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Summary 
This paper introduces an automated medical image segmentation 
algorithm which can be used to locate volumetric objects such as 
brain tumor in Magnetic Resonance Imaging (MRI) images. 
The algorithm is novel in that it deals with MRI slices (or 
images) as a three dimension (3D) object as a whole. All the 
processes of segmentation are done in 3D space. First, it removes 
noisy voxels with 3D nonlinear anisotropic filtering. The 
filtering well preserves the intensity distribution continuity in all 
three directions as well as smoothes noisy voxels. Second, it uses 
a novel deformable surface model to segment an object from the 
MRI.  A dynamic gradient vector flow is used in forming the 
surface model. Experiments have been done on segmenting 
tumors from real MRI data of human head. Accurate 3D tumor 
segmentation has been achieved.  
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1.  Introduction 

Magnetic Resonance Imaging (MRI) uses magnetic 
resonance to produce body images with high spatial 
resolution and excellent discrimination of soft tissues. 
Automatically segmenting tissues and organs from MRI 
images represents a particularly challenging problem due 
to the complexity and variability of human anatomy.  
There has been a substantial amount of research on 
automated segmenting tissues and organs from MRI 
images [1, 2, 3, 4, 5, 6]. Of all the MRI segmentation 
techniques, there are two major approaches, namely (a) 
region-based approach which searches for regions 
satisfying a given homogeneity criterion, and (b) edge-
based approach that searches for edges among regions 
with different characteristics.  

Hybrid strategies have also appeared in recent years. 
Notably active contour models, known as “snakes”, have 
been widely studied and applied in medical image 
segmentation. Their applications include edge detection, 
segmentation of objects, shape modelling and motion 

tracking. Snakes were first introduced in 1987 by Kass et 
al. [7]. They generally represent an object boundary as a 
parameter curve or surface. An energy function is 
associated with the curve, so the problem of finding an 
object boundary is cast as an energy minimisation process. 
Typically, the curves are affected by both an internal force 
and external force. A snake can locate object contours 
well, once an appropriate initialisation is done. However, 
since the energy minimisation is carried out locally, the 
located contours can be trapped by a local minimum. A 
number of methods have been proposed to improve the 
snake’s performance [8, 9]. Recently, a gradient vector 
flow (GVF)-based deformable model has been proposed 
[10]. Instead of directly using image gradients as an 
external force, it uses a spatial diffusion of the gradient of 
an edge map of the image. GVF snake was proposed to 
address the traditional snake’s problems of short capture 
range and inability to track at boundary concavity. But 
GVF still may not be able to capture object contours in 
some medical image segmentation. Efforts at improving 
the original GVF snake’s performance have been 
published recently. Xu et al. combined GVF force with a 
constrained balloon force to segment gyri in the cortex 
[11]. Although this combination works well on this case, 
its requirement of an a priori knowledge of the region of 
interest may restrict its application. Yu et al. proposed to 
compute the GVF using a polar coordinate representation 
instead of Cartesian coordinates [12]. In this way, the 
method can perform better than the original GVF snake in 
areas of long thin boundary concavities and boundary gaps. 
But the capture range of this improved GVF does not seem 
larger than the original method.  
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2. Automated Segmentation Using 
Deformable Surface Model  

2.1 Principles 

MRI data is acquired by scanning the object slice by slice. 
A major issue may hinder the effort of any automatic 
segmentation approach. That is the intensity 
inhomogeneity existed in both intrascan and interscan. 
There are many attempts to correct these intensity 
inhomogeneities [13]. Our consideration of alleviating the 
influence of intensity inhomogeneity on segmentation is 
embedded into two stages. First, a 3D nonlinear 
anisotropic filter is designed to smooth noisy voxels yet 
preserve intensity distribution continuity and edge 
sharpness in all three directions. Then a deformable 
surface model that evolves in 3D space is developed to 
segment an object from MRI data.  A dynamic gradient 
vector flow is used in forming the surface model. The rest 
of this section is devoted to the detailed discussion of the 
approach.  

2.2 Nonlinear Anisotropic Filtering 

A first step in processing a noise-affected image is to 
smooth the image with Gaussian function. Basic effects of 
a Gaussian filtering are smoothing the image and wiping 
off noisy pixels or voxels. For applications where gradient 
operations are needed to derive edge information, a 
Laplacian operation will follow the Gaussian operation. 
These two operations are usually called Laplacian of 
Gaussian (LoG). In our deformable surface model, a 3D 
edge map is needed to form dynamic gradient vector flow. 
However, since the LoG operation is isotropic, sharpness 
of edges will also be smoothed. Therefore our goal is to 
find a filtering operation which can both preserve edge 
structures and smooth noisy background voxels. One such 
solution is in nonlinear anisotropic diffusion [14]. 

Considering specific requirements in 3D MRI 
segmentation, we use a nonlinear anisotropic diffusion 
function as described by EQ. (1).  

))((),,,( IIfdivtzyxIt ∇∇=∂
∂  (1) 

Where I(x,y,z,t) is the voxel intensity value, )( If ∇ is a 
dilation function of gradient described by EQ. (2).  

)),,,(1(1)( tzyxIkIf ∇•+=∇  (2) 

Where, parameter k decides the effect of diffusion. With 
very low k value, diffusion will happen across edges. 
While with very high k value, diffusion will need more 
iterations.  

The effect of nonlinear anisotropic filtering can be 
observed from Fig.1. In the figure, the top image is an 
axial slice of MRI brain images. The middle image is the 
corresponding output of nonlinear anisotropic filtering. 
Though no apparent difference between the two images 
can be perceived by eyes, the advantages of the filtering 
can be observed by checking the intensity distribution of a 
particular row before and after the filtering. The bottom 
figure gives the intensity distribution of the top image at 
the 110th row (red curve) and the intensity distribution of  
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the middle image at the 110th row (blue curve). From the 
intensity distribution curves, it can be easily seen that the 
nonlinear anisotropic filtering preserved the edge 
structures as well as smoothed out noise. 

2.3 Deformable Surface Model  

This section describes the mathematic formulation of our 
deformable surface model, including the principles of 
snakes, adaptive balloon force, GVF force, and dynamic 
GVF snakes.  

2.3.1 Snakes in 3D 

A 3D snake is a surface ))(),(),(()( szsysxsC = , 
where ]1,0[∈s . The surface moves through the image 
space to minimize a specified energy function. In 
traditional snakes, the energy is usually formed by internal 
forces and external forces as described in equation (3). 

extsnake EEE += int   (3) 

intE  tends to elastically hold the surface together 

(elasticity forces) and to keep it from bending too much 
(bending forces). This energy is defined in equation (4).  
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∫∫ += βα  (4) 

Where sC and ssC represent the first and second 
derivative respectively. We can control the snake’s tension 
and rigidity by adjusting the coefficients α  and β  .  

The external force extE  intends to pull or push the surface 
towards the edges. Typically, it consists of potential forces. 
Depending on the consisting components of the external 
force, snakes with different performances are formed. 

2.3.2 Dynamic GVF Snakes 

We have developed a 3D dynamic GVF snake to segment 
MRI data. The snake is formed mainly by using an 
adaptive balloon force and a dynamic GVF force. 

adaptive  balloon  force  

A balloon model as a pressure force can be added to snake 
as a second external force to push the surface outward or 
inward [15]. In this way, the surface is considered as a 
balloon that has been inflated or deflated. Equation (5) 
represents the pressure force )(sf p , where m is the 

amplitude of the force and )(snr normal unit vector to the 

curve at point sC . 

)()( snmsf p
r

=   (5) 

The balloon force is considered to increase the capture 
range of the image potential force. This is a proper 
consideration given that the snake can be set to start 
evolving inside the object. Unfortunately, balloon force 
introduces unpredictability to the performance of the 
active surface and makes it more sensitive to the values of 
its different parameters. To overcome the unpredictability 
problem introduced by the balloon force, we apply this 
force in an adaptive way. The main idea is to give the 
balloon force bigger weight compared to the GVF force at 
the early stage of the evolution, and to give the balloon 
force smaller weight at the later stage. In this way, the 
speed of the convergence is increased, and the snake can 
be correctly pushed toward the surface even if it starts far 
away with less chance of being over-pushed. 

 GVF force 

Fig.1 An example of nonlinear anisotropic filtering on an MRI 
brain image  
Top: an original MRI brain image. The yellow line indicates the 
position of the 150th row. 
Middle: nonlinear anisotropic filtered result of the original image 
Bottom: illustration of the nonlinear anisotropic filtering effect on 
the 150th row of the image. The red curve indicates the intensity 
distribution of the original image; the blue curve indicates that of 
the corresponding filtered row. 
Note: the numbers on x-axes represent pixel position horizontally; 
the numbers on y-axes represent pixel position vertically in the 
top and middle images, and pixel intensities in the bottom figure. 
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Gradient vector flow force was proposed as a new external 
force to achieve better object segmentation [10]. Its basic 
idea is to extend influence range of image force to a larger 
area by generating a GVF field. The GVF field is 
computed from the image. In detail, a GVF field is defined 
as a vector field V that minimizes the energy function Q. 
Q is described in equation (6). 

dxdydzfVfVQ 222 ∇−∇+∇= ∫∫∫μ   (6) 

Where, f is the edge map which is derived by using an 
edge detector on the original image space, and μ is a 
regularization parameter. Using variational calculus, the 
GVF field can be obtained by solving the corresponding 
Euler-Lagrange equations. 

Fig. 2 illustrates the GVF force distribution of an ellipse in 
2D. Where, the force is represented by a vector with 
direction and value. It can be observed that the GVF force 
points to the ellipse curve. 

dynamic GVF force 

We have developed a dynamic GVF force to provide a 
unique evolution-stop mechanism as well as all the 
characteristics owned by the original GVF force. The 
evolution-stop mechanism is needed to prevent the snake 
from breaking through the correct surface and locking to 
other feature points. The breakage can happen in areas 
where two objects or organs are very close to each other. 
The introduction of the dynamic GVF force is inspired by 
a property of the GVF field. That is, when the GVF field 
passes a surface, its direction will change. A consistency 
degree is incorporated into the new dynamic GVF force. 
The force varies according to the consistency. If the 
evolution of the snake will cause the change of GVF force 
direction, it is said inconsistency has occurred and the 
snake is not allowed to evolve to the new position. 

 

 

 

 

3D dynamic GVF snake 

With the inclusions of the adaptive balloon force and the 
dynamic GVF force, the evolution of the snake can be 
derived by solving equation (3). The equation can be 
solved by using variational calculus and the Euler-
Lagrange differential equation. Then, the solution to this 
force balance, as defined in equation (7), represents the 
snake’s final position. 

0=++− padynssssss fVCC λγβα  (7) 

Where paf  is the adaptive balloon force; dynV  is the 
dynamic gradient vector flow force as defined in equation 
(8).  
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 (8) 
In order to explain equation (8), let 1x  be a point on the 

current snake and 2x  its possible next position in the 

evolution process. θC defines the consistency angle and is 
proportional to the angle between the GVF vectors at 

1x and 2x . θT  represents the cut-off angle. Based on our 

Fig. 2 An example of GVF field of an ellipse image 
Note: the blue ellipse curve indicates the position of the 
ellipse in the original image out of which this GVF field is 
derived. The GVF forces are represented as vectors with 
directions and values.
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experiments, 020=θT  is a good threshold. 

 The new dynamic GVF force will be the same as 
conventional GVF if the snake point moves towards the 
contour. But when the snake point tries to cross over an 
edge, the dynamic gradient vector flow force will stop the 
point from moving. The threshold θT will decide when 
this evolution-stop mechanism will be triggered.  

3. Experiments and Results 

In order to validate the performance of the proposed 
method, we applied it on magnetic resonance images of 
several anonymous brain tumor patients.  The data are MR 
images in the axial plane, with 256 x 256 x 113 voxels and  
1mm x 1mm x 1mm voxel resolution. 

Fig. 3 demonstrates the tumor segmentation performance 
of our method. In the experiment, the snake parameters 
were chosen as: α = 0.6, β = 0.7, λ =0.3, and γ =0.4. 
The model was initialised with a ball of radius 5 voxels.  

Fig. 3 (a) gives the initial ball’s position on an axial slice. 
It can be seen that the initial ball is well inside the tumor 
area. To illustrate its performance in 3D, the segmentation 
results on three different slices of one subject are 
presented. Fig. 3(b) shows axial view of the 45th slice and 
corresponding segmentation result. Fig. 3(c) shows the 
view of the 49th slice and corresponding segmentation 
result.  Fig. 3(d) shows the view of the 52th slice and 
corresponding segmentation result. In the figures, the red 
contours along the tumor (white) areas are the 
segmentation results of the proposed deformable surface 
model.  

From the figures it can be seen that the algorithm can 
locate the volumetric tumor with accuracy. Comparing to 
the 2 dimensional approach described in [4], this new 
algorithm uses 3 dimensional information and has the 
advantages of both smoothly segmenting the tumor in the 
space and much less initialising work. Here the 
initialization involves only indicating the position and 
radius of an initial ball. It has less restriction on the 
automation of the segmentation process. 

 
Fig. 3(a) the model’s initial position (the blue 
circle) on an axial slice 

 
Fig. 3(b) the 45th slice and corresponding 
segmentation result (red contour) 

 
Fig. 3(c) the 49th slice and corresponding 
segmentation result (red contour) 
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Fig. 3(d) the 52th slice and corresponding 
segmentation result (red contour) 

 

4. Conclusions 

In this paper, we have presented a new deformable surface 
model for automated segmentation. It can segment objects 
from medical images such as MRI. In developing the 
algorithm, emphasis was put on considering the whole 
MRI data set as a 3D entity. Therefore all the processes of 
segmentation are done in 3D space. Two major stages 
were developed to segment 3D object. First, it removes 
noisy voxels with 3D nonlinear anisotropic filtering. The 
filtering well preserves the intensity distribution continuity 
in all three directions as well as gets rid of noisy voxels. 
Second, it uses a deformable surface model to segment an 
object from the MRI.  A dynamic gradient vector flow is 
used in forming the surface model.  

Real MRI data were used to evaluate the segmentation 
performance. Especially, brain tumor segmentation from 
MRI images was tested. The experiments have 
demonstrated the potential of our approach. The proposed 
segmentation method is also applicable to other 
applications such as blood vessel segmentation. 

During developing the segmentation method, we noticed 
that much computation is needed because the data is huge 
with three dimensions. Therefore further work on the 
approach would be finding efficient calculation of 
components such as 3D gradient vector flow and snake 
evolving.  

5. References 

[1] Inomata, T., Muragaki, Y.,  Iseki, H., Dohi, T., and Hata, N., 
Intraoperative segmentation of brain tumors for open MRI 
guided glioma surgery, Proc. of the 18th International Congress 
and Exibition, Computer Assisted Radiology and Surgery, 
pp.1284, Chicago, USA, 2004. 
[2] Amini, L., Soltanian-Zadeh, H., Lucas, C., and Gity, M., 
Automatic segmentation of thalamus from brain MRI 
integrating fuzzy clustering and dynamic contours, IEEE 
Transactions on Biomedical Engineering, Vol: 51, No. 5, pp. 
800-811, May 2004. 
[3] Boscolo, R., Brown, M. S., and McNitt-Gray, M. F.,  
medical image segmentation using knowledge-guided robust 
active contours, Radiographics, 22(2): 437-48, 2002. 
[4] Luo, S., and Li, R., A new deformable model using dynamic 
gradient vector flow and adaptive balloon forces, APRS 
Workshop on Digital Image Computing, Brisbane, Australia, pp. 
9-14., Feb. 7, 2003. 
[5] Jimenez-Alaniz, J.R.   Medina-Banuelos, V.   Yanez-Suarez, 
O., Data-driven brain MRI segmentation supported on edge 
confidence and a priori tissue information, IEEE Transactions 
on Medical Imaging, Vol. 25, Issue 1, pp. 74-83, 2006. 
[6] Kobashi, S., Fujiki, Y., Matsui, M., Inoue, N., Kondo, K., 
Hata, Y., Sawada, T.,  Interactive segmentation of the cerebral 
lobes with fuzzy inference in 3T MR images, IEEE Transactions 
on Syatem, Man and Cybernetics, Vol. 36, Issue 1, pp. 74-86, 
Feb. 2006. 
[7] Kass, M., Witkin, M., and Terzopoulos, D., Snakes: active 
contour models. International Journal of Vision, 1:321–331, 
1987. 
[8] McInerney, T., and Terzopoulos, D., Deformable models in 
medical image analysis: A survey, Medical Image Analysis, 
1(2):91–108, 1996. 
[9] Jain, A., Zhong, , Y., and Dubuisson-Jolly, M., Deformable 
template models: A review. Signal Processing, 71:109–129, 
1998. 
[10] Xu, C., and Prince, J., Snakes, shapes, and gradient vector 
flow. IEEE Transactions on Images Processing, 7(3):359–369, 
1998. 
[11] Xu, C., Pham, D., Rettmann, M., Yu, D., and Prince, J., 
Reconstruction of the human cerebral cortex from magnetic 
resonance images. IEEE Transactions on Medical Imaging, 
18(6):467–479, June 1999. 
[12] Yu, Z.,  and Bajaj, C.,  Image Segmentation Using Gradient 
Vector Diffusion and Region Merging, ICPR’02, Quebec City, 
pp. 828–831, August 11-15, 2001. 
[13] Wells, W. M., Grimson, W. E. L.,  et al, Adaptive 
segmentation of MRI data, IEEE Transactions on Medical 
Imaging, Vol. 15, No. 4, August, pp.429-442, 1996.  
[14] Weickert, J., Anisotropic Diffusion in Image Processing, B. 
G. Teubner Stuttgart, 1998. 
[15] Cohen, L., and Cohen, I.., Finite-element methods for 
active contour models and balloons for 2-d and 3-d images. 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 15(11):1146–1131, November 1993.  
 

Fig. 3 The results of brain tumor segmentation on MRI using 
the proposed deformable surface model 
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