 0.7 1

screen factor

co
st

DF
AV
BaseInc
Base

Fig. 6. 2 Cost traverses of Base, BaseInc, AV, and DF

method with changing screen factor

Fig. 6.3 represents the IO gains of each method in

which the size of the base relation can be assumed to
increase with time. The IO gains of the DF method are
negative in the initial stage when the size of the base table
is increased rapidly, but then becomes positive and
remains stable when the size of base table is evenly
increased. This means that the number of IO is strongly
dependent on the differential file size. So we should figure
out the effect of changing the size of the differential file
(say, delta) along with the base table remaining stable.

-400,000

-200,000

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

time

IO
 g

ai
ns

Base-BaseInc
Base-AV
Base-DF
size of SP

Fig. 6.3 Size of base relation and IO gains of BaseInc,

AV, and DF method compared to Base method while the
base tables are enlarged piecewise-linearly

6. Conclusion and Future Research

In this paper, we have presented an effective method
that can derive auxiliary information on which we utilized
the potentials of the referential integrity constraint in DBS.
Our method, called DF method, uses a DF (Differential
File). The DF is defined as the changed portion of a base
relation, which is extracted from the (referenced) base
relation by checking the referential integrity constraint. In
developing algebraic expressions, a series of robust
definitions and theorems having to do with several rules
for auxiliary information are generated. When updating
SPJ aggregate views, the relevant base tables are not re-
accessed in order to generate auxiliary relations.

The performance analysis has proven to be useful in
answering the following questions: (1) Do the DF and the
AIF have a major role in the view maintenance? (2) What
will be the mode of cost trajectories along with the data
increasing (i.e., diverging or converging)? The
performance analysis indicates that the total cost of the DF
method is closely dependent on the size of the DF and the
AIF, the selectivity (screen) factor, and the transmission
rate factor. As these three factors increase with low
transmission rate, so the total cost does. When the data
size became increasingly large, the cost ratio of the Base

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

99

and BaseInc method diverged too much, but that of the DF
method increased slightly and that of the AV method was
intermediate. However, cost benefits are negligible in a
worst-case scenario with such factors as a huge DF and
AIF (up to the size of the base tables), and no selection
cases. The DF method is still superior to the Base and
BaseInc method as well as to the AV method in that it can
make the SPJ aggregate views independent of the current
database relations. By using this approach, long
transactions from the materialized views intermingled with
conventional database transactions can be committed
without fear of transaction abort. In the worst-case
environment the experimental results represent that
managing the referencing relation and the view is
important.

Our future research will be extended to various issues
as follows. A data warehouse setting with various views
will be developed in terms of DFs. View selection with
multiple views and concurrency control issues using these
can be worth tackling to relieve various distributed replica
settings. In view of this, a view maintenance engine can be
implemented. Our method has the potential to deal with
the approximation problem of data streaming [1], accuracy
of continuous queries and group queries [12], web
applications [5], and mobile settings, etc., and therefore it
can be easily extended to a myriad of environments.

References
[1] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom,

“Models and Issues in Data Stream Systems,” In Proc.
PODS, pp. 1-16, 2002.

[2] J. Blakeley, “Updating Materialized Database Views,” In
Proc. SIGMOD, pp. 61-71, 1986.

[3] R. Bruckner and A M. Tjoa, “Managing Time Consistency
for Active Data Warehouse Environments,” In Proc. DaWak,
pp. 254-263, 2001.

[4] J. Chen, S. Chen and E.A. Rundensteiner, “A Transactional
Model for Data Warehouse Maintenance,” In Proc. ER, pp.
247-262, 2002.

[5] S. Ceri, R.J. Cochrane, and J. Widom, “Practical
Application of Triggers and Constraints: Successes and
Lingering Issues,” In Proc. VLDB, pp. 254-262, 2000.

[6] S. Ceri and J. Widom, “Deriving production rules for
incremental view maintenance,” In Proc. VLDB, pp. 577-
589, 1991.

[7] T. Griffin and L. Libkin, “Incremental maintenance of
views with duplicates,” In Proc. SIGMOD, pp. 328-339,
1995.

[8] T. Griffin, L. Libkin and H. Trickey, “An Improved
Algorithm for the Incremental Recomputation of Active
Relational Expressions,” IEEE TKDE, Vol. 9, No. 3, pp.
508-511, 1997.

[9] Gupta, H., Mumick, I.S., “Selection of views to materialize
in a data warehouse,” IEEE TKDE 17, pp. 24–43, 2005.

[10] N. Hyun, “Multiple-View Self-Maintenance in Data
Warehousing Environments,” In Proc. VLDB, pp. 26-35,
1997.

[11] S. Khan and P.L. Mott, “LeedsCQ: A Scalable Continual
Queries System,” In Proc. DEXA, Vol. 2453, pp. 607-617,
2002.

[12] Y. Kotidis and N. Roussopoulos, “A Case for Dynamic
View Management,” In Proc. TODS, Vol. 26, No. 4, pp.
388-423, 2001.

[13] Leung, C.K.-S., Lee, W., “Exploitation of referential
integrity constraints for efficient update of data warehouse
views,” In Proc. BNCOD 2005. 98–110

[14] J. Lechtenbörger, and G. Vossen, “On the Computation of
Relational View Complements,” ACM TODS, Vol. 28, No.
2, pp. 175-208, 2003.

[15] V. Markowitz, “Safe Referential Integrity Structures in
Relational Databases,” In Proc. VLDB, pp.123-132, 1991.

[16] M. Mohania and Y. Kambayashi, “Making Aggregate
Views Self-Maintainable”, Data and Knowledge
Engineering, Vol. 32, No. 1, pp. 87-109, 2000.

[17] D. Quass, A. Gupta, I. Mumick and J. Widom, “Making
Views Self-Maintainable for Data Warehousing,” In Proc.
PDIS, pp. 158-169, 1996.

[18] D. Quass, “Materialized Views in Data Warehouses,” Ph.D.
Thesis, Computer Science, Stanford Univ., 1997.

[19] X. Quian and G. Wiederhold, “Incremental Recomputation
of Active Relational Expressions,” IEEE TKDE, Vol. 3, No.
3, pp.337-341, 1991.

[20] D. Theodoratos, “Detecting redundant materialized views in
data warehouse evolution,” Information Systems, Vol. 26,
No. 5, pp. 363-381, 2001.

Wookey Lee received the B.S.,
M.S., and the Ph.D. in industrial
engineering from Seoul National
University, Korea. He got finished MSE
in the Dept. Computer Science,
Carnegie-Mellon University in 2000. He
received diploma on TEFL (Teacher for
English as a Foreign Language), ISS
Canada. He was a visiting professor in
the Dept. Computer Science, UBC,

Canada from March 2002 to Aug. 2003. He is an Associate
Professor in the department of Computer Engineering, Sungkyul
University, Korea. He got the best paper award in Korea
Management Science Operations Research Society in 2004. He
has published many journal and conference papers in distributed
database systems, Data Warehouses, and Web IR. He is ACM
and IEEE member.

Myung Keun Shin received the B.S.
and M.S. in computer science and the
Ph.D. in management engineering from
Korea Advanced Institute of Science
and Technology, Korea. He is a
researcher in the 2eit consulting and
communication. He has published many
journal and conference papers in
knowledge management system,
database, and Web IR. He is ACM and

IEEE member, and Korea Management Science and Operations
Research Society.

