
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

120

Manuscript received May 5, 2006.
Manuscript revised May 25 , 2006.

Customized Content Delivery through XML Message Brokering

R. Gururaj, and P. Sreenivasa Kumar

Indian Institute of Technology Madras, Chennai, India

Summary
XML is being accepted as a standard format for
representation and exchange of web data. XML message
brokers play a key role as message exchange points for
messages sent between producers and consumers. An
XML message broker can perform filtering,
transformation, and routing of received messages. In
certain applications, XML message brokers may need to
perform advanced customization (value-addition) where
modifications to the structure and content of the original
message are done as per the preferences of individual
clients. Customizing the content of messages is desirable
and significant in the context of personalized content
delivery, data and application integration, and co-
operation among disparate web services. At present, XML
message brokers support user profile matching and limited
customization only. In this paper, we propose a system
named VAXBro, a value-adding XML message broker
that addresses the data processing needs of value-addition
process in an XML message broker. In this work, we also
discuss the proposed customization service specification
language, XML update approach and process optimization
techniques.

Key words:
 Message customization, XML, message broker, application
integration.

Introduction

Information Dissemination involves distributing data
produced by data sources to a set of interested data
consumers in a distributed environment. A message broker
(MB) plays a key role as central exchange point for
messages sent between message sources and consumers.
In this article we deal with MBs that adopt publish-
subscribe (PS) information dissemination model. The PS
model is a specialization of information dissemination
protocol with push-based, aperiodic data-delivery
mechanism. In this paradigm, submitted user preferences
are called profiles. The pub-sub system accepts profiles
from the end-user, and collects new information/data from
different sources and matches received information against
profiles and updates the user with relevant information. As
Extensible Markup Language (XML) has emerged as a
standard for representation and exchange of data on the

web, we assume that the future dissemination systems
support XML data exchange. A message broker that
handles XML data is called an XML message broker. The
important functions of an XML message broker are: (a)
filtering incoming messages against large number of user
queries to find if the message matches the user
requirements, (b) transformation that restructures the
message according to the user requirements, and (c)
routing which involves transmitting the message to the
user. The above mentioned transformation activity can
customize the message under distribution, to facilitate data
and application integration, and personalized content
delivery. This kind of customization is different from web-
personalization, which refers to the action that changes the
layout and content of the web page according to the user
preferences. But the personalization in XML message
brokers deals with customization of data contained in
XML format, which is meant for processing; not just
viewing as in the case of HTML.

In the recent past, many XML filtering systems have been
proposed [1][2][8][9]. All these systems accept user
interests (longstanding profiles) in the form of XPath [14]
expressions and perform filtering on arrival of a message,
to find the set of user queries that match the incoming
message. A recent XML message broker proposed in [3]
accepts user queries in XQuery [14] format and provides
slightly advanced customization functionality where the
result of a user query is delivered to the user with
customized tags.

In customized content delivery scenario, it is appropriate
to have XML message brokers that support more advanced
transformations that satisfy the needs of end user. Next, in
the context of application integration, it is natural to see
applications that are developed independently in a
distributed environment. In such cases, applications may
be dealing with XML data that have structural disparity.
When these applications are integrated, one application
may send data to the other application for the purpose of
further processing. Because of the structural mismatch, the
data received can't be used directly. If the data is
transformed to suit the needs of receiving application, then
application integration becomes more straightforward and
effective.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

121

We call the customization action that supports
sophisticated transformations to XML data as value-
addition. This paper attempts to address the needs of
value-adding XML message brokers that support value-
addition to XML messages under dissemination.

The rest of the paper is organized as follows. In Section 2,
we discuss related work and motivation. Section 3
provides details about value-adding service specification
and proposed XML update mechanism, and Section 4
describes the system design and architectural features of
VAXBro. Implementation details are given in Section 5.
In Section 6, we present performance results with process
optimization techniques and, finally, Section 7 concludes
the paper.

2. Related Work and Motivation

Value-addition to an XML message may include actions
such as- 1) inserting new elements into original message,
2) performing some complex/simple computations on data
items to produce new data items for inclusion in original
message or delivering to user with specified tags, 3)
separate a portion of the document to produce new XML
fragments, 4) delete some elements from original message,
and 5) aggregation (merging) of information received
from different sources.

Now, let us have a look at the functionalities of current
XML message filtering/broker systems. XFilter [1]
provides an efficient matching of XML documents to a
large number of user profiles, which are in the form of
XPath expressions. The XFilter enforces XML filtering by
converting XPath queries into a set of finite state machines
(FSM), which react to the XML parsing events. For each
XPath we have an FSM. The XFilter matches the
incoming document against all user profiles. On matching,
entire document is sent to the user. The functionality of
another XML filter named WebFilter [9] is similar to that
of XFilter except the matching process. The user profiles
are XPath [14] expressions and stored in the system as
attribute value pairs. The XML messages received from
the sources are matched against all the user profiles.

YFilter [2] is an improvement over its earlier version-
XFilter. YFilter represents all the user queries as a single
non deterministic automata (NFA), as against separate
FSM for each path in XFilter. This shared processing of
XPaths improves the performance.

An XML message broker described in [3], extends the
YFilter matching functionality and provides slightly
advanced functionality. The user interests are in the form
of XQuery queries. The result of the XQuery query is

wrapped in an XML fragment with user specified tags.
Though it is possible to specify delete and rename using
XQuery return clause, it is not natural and straightforward.
And, the work described in [3], doesn’t support
computation, and merging of data extracted from another
XML document into the original message.

Another most recent XML filtering system named FiST
[8], performs XML filtering by sequencing twig patterns.
In this system, XPaths with node tests are evaluated faster
than that of in YFilter.

We observe that none of the present XML message
brokers support value-added customization. The need for
advanced customization (value-addition) and inadequacies
of the present XML brokering systems stimulated us to
propose a system named VAXBro: a value-adding XML
message broker that addresses the data processing needs of
value-addition process in XML message brokers. The
major issues in realizing VAXBro are- (i) customization
service specification, (ii) storing and updating XML
messages, and (iii) process optimization. In the following
sections, we discuss all the above-mentioned issues in
detail.

As our proposed system transforms the structure and
content of the original message, the data processing needs
are entirely different from earlier systems.

3. Value-addition Service Specification and
XML Updates

In this section we present the proposed value-addition
service specification language and our proposed XML
update approach, which is effective in the context of XML
message brokering.

3.1 Value-addition Semantics

A document in a message broker could be received from
an external source, or available locally in the broker. User
queries specify customization actions on one of the
incoming documents and may involve one or more local or
other incoming documents. Each customization activity
can be thought of as a value-adding service (VS). User
specified VS may involve a set of operations. The
following are the abstract customization actions: (i) update
(INSERT, DELETE and RENAME), (ii) compute, and
(iii) return. Our proposed value-addition assumes the
following combinations of above mentioned actions: (a)
{update}: modify and send the entire document, (b)
{update-return}: modify and return a portion of the
document, (c) {compute-update-return}: compute a value,
modify and return a portion of the document, (d)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

122

{compute-return}: compute and return the result, (e)
{compute-update}: compute a value and modify the
document for dissemination, and (f) {return}: return a
portion of the document. Keeping the above value-
addition actions and system characteristics in mind, we
have proposed a value-addition service specification
language.

3.1 Customization Service Specification Language

We propose a customization specification language, which
extends subset of XQuery [14] and its update extensions
[13], as shown in Figure 2 (a) and (b) respectively. Our
language supports variable binding, variable assignment,
arithmetic functions, and return constructs of XQuery,
along with INSERT, RENAME and DELETE semantics
of XQuery update extensions as discussed in [13].

Each user query may contain computation, update and
return statements. All operations specified in update clause,
and the return statement, are considered as suboperations
(SOP) of the query. We have discussed the preliminary
issues related to the proposed customization service
specification language, in our work [4] and [5]. Here, we
give full details.

3.2 Grammar for Service Specification Language

The proposed service specification language supports the
important XQuery and update features like: (1) FLWR
expressions, (2) Update clause with insert, rename and
delete operations, and (3) simple aggregation and
arithmetic operations. The grammar for the proposed
service specification language is shown in Figure 3. Our
proposed language is not a replacement for earlier XML
query formats, and it is not a general purpose XML query
language. It is proposed to suit XML message brokering
model.

In the proposed language, all XPath variable bindings are
done in one FOR clause and a query can have more than
one LET clause. More than one UPDATE clause is
possible. All node tests are done in FOR clause itself. The
proposed specification doesn't handle ATTRIBUTES,
IDREFs, nested FOR, nested RETURN statements. The
INSERT operation performs append only. Advanced
features like - ORDER BY, GROUP BY etc., are not
supported. A sample service specification (user query) is
shown in Figure 4.

< stockQuotes >
 < stock >
 < symbol > </symbol >
 < price> < /price>
 <time> </time>
 < date> < /date>
 < /stock>
 . . .
< /stockQuotes>

 (a) stockQuotes.xml

< companyProfiles>
 <company>
 < symbol > </symbol >
 <name> </name>
 < ceo > </ceo>
 < hq> < /hq >
 < address > < /address >
 < /company>

< /companyProfiles >

 (b) companyProfiles.xml

< orgonization>
 < orgo >
 < name > </name >
 < url> < /url>
 < /orgo>
 . . .
< /orgonization>

 (c) orgo.xml

Fig. 1 Sample XML documents.

For $b IN
document(“stockQuotes.xml”)//stock
WHERE $b/symbol=’IBM’
RETURN <stockDetails>
 {$b}
 </stockDetails>
 (a)

FOR $binding1 IN XPath-expr,…
LET $binding := XPath-expr,…
WHERE predicate1,….
UpdateOp,….

EBNF for UpdateOp:
UPDATE $binding { subOp {, subOp}*}

and subOp is:
DELETE $child | RENAME $child TO name |
INSERT content [BEFORE | AFTER $child] |
REPLACE $child WITH $content |
FOR $binding IN XPath-expr,…
 WHERE predicate1,.. UpdateOP
 (b)

Fig. 2 XQuery and its update syntax.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

123

The query in Figure 4 customizes the incoming XML
message- stockQuotes.xml, shown in Figure 1 (a), which
contains stock information of some listed companies. This
query inserts ceo information for the given company,
extracted from companyProfiles.xml (Figure 1 (b)), into
stockQuotes.xml. Then it renames the element price to cost
and deletes the date element.

3.3 XML Update Approach

In VAXBro, all XML messages are stored in BDB XML
[10] database. BDB XML is an embedded database to
manage and query XML documents. BDB XML stores

documents in native form where the logical structure of
the document is retained. BDB XML can be used through
programming API. As BDB XML is an embedded engine,
and can be used with application in the same way as we
would use any other third-party package. In BDB XML
documents are stored in container, which we create and
manage through XmlManager objects. Each such object
can open multiple containers at a time. Each container can
hold a large number of XML documents. Once the
document is placed into a container, we can use XQuery to
retrieve documents or required parts of documents.
Queries are evaluated through XmlManager objects. BDB
XML supports XQuery working draft. As XQuery is an
extension to XPath2.0, BDB XML provides full support
for that query language also.

As the present XQuery draft doesn't include update
features, BDB XML too doesn't support modifications to
XML through XQuery. But, BDB XML provides
document modification facility through its API. This
allows us to easily add, delete, or modify selected portions
of XML document.

Our proposed XML update technique was presented in our
earlier work [6]. The following discussion explains our
approach to updating XML data in VAXBro, using BDB
XML API.
A. INSERT operation: this is to add an element to the
document at specified location. We use the method
addAppendStep(). The parameters need to be passed are:
(i) location where the said content is to be inserted, (ii)

FOR $st IN document("stockQuotes.xml")/stockQuotes,
 $sc IN $st/stock,
 $pr IN document(“companyProfiles.xml")/
 companyProfiles/company[symbol=$sc/symbol]

UPDATE $sc
 {
 INSERT $pr/ceo
 RENAME $sc/price TO ‘cost’
 DELETE $sc/date
 }

serviceRequest::=((forClause)|(letClause)) (letClause)* (updateOp)* (returnExpr)?

forClause::=FOR{varBind {,varBind}*}
varBind::=$binding IN XpathExpr
letClause::=LET{$binding:=asst {, $binding:=asst}*}
asst::=(mathExpr | mathFunction | otherAsst)
mathExpr::=(XpathExpr | numericConst) (op) (XpathExpr | numericConst)
op::=(+|-|*|/)
mathFunction::=(avg|sum|min|max) “((“ ({(XpathExpr | numericConst)
 {,(XpathExpr| numericConst)}*}) “))”
otherAsst::= (XpathExpr | numericConst)

updateOp::= UPDATE $binding “{“ {subOp {, subOp}*} “}”
subOp::= (DELETE $child) | (INSERT ((tcontent)|(XpathExpr)) |
 (RENAME $child TO name)
tcontent::= (tag) ((contentString) | (XpathExpr)) (endTag)
returnExpr::=RETURN (taggedContent)
taggedContent::=(tag)(taggedContent | (“{“ (XpathExpr) “}”))+ (endTag)
tag::= “<“ tagName “>”
endTag::= “</” tagName “>”

Fig. 3 Grammar for the proposed language.

Fig. 4 Customization request.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

124

content to be inserted, and (iii) the tag name of the inserted
content.
B. RENAME operation: this operation changes the name
of a tag of an element specified by the path. For this we
use the method - addRenameStep(). This method requires
the element path to be renamed and the new name.
C. DELETE operation: will remove all elements addressed
by the path. This is executed by addRemoveStep() method.
This method requires the element to be deleted.
All the above methods are defined in XmlModify class of
BDB XML API. It is clear that all the required parameters
to call the methods addAppendStep(), addRenameStep()
and addRemoveStep(), are directly or indirectly available
in the specified query.

Once, we add modification steps by calling appropriate
methods, finally we call the method runModify() of
XmlModify object by passing on the document to be
modified and other required parameters. In our approach,
first we parse the user submitted customization query and
extract all the required information to call BDB XML API
methods, and store the same in suitable data structures. As
all the queries in message brokers are longstanding queries,
this parsing activity is done only once for each query.
Next, whenever it is needed to customize the documents in
BDB XML database, our query engine (Operation
Handler) calls appropriate methods of BDB XML API, by
passing on required information, stored in local data
structures. The entire update handling process is depicted
in Figure 5.

For clarity, let us consider the following query, which
involves XML documents with structures shown in Figure
1.

Query:
FOR $st IN document(‘stockQuotes.xml’)/
 stockQuotes/stock,
$pr IN document(‘companyProfiles.xml’)/
 companyProfiles/ company[symbol=$st/symbol]
UPDATE $st
{

 INSERT $pr/ceo
 RENAME $st/symbol TO ‘org’
 DELETE $st/price

}

The above query has one INSERT operation where the
element ceo from companyProfile.xml is inserted into
stockQuotes.xml. Here, the target location where insertion
takes place is $st, which is bound to
document(‘stockQuotes.xml’)/stockQuotes/stock path, the
content to be inserted is specified by $pr/ceo and is bound
to /companyProfiles/company/ceo path in
companyProfiles.xml, and the name of the tag is ceo by
default, because it is not explicitly mentioned by the user.

Next, for RENAME operation we use the method-
addRenameStep(). This method requires the element path
to be renamed and the new name. In the above query, the
second SOP is a RENAME operation. The element to be
renamed is specified by the path $st/symbol, and the new
name is org. Similarly, the DELETE operation is executed
by the- addRemoveStep() method. This method requires
the element to be deleted. In our example query, it is given
by the path $st/price.

3.4 Update Performance Comparison

Here, we compare the performance of our proposed update
approach with another approach where Relational
Database Management System is used to store XML data.
And this study is made with an intention to analyze the
effectiveness of relational approach and our approach in
the context of XML message brokering. The relational
approach is discussed in [11][12][13].

Basic features of relational approach are implemented and
a set of four queries was considered for test execution,
which perform INSERT, DELETE and RETURN
operations. INSERT operation inserts a new arbitrary
element with user specified content. DELETE removes a
specified leaf element. RETURN operation returns a
specified leaf element. The above set of queries was
executed on both the implementations. The customization
time for the tested queries, for both the approaches is
shown in a graph as given in Figure 6. From the results it
is evident that our approach to updating and rebuilding
XML documents works better than that of relational

Fig. 5 Handling XML updates.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

125

approach. In the present relational implementation we
have not implemented rename operation, inserting
complex elements, and inserting elements extracted from
other documents. It is obvious that the complexity of such
operations would further reduce the performance in case
of relational approach. This is because, new tables are to
created for new elements, which are not in old structure.
Further, in message brokering systems, after modifications,
the document need to be built back for dissemination.

0
50

100
150
200
250
300

Q1 Q2 Q3 Q4

Queries

C
us

to
m

iz
at

io
nT

im
e

(m
se

c.
)

Relational
Approach
Our Approach

In relational approach, many tables are to be accessed and
hence, cumbersome. In our approach, this is
straightforward because documents are stored in native
form. Another disadvantage with relational approach is
that, every time a new message arrives, we need to shred
that data into respective tables before doing any
processing. This is not needed in proposed approach. And,
if multiple queries request different customization, it is too
complex to handle that kind of situation in relational
approach, as we need copies of same set of tables for each
query. In proposed approach, we just copy the whole
target document for each query. Hence, our proposed
approach to storing and modifying XML data is more
effective than relational approach for XML message
brokering systems.

4. System Design and Architecture

Our proposed value-adding XML message broker VAXBro,
accepts user customization requests in a format as
discussed in the earlier section. On receiving a message
from a source, the system executes all the involved user
queries. We call the incoming document on which
customizations are specified as target document. System
output consists of a set of customized XML documents,
which will be delivered to concerned users. The consumer
of the customized message could be an end-user (human
or an application that accepts XML data input from

external sources), or another XML message broker on the
downstream of information dissemination network.

The major activities of VAXBro are: (a) query
management, (b) message management, (c) operation
handling, and (d) dissemination management. The core of
VAXBro functionality is as follows: given a large set of
customization requests specified using the proposed
service specification language, and a collection of local
documents, perform modifications and restructuring of
incoming XML messages using effective data processing
schemes. The query management and message handling
are independent of each other. One specific requirement
of the system is that each query needs customizations on a
target document in its own way. Hence, multiple copies of
the same target document are needed.

We have presented the architecture of VAXBro in our
earlier work [8]. The proposed architecture is shown in
Figure 7. The important components and their
functionality is as discussed below.

A. Data store
This consists of two databases. The first one is Berkeley
DB (BDB) XML [10] database to store XML documents,
and the second is a relational database to store query,
message and user related information.

B. Query manager
This module collects all the queries submitted by users and
parses them to extract customization (suboperations) and
user-query related information. The parsed information is
stored in relational database in appropriate form. This
module is also responsible for extracting and storing query
containment information, which is needed for process
optimization to be discussed in later sections.

C. Message manager
Is responsible for receiving a message from a source and
storing the same in XML database. Based on the stored

Fig. 6 Comparison of Update performance.

Fig. 7 VAXBro architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

126

query related information, this module finds the queries to
be triggered for the incoming message. The execution of
involved queries is triggered only if all involved
documents are available at the system. This module
invokes the functioning of operation handler module. As
required, multiple copies of the target document are made
and stored in XML database.

D. Operation handler
This module executes the SOPs of a query in specified
order, to produce customized content (results) for
dissemination. This module extracts the details (stored in
relational database) required to execute individual SOPs.
The queries are executed on specified copy of the target
document designated for the query. Finally, the
customized output of the value-adding process is stored in
XML database with a specified name.

E. Dissemination manager
This takes care of disseminating the customized messages
to concerned users. Once, the customized output is made
available by the operation handler, the dissemination
manager module extracts the concerned user information
for each query executed by the operation handler (this
information is available in relational database) and
delivers the output document to the same. Once the output
is sent to the concerned users/clients, the result document
is deleted from the XML database appropriately.

We propose to store the customization information
contained in a query, per suboperation basis, in relational
database. The operation handler module executes SOPs of
each query in specified order, with the help of this
information. Our system executes SOPs of a query
individually. This process gives rise to incremental
transformation of the message.

5. Implementation Details

The prototype implementation of the proposed system is
complete. Our present implementation is based on the
following assumptions: (a) customization operations are
always targeted on incoming messages, not on local
documents, (b) data updates on local documents are dealt
separately, and for the sake of brevity, it is not discussed
in this paper, (c) reducing processing time is more
significant than reducing the space required by the process,
(d) input XQuery queries are syntactically correct, (e)
structure of all documents is known apriori, and (f) no
document will have two versions at given time instance.
Now, we discuss the implementation issues involved in
each of the modules of VAXBro.

A. Data store
We have chosen to store query, message and user related
information in IBM DB2 relational database. Storing
query related information such as- suboperation details,
target documents, and document copies on which the
query is executed is more crucial. We have designed
appropriate relational table structures to capture all the
required data. To store XML documents we use BDB
XML database. The advantages of using BDB XML are:
(a) it supports XPath and XQuery expression evaluation,
(b) its API provides methods to modify the structure and
content of the document, and (c) we don’t have to rebuild
the document back, after modifications as it is done in the
case of storing XML data in relations of some RDBMS.
The BDB XML database supports storing the whole
document as a single object.

B. Query manager
The query manager module is a Java program and calls a
JavaCC (Java Compiler Compiler) [7] program to parse
the input query. The following are some important things
that are result of the parsing process: (1) user related
information, (b) query related data, and (c) customization
actions defined in a query (SOPs). For each SOP, it
extracts the information like- target document, other
documents involved, operation type, source content (in
case of INSERT), computations involved, rename or
delete information, and return statement fields. The
information extracted depends on the action performed by
the SOP. The extracted information is stored in
appropriate table structures of the relational database. This
module, also finds the query overlaps and records the
same in appropriate format in relational database. The
operation handler uses the overlap information at later
point of time, to optimizing the process as discussed in
previous section.

C. Message manager
Message manager is a Java program. On receiving a
message, we extract the list of queries that can be
triggered, and for each query we check if all the other
involved documents (incoming or local) are readily
available with the system. If ready, the message manager
triggers the execution of that query by passing the query id
to operation handler module. Otherwise, we just save the
message in XML store and postpone the query execution.
For each target document, the message manager creates
copies with specified file names, per query basis.

D. Operation handler
Once, the query execution is triggered by the message
manager, message processing is invoked by operation
handler program written in Java. For the query under
execution, it extracts all the suboperations of that query,
from relational tables and then executes them in specified
order. We plan to execute SOPs with the help of facilities

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

127

provided by BDB XML database version 2.0 for Java.
BDB XML database supports XPath and XQuery. If the
SOP is a FILTER, or COMPUTE with RETURN, we can
straightaway execute the SOP, in XQuery format. If the
SOP is a modification request, then we perform updates as
discussed in Section 3. All required parameters to execute
the modification methods are directly or indirectly
available in relational tables of system data store. In our
proposed prototype, we implement only few features of
the proposed service specification language. And it is not
difficult to understand that, more features can be
implemented, as every piece of information, which is
required to modify the document, or to query the
document is available in some form in the input query.
The parser of the query manager module does the
extraction of all the required information from input
queries.

All suboperations of a query will work on same copy of
the target document. Each query has one final output
document. If intermediate result of a query is used by
other queries, then intermediate output of the query
maintained in the system after executing specified
suboperations. As the focus of our work is on data
processing needs of the system, we don’t implement the
functionality of the dissemination manager module. We
assume that output XML messages are disseminated to the
concerned users based on the user-query information
stored in relational database. All output XML documents
can be deleted once they are disseminated.

6. Performance

Having completed the implementation of the prototype,
which is needed to validate our ideas, we conducted the
following experiments to observe the performance of the
system with basic data processing algorithm. Experiments
were conducted on an Intel Pentium 4 machine with 1.7
GHz. and 256MB RAM, running on MS Windows2000.

The test data is stock market information being provided
by YAHOO site. Stock details are refreshed once in every
20 minutes. For this set of experiments we use the
following three XML documents- (1) stockQuotes.xml
(contains stock price information), (2)
companyProfiles.xml (contains company related
information), and (3) orgo.xml (contains some other
organizational data). We have written a program to pull
stock price details from the site, and generate
stockQuotes.xml. We consider both stockQuotes.xml as
incoming documents, and comapanyProfiles.xmland
orgo.xml as local document. The structures of the above
mentioned documents are shown in Figure 1.

In Our first experiment, we have taken a set of 100
randomly generated queries, and run them against
documents with varying size (varying the number of stock
elements in each involved file). The time taken to execute
the set of 100 queries for varying number of elements is
shown in Figure 8(a). We observe that as the number of
elements increase the customization time also increases.
The rate of change is slightly more for larger number of
elements.

Second experiment was done by keeping the size of the
involved documents constant and varying the number of
randomly generated queries. The number of stock
elements in documents was 50. The observations are
plotted in graph as shown in Figure 8(b). We observed a
moderate rise in customization time as the number of
queries in the system is increased.

31.2
48.66

72.9

103.16

145.96

0

20

40

60
80

100

120

140

160

20 40 60 80 100

Number of stock elements

C
us

to
m

iz
at

io
n

tim
e(

S
ec

.)

(a) Customization time for varying number stock elements, &
100 queries.

7.131
13.432

20.162
29.819

36.975
45.288

52.865

67.6

80.46

94

0
10
20

30
40
50
60
70

80
90

100

20 40 60 80 100 120 140 160 180 200

Number of queries

C
us

to
m

iz
at

io
n

tim
e(

S
ec

.)

(b) Customization time for varying
number of queries, & 50 stock elements.

Fig. 8 System performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

128

6.1 Process Optimization

Our proposed value-addition increases the processing
overhead of the system considerably. We propose the
following techniques to optimize the data processing in
VAXBro.

A. Shared processing of queries by exploiting
commonality

The proposed intermediate representation of the XQuery
query splits the complex value-adding service into
suboperations. This will give rise to incremental message
transformation. For each user submitted query qj, we
conduct the containment test to find if: (a) qj is equivalent
to other user query ij, in such case we just add the user id
to the list of user ids for qi in data structure where query
and user mapping is stored, (b) the first n suboperations in
qj, are equal/similar to first n suboperations in qi ; in such
case we save a copy of the target document modified by
the first n suboperations of qi and that will become the
target document for qj. While executing qj, we skip first n
suboperations in. In such case we should always execute qi
before qj and later one is dependent on the former one, and
(c) the query is disjoint and for no n, first n suboperation
of the query are similar to that of first n SOPs in any other
query. In such case it has a separate entry and not
dependent on any other query. Thus, we exploit the
commonality among customization requests. The whole
exercise is to avoid redundant operations and make use of
intermediate results of one query by another. The above
scheme is depicted in Figure 9. In the example shown in
Figure 9, we have three queries- Q1 with SOPs-
{a,b,c,d,e}, Q2 with {a,b,k,m}, and Q3 with {a,b,k,j,t}.
SOPs with same alphabet represent identical operations
and further we assume that all the queries modify same
target document.

The above optimization technique is implemented in our
prototype. Experiments were conducted to assess the
effectiveness. During the experiment, different sets of
queries were considered with varying degree of
containment. We introduce the notion of containment

index (CI)} to measure the degree of containment in a
given set of user queries. This CI varies between 0 and 1.
Lower CI represents less containment. We conducted
experiments with two target documents one with 20, and
the other with 100 stock elements in stockQuotes.xml. The
graphs shown in Figure 10, show the results of
experiments on containment. On x-axis, we have CI along
with percentage of savings in computation time on
exploiting the containment. We observed that performance
of the system improves with increase in containment and
increase in target file size.

A. Reusing pre-computed results of XPaths

Our second technique is based on exploiting the static
nature of the local documents in our system. We know that
the data contained in local documents are relatively static.
It doesn't change as frequently as incoming data. Queries
may involve SOPs that extract data from local documents
and insert the same into some target document. In such
case we plan to evaluate the XPath expressions that
involve local documents only once when they are

Fig. 9 Exploiting commonality among the user queries.

0
2000
4000
6000
8000

10000
12000
14000
16000

0.12
(7.11%)

0.25
(22.16%)

0.37
(33.12%)

0.52
(48.28%)

Containment index (CI) with % saving in
comp. time

C
us

to
m

iz
at

io
n

tim
e

(m
se

c)

Without containment

With containment

2000
2100
2200
2300
2400
2500
2600
2700
2800

0.14
(5.4%)

0.25
(10.4%)

0.4
(11.3%)

0.56
(16.28%)

Containment index (CI) with %
saving in comp. time

C
us

to
m

iz
at

io
n

tim
e

(m
se

c)

Without containment
With containment

(a) With 20 stock elements

(b) With 100 stock elements

Fig. 10 Performance improvement on exploiting commonality
among the user queries.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

129

encountered for the first time and store the result in
appropriate data structures. During the subsequent
encounters, we don't reevaluate them. Instead, we just use
the data, which has been cached earlier. We illustrate the
above with an example query shown below, which
involves an SOP that inserts ceo information of companies
extracted from companyProfiles.xml into stockQuotes.xml.

FOR $st IN document("stockQuotes.xml")/stockQuotes,
$sc IN $st/stock,
$pr IN
document(“companyProfiles.xml")/companyProfiles/comp
any[symbol=$sc/symbol]
UPDATE $sc
 {
 INSERT $pr/ceo
 }

Here, we assume that the document companyProfile.xml is
local to the system and contains data, which is relatively
static. We evaluate the XPath $pr/ceo on
companyProfile.xml with appropriate bindings during the
first evaluation and store the outcome along with insert
key (used to join elements from two documents)
information in appropriate data structures. During the
subsequent requirements we use the stored data for
insertion operations.

The above technique is also implemented in prototype. We
experimented with insert string of varying lengths (i.e., 15,
400, and 800 characters), and varying target document
size (20 and 100 stock elements in stockQuotes.xml).
Results of our experiments are shown in Figure 11. We
observe that the saving in customization time is more if
the length of the insert string (result of XPath exression on
local document) is more. Figure 12 shows the
improvement in performance on using pre-computed
results of arithmetic operations involving data from local
documents. The saving in customization time is more for
larger no. of operations and larger document size.

0

50
100

150
200
250

300

350

15 (6.98%) 400 (11.05%) 800 (11.49%)

Length of insert string in characters and % of saving
in cust. time

C
us

to
m

iz
at

io
n

tim
e

(m
se

c)

Basic

Caching

(a) With 20 elements in stockQuotes.xml

0

200

400

600
800

1000

1200

1400

15 (9.2%) 400 (11.3%) 800 (11.2%)

Length of insert string in characters and % of saving
in cust. time

C
us

to
m

iz
at

io
n

tim
e

(m
se

c)

Basic

Caching

(b) With 100 elements in stockQuotes.xml

Fig. 11 Performance improvement on using pre-evaluated results of
XPath expressions on local documents.

220
230
240
250
260
270
280
290
300
310

2 (16.25%) 5 (16.66%)

Number of arithmetic operations and % of saving in
cust. time

C
us

to
m

iz
at

io
n

tim
e

(m
se

c.
)

Basic

Caching

(a) With 20 elements in stockQuotes.xml

0

500

1000

1500

2000

2 (45.5%) 5 (46.41%)

Number of arithmetic operations and % saving in
cust. time

C
us

to
m

iz
at

io
n

tim
e

(m
se

c.
)

Basic

Caching

(b) With 100 elements in stockQuotes.xml

Fig. 12 Performance improvement on using pre-evaluated
results of arithmetic operations.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

130

7. Conclusions

This paper presents the design and development of
VAXBro, a value-adding XML message broker. VAXBro
supports advanced customization to XML messages under
dissemination. The focus of the paper is on addressing
issues in customization service specification, XML
updates and other data processing needs of VAXBro. The
proposed approach to storing and updating XML
documents using Berkeley DB XML native database
works more effectively than relational approach, in the
context of XML message brokering. The prototype
implementation of the proposed system is complete.
Further, experiments were conducted on prototype, in
order to test the correct functioning of the system and to
assess the behavior and performance of the system at
various workloads. The following process optimization
techniques are proposed and tested: (1) exploiting the
commonality among the user queries (shared processing),
and (2) use of pre-evaluated XPath results on static
documents. Both the optimization techniques showed
considerable improvement in performance. Observations
made during the experiments are reported with appropriate
representations. Because of its inherent complexity and
sophisticated customization facilities, the proposed XML
message broker- VAXBro is best suited for application
integration than large-scale dissemination. There is a
scope for extending the customization functionality of the
system with more number of value-addition operation
types like- replacing parts of an XML document with new
content etc.

References

[1] Altnel M. and Franklin M.J. (2000). Efficient Filtering
of XML Documents for Selective Dissemination of
Information. Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 53-64.

[2] Diao Y., Franklin M.J. (2003). High-Performance
XML Filtering: An Overview of YFilter. IEEE Data
Engineering Bulletin, Vol. 26:1, March, 41-48.

[3] Diao Y., Franklin M.J. (2003). Query Processing for
High-Performance XML Message Brokering.
Proceedings of the 29th VLDB Conference, Berlin,
Germany, 261-272.

[4] Gururaj R. and Sreenivasa Kumar P. (2005). Service
Specification in a Value Adding Broker for Data
Dissemination Through XML. Proceedings of the IACIS
Pacific 2005 Conference, Taipei, Taiwan, pp. 406-413.

[5] Gururaj R. and Sreenivasa Kumar P. (2005).
VAXBro: A Value-Adding XML Message Broker. To
appear in Proceedings of the ADCOM 2005 Conference,
Coimbatore, India.

[6] Gururaj R. Giridhar Reddy M., and Sreenivasa Kumar
P. (2006). An Effective Approach for Modifying XML
Documents in the Context of XML Message Brokering.
To appear in Proceedings of the IACIS Fall 2006
Conference, Reno, Nevada, USA.

[7] Java Compiler Compiler (JavaCC). Available:
http://javacc.dev.java.net.

[8] Kwon, J., Praveen Rao, Bongki Moon, and Sukho Lee
(2005). FiST : Scalable XML Document Filtering by Sequencing
Twig Patterns. Proceedings of the 31st VLDB Conference,
Trondheim, Norway, pp. 217-228.

[9] Pereira J., Fabret F., Jacobsen H.A., Llirbat F. and
Shasha D. (2001). WebFilter: A High-throughput XML-
based Publish and Subscribe System. Proceedings of the
27th VLDB Conference, Rome, Italy, 723-724.

[10] Sleepycat software's Berkeley DB XML database.
Available: http://www.sleepycat.com/products/xml.shtml.

[11] Shanmugasundaram, J., Kristin Tufte, Chun Zhang,
Gang He, David J. DeWitt, and Jeffrey F. Naughton.
(1999). Relational database for querying XML documents:
Limitations and opportunities. Proceedings of the 25th
VLDB Conference, Edinburgh, Scotland, 302-304.

[12] Shanmugasundaram, J., Eugene J. Shekita, Rimon
Barr, Michael J. Carey, Bruce G. Lindsay, Hamid Pirahesh,
and Berthold Reinwald. (2000). Efficiently publishing
relational data as XML documents. Proceedings of the
26th VLDB Conference, Cairo, Egypt, 65-76.

[13] Tatarinov, I., Zachary G. Ives, Alon Y. Halevy, and
Daniel S. Weld. (2001). Updating XML. Proceedings of
the ACM SIGMOD Conference, Santa Barbara, CA, USA,
413-424.

[14] World Wide Web Consortium. Available: http://
www.w3c.org.

Author Profile

R. Gururaj : He is a Ph.D., scholar of Computer
Science and Engineering Dept., at Indian Institute of
Technology Madras, India. He received his Master of
Technology (M.Tech.) from Birla Institute of
Technology, Ranchi, India. His research areas include

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

131

databases, data integration and dissemination systems,
and message brokers.

P. Sreenivasa Kumar : He is a professor in Computer
Science and Engineering Dept., at Indian Institute of
Technology Madras, India. He received his Master of
Technology (M.Tech.) and Ph.D., in engineering, from
Indian Institute of Sciences, Bangalore, India. His research
areas include databases, data integration and dissemination
systems, and semistructured data, and ontology.

