
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

136

Manuscript received May 5, 2006.
Manuscript revised May 25, 2006.

Mining Frequent Patterns from Weighted Traversals on Graph using
Confidence Interval and Pattern Priority

Seong Dae Lee,† and Hyu Chan Park ††

†, †† Department of Computer Engineering, Korea Maritime University, Busan, Korea

†† School of Information Technology & Electrical Engineering, University of Queensland, QLD, Australia

Summary
A lot of real world problems can be modeled as traversals on
graph. Mining from such traversals has been found useful in
several applications. However, previous works considered only
unweighted traversals. This paper generalizes this to the case
where traversals are given weights to reflect their importance. A
new algorithm is proposed to discover frequent patterns from the
weighted traversals. The algorithm adopts the notion of
confidence interval to distinguish between confident traversals
and outliers. By excluding the outliers, more reliable frequent
patterns can be obtained. In addition, they are further ranked
according to their priority. The algorithm can be applied to
various applications, such as Web mining.

Key words:
Data mining, Frequent pattern, Weighted traversal, Graph,
Confidence interval

1. Introduction

Data mining refers to the process of semi-automatically
analyzing large databases to discover useful patterns [1].
Several data structures and algorithms have been proposed
and successfully applied to many applications [2].
Recently, data mining on graph becomes a center of
interest. Graph is widely used to model several classes of
data in the real world. The structure of Web site can be
modeled as a graph, for example, in which vertices are for
Web pages, and edges represent hyperlinks between the
pages. User navigations on the Web site can be modeled
as traversals on top of the graph. Each traversal can be
represented as a sequence of vertices, or equivalently a
sequence of edges. Once the graph and its traversals are
given, valuable information can be discovered. Most
common form of the information may be frequent patterns,
i.e., the sub-traversals that contained in a large ratio of
traversals. In the previous works, but, traversals are treated
uniformly without considering their importance [3, 4, 5].

In this paper, traversals are assigned with weights to
reflect their importance. For example, when users navigate
Web site, they may have different interest in each page,
and therefore stay for different times. Each edge, which

represents a transition between Web pages, can be
assigned with a weight standing for the user stay time.
This paper generalizes the mining problem to the case
where traversals are given such weights reflecting their
importance. The weights are taken into account in the
measurement of support, the ratio of traversals which
contains a candidate pattern. If a traversal has some edges
with extremely smaller or larger weight, then it is treated
as an outlier, and can not contribute to the support. For
example, when users navigate Web site, they may pass
through a page very quickly to transfer to another page, or
take their eyes off a page for a long time while do another
work. This kind of page-view is abnormal and treated as
an outlier because the page is not effectively read by the
user.

We adopt the notion of confidence interval to classify
the weights into confident ones and outliers. If a weight
lies within the confidence interval, then it is considered as
a confident one, but if it lies outside the confidence
interval, then it is considered as an outlier. The confidence
interval is defined statistically according to the distribution
of values. On top of the notion, we propose a level-wise
algorithm for the discovery of frequent patterns. In each
pass, candidate patterns are tested on the traversals to
count their supports, and then evaluated with respect to the
supports to become frequent patterns. The frequent
patterns are joined together to generate one-step larger
candidates. It proceeds until no more candidates are
generated. The frequent patterns are further ranked
according to their priority. It reflects other aspects of the
patterns, such as the connectivity and vertex weights
besides the support.

This paper is organized as follows. In Section 2, we
review previous works related with the traversal pattern
mining and weighted mining. Section 3 proposes an
algorithm for the discovery of frequent patterns from
weighted traversals on graph. In Section 4, we experiment
and analyze the algorithm on synthetic data. Finally,
Section 5 contains the conclusion and future works.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

137

2. Related Works

The main stream of data mining, which is related to our
work, can be divided into two categories, i.e. the traversal
pattern mining and the weighted mining. For the traversal
pattern mining, there have been few works. Chen et al. [3]
proposed the problem of traversal pattern mining, and then
proposed algorithms with hashing and pruning techniques.
However, they did not consider graph structure, on which
the traversals occur. Nanopoulos et al. [4, 5] proposed the
problem of mining patterns from graph traversals. They
defined new criteria for the support and subpath
containment, and then proposed algorithms with a trie
structure. They considered the graph, on which traversals
occur. Although the above works dealt with the mining of
traversal patterns, to the best of our knowledge, there is no
work which considers the notion of weight as our one.

For the weighted mining, most of previous works are
related to the mining of association rules and its sub-
problem, the discovery of frequent itemsets. Cai et al. [6]
generalized the discovery of frequent itemsets to the case
where each item is given an associated weight. They
introduced new criteria to handle the weights in the
process of finding frequent itemsets, such as the weighted
support for the measurement of support, and the support
bound for the pruning of candidates. Wang et al. [7]
extended the problem by allowing weights to be associated
with items in each transaction. Their approach ignores the
weights when finding frequent itemsets, but considers
during the association rule generation. Tao et al. [8]
proposed an improved model of weighted support
measurement and the weighted downward closure
property. Yun et al. [9] also considered weighted items in
the process of frequent itemsets, and the length-decreasing
support constraints for a new measurement of support.
Although the above works take the notion of weight into
account as examined in this paper, they can not be adapted
directly to our work because they only concerned on the
mining from items, but not from traversals.

3. Mining Frequent Patterns

The algorithm proposed in this paper is mainly composed
of three phases. The graph augmentation phase is a pre-
processing phase, in which each edge of the base graph is
augmented with average weight and standard deviation.
The frequent patterns discovery phase is the main phase,
in which frequent patterns are discovered from the
augmented graph and traversal database. The pattern
priority phase is a post-processing phase, in which the
frequent patterns are ranked according to their importance
to users. We first define some related definitions and the

problem statement, and then propose algorithms for the
phases.

3.1 Definitions and Problem Statement

Definition 1. A simple directed graph is a finite set of
vertices and edges, in which each edge joins one ordered
pair of vertices. The graph contains no self loop which
joins a vertex with itself. A base graph is a simple directed
graph, on which traversals occur.
Definition 2. A traversal is a sequence of consecutive
edges of a base graph. It can be represented with a
sequence of the connecting vertices of each edge, thus a
traversal t = <v1, v2, …, vn>. A weighted traversal is a
traversal, in which each edge has an associated weight.
Thus a traversal t with associated weights w is represented
as (t, w) = (<v1, v2, …, vn>, <w1, w2, …, wn-1>), where wi
means the weight of edge <vi, vi+1>. A traversal database
is a set of weighted traversals.
Definition 3. A subtraversal is any subsequence of
consecutive vertices in a traversal. If t = <v1, v2, …, vn> is
a traversal, then s = <s1, s2,…, sm> is a subtraversal of t
when there exists a k ≥ 0 such that tj+k = sj for all 1 ≤ j ≤ m.
If an arbitrary pattern is a subtraversal of a traversal, then
we said that the pattern is contained in the traversal, and
vice versa, the traversal contains the pattern.
Definition 4. Let G = (V, E) be a base graph, and T be a
traversal database, then an augmented graph Gw is defined
as follows. Each node vi ∈ V is assigned with a weight wi.
Each edge, <vi, vj> ∈ E, is labeled with a pair of average
weight and standard deviation, (μij, σij), which are
obtained from the weights of the corresponding edges of
traversals in T.
Definition 5. A confidence interval is an interval between
two numbers, within which a random variable X lies with
a confidence level. In our problem, if a weight lies within
the confidence interval, then it is considered as a confident
one, but if it lies outside the confidence interval, then it is
considered as an outlier.

The problem concerned in this paper is stated as
follows. Given a base graph and weighted traversals on
the graph, find all patterns contained in the traversals in a
ratio of larger than minSup. This ratio is called support,
and a pattern with the support larger than minSup is called
frequent. When counting the support, the weights of
traversals should lie within a specified confidence interval.
In addition, determine the priority of frequent patterns
according to their importance criteria besides the support.

3.2 Augmentation of Base Graph

When a base graph and weighted traversals are given, first
phase of the algorithm is to augment the base graph with

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

138

supplementary information to be used for the subsequent
phases. The supplementary information includes the
average weight and standard deviation for each edge, and
the weight for each vertex.

Fig. 1 depicts an example of base graph and traversal
database. On the base graph, all the traversals traverse the
vertices through the edges. The traversal #1, for example,
traverses consecutively the vertices A, B and C through the
edge <A B> with the weight 2.2, and <B C> with 2.0.

(a) Base graph

ID Traversal Weight

1
2
3
4
5
6
7
8
9

10

<A B C>
<B D E C A>
<C A B D>
<D C A>
<B C A>
<A B E C>
<A B D E C>
<B E C>
<B D C>
<C A B D>

<2.2 2.0>
<3.0 4.3 3.5 3.1>
<2.9 2.0 4.0>
<4.0 3.0>
<2.2 2.9>
<2.1 3.4 3.2>
<1.4 3.9 4.4 3.2>
<2.3 3.4>
<3.8 3.1>
<2.5 2.2 4.1>

(b) Traversal database

Fig. 1 Example of base graph and traversal database

Given the base graph and traversal database, the base
graph can be augmented as follows. For each edge of the
base graph, we can collect the corresponding weights of
the edge from the traversal database, and then calculate the
average and standard deviation. For the edge <A B> as an
example, we can collect the weight values, 2.2, 2.0, 2.1,
1.4 and 2.2, and then calculate the average 2.0 and the
standard deviation 0.3. Fig. 2 shows the augmented graph
as the result. Each vertex is also assigned with an arbitrary
weight, which may reflect the importance of the vertex.

Fig. 2 Example of augmented graph

3.3 Discovery of Frequent Patterns

Main phase of the algorithm is to find frequent patterns
from the traversal database and augmented graph. To
derive the algorithm, we first investigate an important
property of patterns. Let the length of a pattern be the
number of vertices contained in it. On the augmented
graph, any pattern p = <p1, p2, …, pk> of length k has
exactly two subpatterns of length k-1, i.e., <p1, p2, …, pk-

1> and <p2, p3, …, pk>. For example, a pattern <A B D E
C> in Fig. 2 has two subpatterns, <A B D E> and <B D E
C>. Therefore, a pattern of length k is frequent only if its
two subpatterns of length k-1 are also frequent. Such
downward closure property allows us to develop a level-
wise algorithm like the Apriori algorithm [1].

Fig. 3 shows the algorithm proposed in this paper,
which performs in a level-wise manner. It initializes the
candidate patterns of length 1 with all vertices of the
augmented graph. In each pass of the algorithm, the
traversal database is scanned to count the supports of all
candidates. The supports are then adjusted according to
the specified confidence interval. Next, frequent patterns
are determined from the candidates whose supports are
larger than the specified minimum support. Finally, new
candidates are obtained from the frequent patterns for next
pass. It repeats until no more candidates are generated.

Input: augmented graph Gw, traversal database T,

minimum support minSup, confidence interval confInv
Output: frequent patterns Lk

 // initialize candidate patterns of length 1

C1 ← set of all vertices
 k = 1

while (|Ck| > 1) { // while candidates exist

 // count supports for candidate patterns

 for each traversal t ∈ T {
 P = {p | p ∈ Ck, p is a subtraversal of t}
 ∀p ∈ P p.count++

D B

E C

A

(2.0, 0.3)

(0.0, 0.0)

(2.9, 0.2)

(3.8, 0.4)

(3.3, 0.2)

(4.4, 0.1)

(3.6, 0.6)

(2.9, 0.8)

(2.1, 0.1)

D B

E C

A

2.

2. 3.

2.3.0

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

139

 }

 // prune candidate patterns w.r.t confInv
 if (k ≥ 2) Ck ← pruneCandidates(Ck, Gw, confInv)

 // generate frequent patterns
 Lk = {p | p ∈ Ck, p.count ≥ minSup}

 // generate candidate patterns for next pass
 Ck+1 ← genCandidates(Lk, Gw)
 k++

}

Fig. 3 Algorithm for frequent patterns

 In the algorithm, pruneCandidate() adjusts the supports
of candidate patterns as follows. Given a pattern p = <p1,
p2, …, pk> is a subtraversal of a weighted traversal (t, w) =
(<v1, v2, …, vn>, <w1, w2, …, wn-1>). If there is an edge
<vi, vj> in the part of the traversal coincided with the
pattern, whose weight wi lies outside the confidence
interval, then the traversal can not contribute for the
support of the pattern. For example, even though a pattern
<A B D> is contained in the traversal #7 (<A B D E C>,
<1.4 2.3 4.4 3.2>) of Fig.1 (b), the traversal can not
contribute for the support because its edge <A B> has the
weight 1.4 which lies outside the confidence interval
1.41~2.59. For the determination of confidence interval
for each edge of the augmented graph, we assume that the
distribution of weight values follows the normal
distribution. As in almost applied practices, if the
confidence interval is stated at the 95% confidence level,
then P(μ − 1.96σ ≤ X ≤ μ + 1.96σ) = 0.95, where μ is the
average and σ is the standard deviation. In other words,
95% of weight values are considered to exist within the
confidence interval, (μ − 1.96σ) ~ (μ + 1.96σ), but
remaining 5% exist outside. For example, the edge <A B>
in Fig. 2 has the confidence interval, (2.0 − 1.96 × 0.3) ~
(2.0 + 1.96 × 0.3) ≡ 1.41 ~ 2.59. If a weight value lies
outside this interval, then it can be considered as an outlier.
Therefore, traversals whose edges have such weight
values can not contribute for the support of patterns.
 genCandidates() generates new candidate patterns for
next pass. By the downward closure property, new
candidates of length k+1 can be obtained by joining the
frequent patterns of length k. If there are two frequent
patterns of length k, <p1, p2, …, pk> and <p2, p3, …, pk+1>,
a new candidate pattern of length k+1, <p1, p2, …, pk+1> is
obtained. For example, <A B C> and <B C D> result in
<A B C D>. Note that <A B C> and <C D E>, but, can
not be joined to make <A B C D E>.
 An example of the algorithm is shown in Fig. 4, which is
derived from the traversal database in Fig. 1 (b), and the
augmented graph in Fig. 2. We assume the minimum
support as 2, and the confidence level as 95%. The
algorithm initializes the candidates C1 of length 1 with all

the vertices. By scanning the database, the support of each
candidate is determined as shown in C1. The candidates,
whose support is larger than 2, become the frequent
patterns of length 1 as in L1. By joining the frequent
patterns, new candidates of length 2 are obtained as in C2,
after deleting non-existing edges in the augmented graph.
The database is again scanned to count the support of the
candidates. The supports are then adjusted by using the
confidence interval. For example, the support of the
pattern <A B> is 5 initially, but must be decreased to 4.
This is because the weighted traversal #7, (<A B D E C>,
<1.4 2.3 4.4 3.2>) can not contribute for the support
because the weight 1.4 of the edge <A B> lies outside the
confidence interval 1.41~2.59. From the adjusted
candidates, the frequent patterns L2 are obtained. Again,
the candidates of length 3, C3, are obtained by joining the
L2. For example, <A B> and <B C> result in <A B C>.
The algorithm proceeds similarly up to the L3, and then
terminates because there is no candidate of length 4 by
joining the L3.

C1 L1
Candidate

Pattern
Pruned
Support

Frequent
Pattern

Pruned
Support

<A>

<C>
<D>
<E>

8
9

10
6
4

<A>

<C>
<D>
<E>

8
9

10
6
4

C2 L2
Candidate

Pattern
Pruned
Support

Frequent
Pattern

Pruned
Support

<A B>
<A C>
<B C>
<B D>
<B E>
<C A>
<D C>
<D E>
<E C>

4
0
2
4
2
4
2
2
4

<A B>
<B C>
<B D>
<B E>
<C A>
<D C>
<D E>
<E C>

4
2
4
2
4
2
2
4

C3 L3
Candidate

Pattern
Pruned
Support

Frequent
Pattern

Pruned
Support

<A B C>
<A B D>
<A B E>
<B C A>
<B D C>
<B D E>
<B E C>
<C A B>
<D C A>
<D E C>
<E C A>

1
2
1
1
1
1
2
1
1
2
1

<A B D>
<B E C>
<D E C>

2
2
2

Fig. 4 Example of frequent patterns

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

140

3.4 Priority of Patterns

The algorithm determined the importance of frequent
patterns, as in the previous works, according to the
number of their occurrences in the traversals. Although
such support is concerned as the primary criterion for most
problems, variety of supplementary information can be
adopted as secondary criteria. This paper proposes one
possible criterion as follows.
Priority of a pattern p =
 support of p

 + number of edges incident into p / total edges
 + sum of edge weights of p / total edge weights
 + sum of vertex weights of p / total vertex weights

The priority of patterns are determined by the

combination of support, ratio of incident edges, ratio of
edge weights, and ratio of vertex weights. The reasoning
behind the combination is that a pattern becomes more
important as it occurs more times, more referred from
other vertices, and contains edges and vertices with higher
weights. Fig. 5 shows the pattern priority of the frequent
patterns. Although the three patterns have the same
support, they can be further ranked according to their
priority.

Frequent
Pattern

Pruned
Support

Pattern
Priority Rank

<A B D>
<B E C>
<D E C>

2
2
2

2.93
3.28
3.42

3
2
1

Fig. 5 Example of pattern priority

4. Experiments

We conducted several experiments on the algorithm,
specifically to evaluate the effect of confidence interval.
The experiment adopts Windows 2000 Professional as the
operating system, Microsoft Visual C++ 6.0 for the
programming language, and Microsoft SQL Server 2000
as the database. During the experiment, base graphs are
generated synthetically according to the parameters, i.e.,
number of vertices and average number of edges per
vertex. We then generate traversals, each of which
traverses on the base graph. During the generation,
weights are assigned to the edges, and have the normal
distribution.

Fig. 6 shows the effect of confidence interval on the
length of frequent patterns. This experiment uses a base
graph with 100 vertices and 20,000 edges, i.e., 20 average
edges per vertex. The number of traversals varies from
10,000 to 50,000, and the maximum length of traversals is
51. The minimum support is 5%, which means that a

pattern can be frequent only if it is subtraversals of more
than 5% of the traversals. The confidence level is 95%,
which means that roughly 95% of edge weights are
confident, and remaining 5% are outliers. As shown in the
figure, the length of frequent patterns is much lower when
considering the confidence interval. This means that the
exclusion of outliers by the confidence interval allows us
to discover more reliable frequent patterns.

Fig. 7 shows the trend of the length of frequent
patterns according to the confidence level. The experiment
is conducted on 100,000 traversals. As shown in the figure,
the length of frequent patterns becomes larger as the
confidence level increases. The length changes from 15 up
to 51 as the confidence level increases from 80% to 100%.
The change is very steep, so we need to select the
confidence level with intention.

-

5

10

15

20

25

30

35

40

10K 20K 30K 40K 50K

Number of traversals

Le
ng

th
 o

f p
at

te
rn

s
without C.I with C.I

Fig. 6 Length of frequent patterns w.r.t the number of traversals

0

10

20

30

40

50

60

80% 90% 95% 98% 99% 100%
Confidence level

Le
ng

th
 o

f p
at

te
rn

s

with C.I

Fig. 7 Length of frequent patterns w.r.t confidence level

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

141

5. Conclusions

This paper examined the problem of discovering frequent
patterns from weighted traversals on graph. Differently
from previous approaches, traversals have weights that
reflect their importance. We presented a level-wise
algorithm which takes the weights into account in the
measurement of support. The traversals, which have
weights outside the confidence interval, are treated as
outliers, and do not contribute to the support. Through his
approach, we can discover more reliable frequent patterns.
The patterns are further ranked according to their priority,
which reflects several criteria of patterns beside the
support. We are currently working on new support criteria
such as weighted support, and applications such as Web
mining.

References

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules”, Proc. of International Conference on
Very Large Databases (VLDB), Chile, Sep. 1994.

[2] J. Han and M. Kamber, Data Mining: Concepts and
Techniques, Morgan Kaufman, 2001.

[3] M.S. Chen, J.S. Park and P.S. Yu, “Efficient Data Mining for
Path Traversal Patterns”, IEEE Trans. on Knowledge and
Data Engineering, vol. 10, no. 2, pp. 209-221, Mar. 1998.

[4] A. Nanopoulos and Y. Manolopoulos, “Finding Generalized
Path Patterns for Web Log Data Mining”, Proc. of East-
European Conf. on Advanced Databases and Information
Systems (ADBIS), Sep. 2000.

[5] A. Nanopoulos and Y. Manolopoulos, “Mining Patterns from
Graph Traversals”, Data and Knowledge Engineering, vol. 37,
no. 3, pp. 243-266, Jun. 2001.

[6] C.H. Cai, W.C. Ada, W.C. Fu, C.H. Cheng and W.W. Kwong,
“Mining Association Rules with Weighted Items”, Proc. of
International Database Engineering and Applications
Symposium (IDEAS), UK, Jul. 1998.

[7] W. Wang, J. Yang and P.S. Yu, “Efficient Mining of
Weighted Association Rules (WAR)”, Proc. of ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (SIGKDD), USA, Aug. 2000.

[8] F. Tao, F. Murtagh and M. Farid, “Weighted Association
Rule Mining using Weighted Support and Significance
Framework”, Proc. of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(SIGKDD), USA, Aug. 2003.

[9] U. Yun and J.J. Leggett, “WLPMiner: Weighted Frequent
Pattern Mining with Length-Decreasing Support Constraints”,
Proc. of Pacific-Asia International Conference on Knowledge
Discovery and Data Mining (PAKDD), Vietnam, May 2005.

.

