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Summary 
We present an innovative method of deriving an auxiliary view 
from the running databases. During view maintenance, our 
method minimized to accesses base relations as well as not to re-
execute the view definition again. Using this approach, long 
transactions from the materialized view maintenance 
intermingled with database transactions can be committed 
without fear of abort. We use a formal algebraic approach and 
develop relevant theorems and proofs. For comparison purposes, 
four corresponding methods are compared: the bottom line base 
relation method (Base), incremental base relation method 
(BaseInc), auxiliary view method (AV), and differential file 
method (DF). We also consider the handicapped cost of storing 
information as we examine the worst as well as the best case 
scenarios of our method. Experimental analyses show that the 
DF method is superior to the other methods in a large data 
environment of up to 10 Terabyte tuples of relations. The results 
show that compared with the other methods, the DF method can 
considerably reduce the number of IO’s. Our most important 
finding is that the DF method can successfully update the 
aggregate SPJ views (practically) self-maintainable in the tuple 
level as well as (theoretically) is independent of the DBMS. 
Key words: 
Referential Integrity, View Maintenance, Differential Files, Self-
maintainability. 

1. Introduction 

Views are materialized to provide fast access to 
information that is usually integrated from several 
distributed data sources. One of the critical weaknesses of 
materialized views (MV) is that the views are liable to 
become outdated or desynchronized with the source data 
as changes are made to the source data upon which the 
views are defined. In order to guarantee the correctness (or 
currency) of the MV, all changes to source data have to be 
applied to the views. Many studies have been extensively 
undertaken on what is called the view maintenance 
problem or the materialized view update [13, 14, 20]. 

In response to source changes, a view can be either 
recomputed from the source data or maintained 

incrementally without accessing the source data (called 
self-maintenance).  

We propose an innovative view update algorithm that 
does not access base relations. We use a differential file 
and an Auxiliary Integrated File to fully maintain 
materialized views without accessing base relations. The 
DF is the changed portion of a base relation, which is 
sometimes called the delta of a base relation. The AIF is 
defined as auxiliary information derived from a base 
relation through the referential integrity constraints 
between relevant base relations. 

The rest of the paper is organized as follows. Section 
2 discusses the related works. Section 3 introduces a 
formal approach to materialized view maintenance. The 
formal algebra is in section 4. We present cost functions 
with the parameters and performance analyses in section 5, 
and section 6 concludes our paper. 

2. Related Works 

Self-maintenance is a notion that can be defined as 
maintaining views by materializing supplementary data so 
that the view can be maintained without (or at least mostly 
without) accessing base relations. The notion was 
originally introduced by Blakeley [2]. The main idea is 
based on a Boolean expression with sufficient and 
necessary conditions on the view definition for 
autonomously computable updates that can be called self-
maintainable views. Blakeley’s algorithm is a special case 
of the counting algorithm applied to select-project-join 
expressions (no negation, aggregation, or recursion). 
Theodoratos et al. [20] summarize issues extensively 
related to self-maintainability, and suggest a view 
selection approach based on a DAG (Please write out the 
whole word DAG then put abbreviation in parentheses) 
method. Several notable articles that deal with self-
maintenance aim to develop algorithms related to the 
integration and the maintenance of information extracted 
from heterogeneous and autonomous sources [11, 18].  

Algebraic approaches for maintaining materialized 
views are discussed in [2, 19, 7, 11, 9, 20]. Excluding 
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conventional database approaches, [2], Quian & 
Widerhold [19] present an algorithm for incremental view 
maintenance based on finite differencing techniques (later 
corrected in [8]). The algorithm derives the minimal 
incremental changes in an arbitrary relational expression 
for a view modification by replacing the original relational 
algebraic expression with an efficient and incremental re-
computation.  They considered two types of operations: 
insertions and deletions. However, the algorithm uses 
source relations and thus it lacks the self-maintenance 
notion. Griffin & Libkin in [7] extend the techniques in 
[19]. [11] proposes to include functional dependencies. [9] 
integrates outer joins. These references do not consider the 
concepts of referential integrity for the maintenance of 
materialized views. In this paper, some of the common 
notations (mainly from [19], [7], and [8]) are extended to 
present some propagation rules for materialized views 
based on referential integrity constraints.  

There has been some research that considers the 
database system as a rule system [6, 5]. Widom et al. [5] 
(enhanced from [6]) present a comprehensive survey on 
the roles played in materialized views. In that paper, the 
rule is classified as a constraint or a trigger in that the 
constraint is descriptive while the trigger is procedural. 
(However, in this paper we use the term ‘constraint’ 
interchangeably with ‘rule trigger.’) Though not directly 
related, there are several works [16, 10, 11] corresponding 
to this method that have the potential to extend referential 
integrity constraints to the maintenance of database views. 
When a referential integrity rule invokes cascade among 
database rules in the DBMS, [16] presents the run time 
execution problem and the safeness condition respectively. 
[15] investigates the view maintenance problem with 
inclusion dependency but no referential integrity rules.  

Entity and referential integrity rules are the most 
fundamental constraints that any relational database 
should satisfy [15]. The entity integrity rule starts from the 
selection of a candidate key and referential integrity starts 
from the selection of a foreign key. Codd’s definition of 
referential integrity is ‘No component of a foreign key is 
allowed to have an I-maked value,’ where an I-marked 
value means a null value of the type ‘value does not exist,’ 
or ‘ value at present exists but is unknown,’ or ‘value is 
inapplicable’. 

Database rules, including referential integrity 
constraints, are utilized in maintaining materialized views 
in several articles such as [17, 18]. Quass et al. [18] and 
Mohania et al. [17] use the referential integrity constraint 
to determine whether a base relation is participating in the 
views, and [18] extends the works of [19] and [7] to 
transform change propagation equations into more 
efficient ones. They use an auxiliary view (in [17] 
‘auxiliary relation’, in [12] ‘auxiliary data’, and 
‘complements’ in [14, 15]) in order to maintain a select-

project-join (SPJ) view without accessing base relations at 
the sources. However, the validity and the performance of 
these methods are strongly dependent upon query types, as 
long as the view conditions can screen the corresponding 
base relation. This is discussed in the motivational 
examples in Section 2.  

In applying referential integrity to view maintenance, 
the work of Quass et al. [18] (called, ‘AV method’ in this 
paper) is slightly related to our approach, but there are 
several differences. While Quass et al. assume that the 
structure of the referential integrity conditions should be a 
tree; our approach does not assume it. Thus in the AV 
method, any kind of cycles in a database schema, 
including self-join, cannot be supported. For example, a 
transitive closure algorithm [18] cannot support the 
schema in Section 2. Another difference is that it can be 
said that the AV method uses the rule in a macroscopic 
way (i.e., using the rule to find a corresponding ‘relation’), 
but our method uses it in a microscopic way (i.e., using it 
to find a corresponding ‘tuple’ in the relation). This is one 
of the innovative features of our approach that 
differentiates it from others.  

3. Algebraic Representation 

It is assumed that the materialized view in this paper 
is not from independent relations, but from referentially 
integrated relations. Thus, a relation has an attribute called 
a foreign key such that it has a referential integrity 
condition with the key of some relation. (We will call it a 
RI condition or a RI constraint.) In that case, one relation 
is called a referenced relation (e.g., DEPT) and the other a 
referencing relation (e.g., EMP). The referencing relation 
can be called a fact table and the referenced relation a 
dimension table. From this point of view, they are called a 
star schema or a snowflake schema in the materialized 
environment. Let s represent a referencing relation and r 
be a referenced relation respectively throughout this 
Section. The condition of the RI is typically assumed to 
have one of the representative RI conditions such as 
restrict, cascade, and nullify [16]. We have a focus on the 
RI condition that can also be extended to a modified form 
or a nested form.   

We explain the view updates in terms of the changes 
to base relations and how these changes affect other 
relations. They are classified as follows: the insertion in 
the referenced relation case, the deletion in the referenced 
relation case, the deletion in the referencing relation case, 
and the insertion in the referencing relation case, including 
these changes with base relations. The orders are not 
significant. The last case is the most complicated one to 
solve. Thus a new schema called an AIF in terms of 
referential integrity conditions is presented. 
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The following notations and algebraic expressions on 
the data base schema Ri are introduced: 

 
Ri   :=    Ø  empty set 
     |σp(r) selection with condition P 
     |∏A(r) projection over an attribute A 
     |r⊕r disjoint union 
     |r⊖r  contained difference 
     |r⋈r natural join  

 
Definition 1 Let a tuple t defined on a relation ri for i ∈ ψ 
be represented as t(ri). An inserted tuple △t(ri) and a 
deleted tuple ▽t(ri) belong to the insertion △ri and the 
deletion ▽ri of the relation ri respectively. It can be 
specified by a key and by a foreign key (fk) as t(ri.key)and 
t(ri.fk) respectively.    � 
 
Definition 2 A differential file DF(ri) of a base relation ri 
={key, ai1, ai2, … , aim} can be defined as {key, ai1, ai2, … , 
aim , operation, sysdate} for i, m ∈ ψ, where operation is 
an operation type having two possible values i.e. ‘insert’, 
‘delete’. A modification is a deletion and an insertion in 
series having the same sysdate. The sysdate is the 
timestamp recorded by a committed transaction to the base 
relation ri. Then the differential file consists of insertions 
and deletions represented algebraically as DF(ri) = △ri 
⊖▽ri .    � 
 
Example 4.1 Let’s consider the instance of relations Pt, 
Su, and Sp defined as those in Section 2. The 
corresponding differential files of Pt and of Sp (i.e., 
DF(Pt) and DF(Sp)) are respectively as shown below. 
There are no changes in the other tables. The first tuple of 
DF(Pt), say {P4, printer, red, 300, delete, 10/08/06}, 
represents that a ‘printer’ with price ‘300’ supplied by the 
manufacturer ‘red’ was deleted at time ‘10/08/06’. 
Similarly, in the differential file of Sp DF(Sp), we can tell 
that the first and the second tuples indicate that the product 
‘P1’ supplied by ‘S1’ was modified at time ‘05/08/06’. 
Then a product ‘P6’ supplied by ‘S4’ was inserted.  

 
Table 4.1: Differential file DF(Sp) 

 
 
 
 
 
 

Table 4.2: Differential file DF(Pt) 
pk pn mfr price operation sysdate 
P4 printer red 300 delete 10/08/06

 
Corollary 3 A new base relation (after image) ri

new
  can be 

expressed as the base relation (old image) ri and its DF(ri) 
as follows: ri

new = ri ⊕DF(ri) = ri ⊕(△ri ⊖▽ri )= ( ri 
⊕△ri⊖▽ri) for i ∈ ψ □ 
 
Notice that the schema adjustment between a base relation 
and the corresponding DF is assumed to be exchangeable 
in this paper. Since the DF has two more columns (i.e., 
operation and sysdate) than the corresponding base 
relations. For simplicity, we do not create an additional 
operator to adjust between them. In this paper, we follow 
the notation used in previous research [7, 8, 18, 19]. 
 
Example 4.2 The new relation Ptnew is derived from Pt (in 
example 2.1) and with DF(Pt) in Table 4.1 as:  
Pt new = Pt ⊕ DF(Pt ) = {(P1, computer, red, 2000), (P6, 
DVD, yellow, 200), (P7, computer, green, 3000)}  
 
Definition 4 A relation ri satisfies a RI condition, which 
can be represented as: ri

RI•[condition], where the superscripted 
[condition] can optionally represent a RI condition detail.       
□ 
 
For example, an insertion in s due to an RI condition of a 
deletion in a relation r can be represented: △sRI•[▽r]. 
 
Example 4.3 Note that there is an RI condition between 
the relations Cu and Or in section 2. If the RI condition is 
‘On delete Cascade’ and a deletion in Cu (e.g., ‘C2’) may 
affect the relation Or, then the corresponding tuple in Or, 
(e.g, O2, C2, 5, 2500) should also be deleted. It can be 
represented as follows:  
▽Or RI•[▽Cu] ={(O2, C2, 5, 2500, delete, 05/08/06)}  
 
A change in a relation can cause other changes in turn due 
to the referential integrity constraints. The nested changes 
of base relation can be represented in general as follows: 
In that case, the changes can be represented as a nested 
form in terms of RI conditions.  
 
Corollary 5 A change in the referenced relation (r1) can 
generate a change due to the RI condition to the 
corresponding referencing relation (r2) that results, in turn, 
in a change recursively to rn and finally it may effect a 
change in the relation s. The generalized deletion and 
insertion due to RI condition in s can be represented 
respectively: 

▽s RI• [▽rn • • •[▽r2•[▽r1]]]  
and △sRI• [▽rn • • •[▽r2•[▽r1]]]     □ 

 
Example 4.4 Note that there also is an RI condition 
between the relations Or and Sp in section 2. In addition to 
the above example, a deletion in Or will also affect 
relation Sp, thus the corresponding tuple, i.e., (P1, S4, O2, 

pk sk ok qty sprice operation sysdate
P1 
P1 
P6 

S1 
S1 
S4 

O1 
O1 
O2 

10 
20 
40 

2500 
2800 
3000 

delete 
insert 
insert 

05/08/06
05/08/06
08/08/06
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5, 2500) should also be deleted. Therefore in order to 
(successfully) delete a tuple in Cu, two more deletes in Or 
and in Sp are needed: ▽SpRI•[▽Or •[▽Cu ]] ={(P1, S4, O2, 5, 
2500, delete, 05/08/06)}  
 
 Note that by the RI conditions, the cascading RI 
representations of a deletion and an insertion are one of 
the DF tuples of the corresponding relation:  
 
▽sRI• [▽rn • • •[▽r2•[▽r1 ]]] ⊆ ▽s  
and △sRI• [▽rn • • •[▽r2•[▽r1 ]]] ⊆ △s  
 
For example, there are the two more deletes in the above 
examples (4.3 and 4.4) that did not originate from their 
own transactions, the deleted tuples are included among 
the DFs of their own, i.e., DF(Or) and DF(Sp) 
respectively.  
 
Theorem 6  
△rRI•[▽s] = ▽rRI•[▽s] = △rRI•[△s] = ▽rRI• [△s] = ∅    
Proof. If there is no change in a referencing relation s, i.e., 
△s = ▽s = ∅, then the above equations trivially hold. If 
there exists an insert transaction in s, then it will be committed 
if the relevant key exists in the referenced relation r, unless the 
transaction will be aborted. In the two cases, there is no 
change due to RI in the relation r. If there is a delete 
transaction in s, then the transaction commits without an 
inquiry to r. Therefore no changes happen in r due to the RI 
by the changes of s.   □ 
 
From the above theorem, we can get the following trivial 
result. 
Corollary 7 ▽s ⋈ r  ▽s  □ 
 
Theorem 8 A deletion in r triggers a change in s by the RI 
condition. Then the following rule holds:  

(s –(△sRI•[▽r ] ⊖▽sRI•[▽r ])) ⋈ ▽r  ∅    
Proof: If there is no deletion in the referenced relation r, then 
the above holds. Suppose that there exists a deletion but there 
exists no insertion by RI or no deletion by RI in a 
referencing relation s.  Further suppose that there exist some 
tuples in the referencing relation corresponding to the deleted 
tuple of the referenced relation. This is a referential integrity 
violation. It contradicts the above assumption. Thus, as long 
as there remains a foreign key in a referencing relation, there 
will be two cases with respect to the RI condition: (1) If the RI 
condition is ‘restrict’, then the deletion in the referenced 
relation cannot be committed, (which means ▽r = ∅). (2) If 
the RI condition is ‘cascade’ or ‘nullify’, then the changes 
caused by the RI will occur in the referencing relation s (say, 
△sRI ⊕▽sRI ). This represents that the above rule holds.  � 
 
Example 4.4 (Or  ⊖ ▽Or RI•[▽Cu ] ) ⋈ ▽Cu =∅         

 
Theorem 9  s ⋈ △r = ∅  
Proof: For some tuples t1 such that t1(△r.key) = s.fk, if ∃t 
such as ∃t2, t2(△r.key) = t1(r.key), this violates uniqueness of 
key. � 
 
Theorem 10  s ⋈ ▽r  ▽s⋈ ▽r  
Proof:  s⋈▽r → (snew ⊕ △s ⊖ ▽s)⋈ ▽r → 
(snew ⋈▽r) ⊕ (△s ⋈▽r) ⊖ (▽s⋈▽r) 
→ ▽s⋈ ▽r The proof is based on Corollary 3, and 
Theorem 4.2 respectively.    � 
 
Therefore, for all the RI conditions, the join of the deleted 
tuple(s) (i.e., ▽r) in the referenced relation with the tuples in 
referencing relation s should be Null or equivalent to the 
deltas. 
  
Example 4.5 Suppose that a product ‘P6’ is not to be 
deployed in the previous example, i.e., a delete transaction 
for the tuple {P6, DVD, yellow, 200} is issued at time 
01/09/06. The transaction will then be executed in terms of 
the RI conditions:  
1) If the RI condition is ‘On delete restrict’ on the key of Pt, 

i.e., t(▽Pt)RI•[‘restrict’], the transaction will be aborted 
due to RI in Sp.  

2) If the RI condition is ‘On delete cascade’ on the key of 
Pt, i.e., t(▽Pt)RI•[‘cascade’], it will delete a tuple in Sp (i.e. 
{P6, S1, O3, 20, 250} will be deleted).  

3) If the RI condition is ‘On delete nullify’ on the key of Pt, 
i.e., t(▽Pt) RI•[‘Nullify’], it will modify another tuple in 
Sp as {P6, S1, O3, 20, 250, delete, 01/09/06} and 
{NULL, S1, O3, 20, 250, insert, 01/09/06}are 
appended to DF(Sp) in series.   

 
Note that the last case (‘On delete nullify’) leaves 
something (the nullified tuple) in the base relation (Sp). 
However, the tuple left behind is null-valued, and thus, the 
join yields nothing.  

If there is an insertion in the referencing relation, 
there exists a sort of integrity function of RI check among 
referential integrity constraints to acknowledge the 
insertion to the referenced relation. The RI check can be 
found between the foreign key of the referencing relation 
(say, s.fk) and the key of the referenced relation (say, 
r.key). 
 
Definition 11 An RI check condition is a Boolean function 
that there is an insertion transaction in the referencing 
relation s, and there follows an RI check to see if the 
foreign key in s corresponds to the key of the referenced 
relation r. The RI check condition is:  
 
t1(△s.fk RI•[check]) is true, if ∃t2, t1(△s.fk) = t2(r.key), o/w, false          � 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
 
 

 

97

 
Lemma 12 An insert transaction in the referencing 
relation is committed, the RI check condition 
corresponding to the insertion is true.   
Proof: Suppose the RI check condition is false but an 
insertion transaction in the referencing relation is committed. 
The RI check condition is false, △s.fk ≠ r.key. It violates fk 
integrity.   � 
 
Example 4.6 There are two RI constraints in the relation 
Cu. Thus the RI check is fired to check the relevance of 
the insertion in Cu. When a tuple {C3, BC, R&D, C2} is 
inserted in Cu, and then the relevant two RI constraints are 
fired. One is to acknowledge Cu.{BC} = Ar.{BC}, and 
Cu.{C2} = Cu.{C2}. If the results of both RI checks are 
true, the insertion transaction will be committed. If any of 
the two RI checks are not true, the transaction will be aborted. 
� 
 
Example 4.8 If there is a committed insertion {P6, S4, O3, 
10, 350} in Sp, then three RI check tuples are appended 
(one each) to the RI differential file of Pt, that of Su, and 
that of Or. A tuple {P6, DVD, yellow, 200} is appended 
to AIF called AIF(Pt), a tuple {S4, A, CA} to AIF(Su) and 
a tuple {O3, C1, 30, 300} to AIF(Or).   � 

The descriptions of the equations are the propagation 
rules slightly modified from the rules based on [19, 7, 8]. 

5. View Maintenance  

The view self-maintainability (SM) is one of the 
important considerations in this paper, defined as 
maintaining a view in response to changes of database 
relations using only the view and the differential files to 
the base relations, without accessing the base relations. 
The SP view satisfies SM [9] (we will show this 
algebraically in the next section), but join views might 
need some auxiliary information from other relations [18]. 
In order to achieve SM of views, auxiliary relations might 
be prepared before executing view expressions. In other 
words, with this, auxiliary views can satisfy SM in view 
execution time. The auxiliary view [18], auxiliary relation 
[17], auxiliary data [12], and complements [15] all need 
access to base relations in making their auxiliary 
information.  

A view is a mapping between a query and data. If a 
join query is issued, then the join condition is mapped to 
RI constraints and is substituted with the data. Notice that 
the data is assumed to synchronize via corresponding DFs 
of database relations. Duplicated tuples in DFs should be 
eliminated by some algorithm that all the tuples are 
removed except the first and the last. The AIF is derived 
from the corresponding base relation, so the tuples of AIF 

may be duplicated with tuples within the AIF as well as 
those of DF of the corresponding relation. Thus the 
duplicated tuples should be eliminated. Notice that if the 
delta is refreshed immediately, there will be no duplicated 
tuples (within the AIF). In general, the duplicated tuples 
should be minimized in any view update policy (e.g., 
immediate update, periodic update, and deferred update, 
etc).  
 The schema of AIF (ri) of a base relation ri ={key, ai1, 
ai2, … , aim} can be defined as {key, ai1, ai2, … , aim, sysdate} 
for i, m ∈ ψ, where sysdate is the timestamp recorded by 
the RI check condition if answered true. It is assumed that 
the timestamp recorded by the RI check condition 
answered is the same as the relevant committed transaction 
to the base relation ri. So the AIF is appended by the order 
of sysdate. 
 Given an RI (e.g., s.fk ⊆ ri.key ) and view refresh time, 
the algorithm for duplicate elimination on the AIF (ri) is: 
at first within the AIF (ri)  and then DF (ri).  
 
Algorithm 1: Duplicate Elimination of AIF 
Input:  
• DF(ri) for i ∈ ψ 
Output: consistent DF(r) 
Procedural Steps: 
1. t1  last refresh time;  t2  current refresh time; s  

m 
2. (Duplicate elimination within AIF) Get next tuple of 

AIF(ri) with t1 < AIF(ri).sysdate ≤ t2. 
If no tuple found, go to Step 6. 

3. Delete AIF(ri).key from the hash index if there exists. 
Go to Step 2. 
Else continue. 

4. (Duplicate elimination with DF) Get next tuple of 
DF(ri) with t1 < DF(ri).sysdate ≤ t2. 

If no tuple found, go to Step 6. 
5. Delete AIF(ri).key from the hash index if there exists. 

Go to Step 4. 
Else continue.  

6. If s = 1, then stop. 
Else do: s  s – 1; Go to Step 2. 

 
In this paper, it is assumed that the AIF has index on the 
candidate key. It is not a hard assumption, for the 
duplicated tuples in AIF can easily be deleted, even if 
there is no index. The index may be a hash index or a filter 
bit vector where it can contain only a key value. In terms 
of storage requirements, the hash index approach requires 
approximately 20*8/0.7 = 228.57 bits per key values, 
where the size of key is assumed 20bytes and 70% storage 
utilization of the hashing scheme, while the bit vector 
requires one bit per key. 
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5. Performance Analyses  

The following values are assigned to the parameters 
for the analysis. The block size is generally assumed to be 
B = 4000 bytes, and the I/O cost CI/O = 25 ms/block. The 
cardinalities of the base tables are assumed to be examined 
from 1,000 and 10 Terabyte tuples respectively, and the 
size of the differential file is varied in the experiment. The 
communication speed varies from a very low case to a 
high-speed case, that is Ccomm = 100Kbps ~ 10Mbps. 
Tuples are filtered from a no screening case (αs = 1.0) and 
a highly screened case (αs = 0.001). According to the 
above parameters and cost functions presented in Section 
6, the following four methods are analyzed: (1) the base 
table method (Base), (2) the base table incremental method 
(BaseInc), (3) the auxiliary view method (AV), and (4) the 
differential file method (DF).  

Fig. 6.1 and Fig. 6.2 show that the total costs of the 
three methods are strongly dependent on both the 
selectivity with the screen factor and the communication 
speed. Fig. 6.1 represents deleted the costs of all methods 
are decreased along with communication speed, and the 
cost of DF is consistently less than 10% of base method in 
any communication speed. This shows that the size of the 
data per se is the most critical factor. If the tuples are 
filtered highly (up to about 0.01), as in Fig 6.2, the Base 
method and the BaseInc method are less advantageous 
than the DF method or the AV method.  However, if 
tuples are less screened (so, the screen factor is up to 
about 1.0), the DF method is less advantageous than the 
AV method and, in some cases, even less advantageous 
than the Base method. 
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method with changing screen factor 
 
Fig. 6.3 represents the IO gains of each method in 

which the size of the base relation can be assumed to 
increase with time. The IO gains of the DF method are 
negative in the initial stage when the size of the base table 
is increased rapidly, but then becomes positive and 
remains stable when the size of base table is evenly 
increased. This means that the number of IO is strongly 
dependent on the differential file size. So we should figure 
out the effect of changing the size of the differential file 
(say, delta) along with the base table remaining stable. 
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Fig. 6.3 Size of base relation and IO gains of BaseInc, 

AV, and DF method compared to Base method while the 
base tables are enlarged piecewise-linearly 

 

6. Conclusion and Future Research  

In this paper, we have presented an effective method 
that can derive auxiliary information on which we utilized 
the potentials of the referential integrity constraint in DBS. 
Our method, called DF method, uses a DF (Differential 
File). The DF is defined as the changed portion of a base 
relation, which is extracted from the (referenced) base 
relation by checking the referential integrity constraint. In 
developing algebraic expressions, a series of robust 
definitions and theorems having to do with several rules 
for auxiliary information are generated. When updating 
SPJ aggregate views, the relevant base tables are not re-
accessed in order to generate auxiliary relations. 

The performance analysis has proven to be useful in 
answering the following questions: (1) Do the DF and the 
AIF have a major role in the view maintenance? (2) What 
will be the mode of cost trajectories along with the data 
increasing (i.e., diverging or converging)? The 
performance analysis indicates that the total cost of the DF 
method is closely dependent on the size of the DF and the 
AIF, the selectivity (screen) factor, and the transmission 
rate factor. As these three factors increase with low 
transmission rate, so the total cost does. When the data 
size became increasingly large, the cost ratio of the Base 
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and BaseInc method diverged too much, but that of the DF 
method increased slightly and that of the AV method was 
intermediate. However, cost benefits are negligible in a 
worst-case scenario with such factors as a huge DF and 
AIF (up to the size of the base tables), and no selection 
cases. The DF method is still superior to the Base and 
BaseInc method as well as to the AV method in that it can 
make the SPJ aggregate views independent of the current 
database relations. By using this approach, long 
transactions from the materialized views intermingled with 
conventional database transactions can be committed 
without fear of transaction abort. In the worst-case 
environment the experimental results represent that 
managing the referencing relation and the view is 
important.  

Our future research will be extended to various issues 
as follows. A data warehouse setting with various views 
will be developed in terms of DFs. View selection with 
multiple views and concurrency control issues using these 
can be worth tackling to relieve various distributed replica 
settings. In view of this, a view maintenance engine can be 
implemented. Our method has the potential to deal with 
the approximation problem of data streaming [1], accuracy 
of continuous queries and group queries [12], web 
applications [5], and mobile settings, etc., and therefore it 
can be easily extended to a myriad of environments. 
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