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Summary 
A lot of real world problems can be modeled as traversals on 
graph. Mining from such traversals has been found useful in 
several applications. However, previous works considered only 
unweighted traversals. This paper generalizes this to the case 
where traversals are given weights to reflect their importance. A 
new algorithm is proposed to discover frequent patterns from the 
weighted traversals. The algorithm adopts the notion of 
confidence interval to distinguish between confident traversals 
and outliers. By excluding the outliers, more reliable frequent 
patterns can be obtained. In addition, they are further ranked 
according to their priority. The algorithm can be applied to 
various applications, such as Web mining. 
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1. Introduction 

Data mining refers to the process of semi-automatically 
analyzing large databases to discover useful patterns [1]. 
Several data structures and algorithms have been proposed 
and successfully applied to many applications [2]. 
Recently, data mining on graph becomes a center of 
interest. Graph is widely used to model several classes of 
data in the real world. The structure of Web site can be 
modeled as a graph, for example, in which vertices are for 
Web pages, and edges represent hyperlinks between the 
pages. User navigations on the Web site can be modeled 
as traversals on top of the graph. Each traversal can be 
represented as a sequence of vertices, or equivalently a 
sequence of edges. Once the graph and its traversals are 
given, valuable information can be discovered. Most 
common form of the information may be frequent patterns, 
i.e., the sub-traversals that contained in a large ratio of 
traversals. In the previous works, but, traversals are treated 
uniformly without considering their importance [3, 4, 5].  

In this paper, traversals are assigned with weights to 
reflect their importance. For example, when users navigate 
Web site, they may have different interest in each page, 
and therefore stay for different times. Each edge, which 

represents a transition between Web pages, can be 
assigned with a weight standing for the user stay time. 
This paper generalizes the mining problem to the case 
where traversals are given such weights reflecting their 
importance. The weights are taken into account in the 
measurement of support, the ratio of traversals which 
contains a candidate pattern. If a traversal has some edges 
with extremely smaller or larger weight, then it is treated 
as an outlier, and can not contribute to the support. For 
example, when users navigate Web site, they may pass 
through a page very quickly to transfer to another page, or 
take their eyes off a page for a long time while do another 
work. This kind of page-view is abnormal and treated as 
an outlier because the page is not effectively read by the 
user.  

We adopt the notion of confidence interval to classify 
the weights into confident ones and outliers. If a weight 
lies within the confidence interval, then it is considered as 
a confident one, but if it lies outside the confidence 
interval, then it is considered as an outlier. The confidence 
interval is defined statistically according to the distribution 
of values. On top of the notion, we propose a level-wise 
algorithm for the discovery of frequent patterns. In each 
pass, candidate patterns are tested on the traversals to 
count their supports, and then evaluated with respect to the 
supports to become frequent patterns. The frequent 
patterns are joined together to generate one-step larger 
candidates. It proceeds until no more candidates are 
generated. The frequent patterns are further ranked 
according to their priority. It reflects other aspects of the 
patterns, such as the connectivity and vertex weights 
besides the support. 

This paper is organized as follows. In Section 2, we 
review previous works related with the traversal pattern 
mining and weighted mining. Section 3 proposes an 
algorithm for the discovery of frequent patterns from 
weighted traversals on graph. In Section 4, we experiment 
and analyze the algorithm on synthetic data. Finally, 
Section 5 contains the conclusion and future works. 
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2. Related Works 

The main stream of data mining, which is related to our 
work, can be divided into two categories, i.e. the traversal 
pattern mining and the weighted mining. For the traversal 
pattern mining, there have been few works. Chen et al. [3] 
proposed the problem of traversal pattern mining, and then 
proposed algorithms with hashing and pruning techniques. 
However, they did not consider graph structure, on which 
the traversals occur. Nanopoulos et al. [4, 5] proposed the 
problem of mining patterns from graph traversals. They 
defined new criteria for the support and subpath 
containment, and then proposed algorithms with a trie 
structure. They considered the graph, on which traversals 
occur. Although the above works dealt with the mining of 
traversal patterns, to the best of our knowledge, there is no 
work which considers the notion of weight as our one. 

For the weighted mining, most of previous works are 
related to the mining of association rules and its sub-
problem, the discovery of frequent itemsets.  Cai et al. [6] 
generalized the discovery of frequent itemsets to the case 
where each item is given an associated weight. They 
introduced new criteria to handle the weights in the 
process of finding frequent itemsets, such as the weighted 
support for the measurement of support, and the support 
bound for the pruning of candidates. Wang et al. [7] 
extended the problem by allowing weights to be associated 
with items in each transaction. Their approach ignores the 
weights when finding frequent itemsets, but considers 
during the association rule generation. Tao et al. [8] 
proposed an improved model of weighted support 
measurement and the weighted downward closure 
property. Yun et al. [9] also considered weighted items in 
the process of frequent itemsets, and the length-decreasing 
support constraints for a new measurement of support. 
Although the above works take the notion of weight into 
account as examined in this paper, they can not be adapted 
directly to our work because they only concerned on the 
mining from items, but not from traversals. 

3. Mining Frequent Patterns 

The algorithm proposed in this paper is mainly composed 
of three phases. The graph augmentation phase is a pre-
processing phase, in which each edge of the base graph is 
augmented with average weight and standard deviation. 
The frequent patterns discovery phase is the main phase, 
in which frequent patterns are discovered from the 
augmented graph and traversal database. The pattern 
priority phase is a post-processing phase, in which the 
frequent patterns are ranked according to their importance 
to users. We first define some related definitions and the 

problem statement, and then propose algorithms for the 
phases. 

3.1 Definitions and Problem Statement 

Definition 1. A simple directed graph is a finite set of 
vertices and edges, in which each edge joins one ordered 
pair of vertices. The graph contains no self loop which 
joins a vertex with itself. A base graph is a simple directed 
graph, on which traversals occur.  
Definition 2. A traversal is a sequence of consecutive 
edges of a base graph. It can be represented with a 
sequence of the connecting vertices of each edge, thus a 
traversal t = <v1, v2, …, vn>. A weighted traversal is a 
traversal, in which each edge has an associated weight.  
Thus a traversal t with associated weights w is represented 
as (t, w) = (<v1, v2, …, vn>, <w1, w2, …, wn-1>), where wi 
means the weight of edge <vi, vi+1>. A traversal database 
is a set of weighted traversals. 
Definition 3. A subtraversal is any subsequence of 
consecutive vertices in a traversal. If t = <v1, v2, …, vn> is 
a traversal, then s = <s1, s2,…, sm> is a subtraversal of t 
when there exists a k ≥ 0 such that tj+k = sj for all 1 ≤  j ≤ m. 
If an arbitrary pattern is a subtraversal of a traversal, then 
we said that the pattern is contained in the traversal, and 
vice versa, the traversal contains the pattern.  
Definition 4. Let G = (V, E) be a base graph, and T be a 
traversal database, then an augmented graph Gw is defined 
as follows. Each node vi ∈ V is assigned with a weight wi. 
Each edge, <vi, vj> ∈ E, is labeled with a pair of average 
weight and standard deviation, (μij, σij), which are 
obtained from the weights of the corresponding edges of 
traversals in T. 
Definition 5. A confidence interval is an interval between 
two numbers, within which a random variable X lies with 
a confidence level. In our problem, if a weight lies within 
the confidence interval, then it is considered as a confident 
one, but if it lies outside the confidence interval, then it is 
considered as an outlier. 

The problem concerned in this paper is stated as 
follows. Given a base graph and weighted traversals on 
the graph, find all patterns contained in the traversals in a 
ratio of larger than minSup. This ratio is called support, 
and a pattern with the support larger than minSup is called 
frequent. When counting the support, the weights of 
traversals should lie within a specified confidence interval. 
In addition, determine the priority of frequent patterns 
according to their importance criteria besides the support. 

3.2 Augmentation of Base Graph 

When a base graph and weighted traversals are given, first 
phase of the algorithm is to augment the base graph with 
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supplementary information to be used for the subsequent 
phases. The supplementary information includes the 
average weight and standard deviation for each edge, and 
the weight for each vertex. 

Fig. 1 depicts an example of base graph and traversal 
database. On the base graph, all the traversals traverse the 
vertices through the edges. The traversal #1, for example, 
traverses consecutively the vertices A, B and C through the 
edge <A B> with the weight 2.2, and <B C> with 2.0.   
 

 
(a)  Base graph 

 
ID Traversal Weight 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

<A B C> 
<B D E C A> 
<C A B D> 
<D C A> 
<B C A> 
<A B E C> 
<A B D E C> 
<B E C> 
<B D C> 
<C A B D> 

<2.2 2.0> 
<3.0 4.3 3.5 3.1> 
<2.9 2.0 4.0> 
<4.0 3.0> 
<2.2 2.9> 
<2.1 3.4 3.2> 
<1.4 3.9 4.4 3.2> 
<2.3 3.4> 
<3.8 3.1> 
<2.5 2.2 4.1> 

(b) Traversal database 

Fig. 1 Example of base graph and traversal database 

Given the base graph and traversal database, the base 
graph can be augmented as follows. For each edge of the 
base graph, we can collect the corresponding weights of 
the edge from the traversal database, and then calculate the 
average and standard deviation. For the edge <A B> as an 
example, we can collect the weight values, 2.2, 2.0, 2.1, 
1.4 and 2.2, and then calculate the average 2.0 and the 
standard deviation 0.3. Fig. 2 shows the augmented graph 
as the result. Each vertex is also assigned with an arbitrary 
weight, which may reflect the importance of the vertex. 

 

 
Fig. 2 Example of augmented graph 

3.3 Discovery of Frequent Patterns 

Main phase of the algorithm is to find frequent patterns 
from the traversal database and augmented graph. To 
derive the algorithm, we first investigate an important 
property of patterns. Let the length of a pattern be the 
number of vertices contained in it. On the augmented 
graph, any pattern p = <p1, p2, …, pk> of length k has 
exactly two subpatterns of length k-1, i.e., <p1, p2, …, pk-

1> and <p2, p3, …, pk>. For example, a pattern <A B D E 
C> in Fig. 2 has two subpatterns, <A B D E> and <B D E 
C>. Therefore, a pattern of length k is frequent only if its 
two subpatterns of length k-1 are also frequent. Such 
downward closure property allows us to develop a level-
wise algorithm like the Apriori algorithm [1].  

Fig. 3 shows the algorithm proposed in this paper, 
which performs in a level-wise manner. It initializes the 
candidate patterns of length 1 with all vertices of the 
augmented graph. In each pass of the algorithm, the 
traversal database is scanned to count the supports of all 
candidates. The supports are then adjusted according to 
the specified confidence interval. Next, frequent patterns 
are determined from the candidates whose supports are 
larger than the specified minimum support. Finally, new 
candidates are obtained from the frequent patterns for next 
pass. It repeats until no more candidates are generated. 
 
Input: augmented graph Gw, traversal database T, 

minimum support minSup, confidence interval confInv
Output: frequent patterns Lk 
 
    // initialize candidate patterns of length 1 

C1 ← set of all vertices  
    k = 1 

 
while (|Ck| > 1) {   // while candidates exist 
 
    // count supports for candidate patterns 

        for each traversal t ∈ T { 
            P = {p | p ∈ Ck, p is a subtraversal of t} 
            ∀p ∈ P  p.count++ 

D B

E C

A 

(2.0, 0.3)

(0.0, 0.0) 

(2.9, 0.2)  

(3.8, 0.4)

(3.3, 0.2)

(4.4, 0.1)

(3.6, 0.6)

(2.9, 0.8)

(2.1, 0.1) 

D B 

E C 

A

2.

2. 3.

2.3.0
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        } 
 
        // prune candidate patterns w.r.t confInv 
        if (k ≥ 2) Ck ← pruneCandidates(Ck, Gw, confInv) 
 
        // generate frequent patterns 
        Lk = {p | p ∈ Ck, p.count ≥ minSup}  
 
        // generate candidate patterns for next pass 
        Ck+1 ← genCandidates(Lk, Gw) 
        k++ 

} 

Fig. 3 Algorithm for frequent patterns 

   In the algorithm, pruneCandidate() adjusts the supports 
of candidate patterns as follows. Given a pattern p = <p1, 
p2, …, pk> is a subtraversal of a weighted traversal (t, w) = 
(<v1, v2, …, vn>, <w1, w2, …, wn-1>). If there is an edge 
<vi, vj> in the part of the traversal coincided with the 
pattern, whose weight wi lies outside the confidence 
interval, then the traversal can not contribute for the 
support of the pattern. For example, even though a pattern 
<A B D> is contained in the traversal #7 (<A B D E C>, 
<1.4 2.3 4.4 3.2>) of Fig.1 (b), the traversal can not 
contribute for the support because its edge <A B> has the 
weight 1.4 which lies outside the confidence interval 
1.41~2.59. For the determination of confidence interval 
for each edge of the augmented graph, we assume that the 
distribution of weight values follows the normal 
distribution. As in almost applied practices, if the 
confidence interval is stated at the 95% confidence level, 
then P(μ − 1.96σ ≤ X ≤ μ + 1.96σ) = 0.95, where μ is the 
average and σ is the standard deviation. In other words, 
95% of weight values are considered to exist within the 
confidence interval, (μ − 1.96σ) ~ (μ + 1.96σ), but 
remaining 5% exist outside. For example, the edge <A B> 
in Fig. 2 has the confidence interval, (2.0 − 1.96 × 0.3) ~ 
(2.0 + 1.96 × 0.3) ≡ 1.41 ~ 2.59. If a weight value lies 
outside this interval, then it can be considered as an outlier. 
Therefore, traversals whose edges have such weight 
values can not contribute for the support of patterns. 
   genCandidates() generates new candidate patterns for 
next pass. By the downward closure property, new 
candidates of length k+1 can be obtained by joining the 
frequent patterns of length k. If there are two frequent 
patterns of length k, <p1, p2, …, pk> and <p2, p3, …, pk+1>, 
a new candidate pattern of length k+1, <p1, p2, …, pk+1> is 
obtained. For example, <A B C> and <B C D> result in 
<A B C D>. Note that <A B C> and <C D E>, but, can 
not be joined to make <A B C D E>.   
   An example of the algorithm is shown in Fig. 4, which is 
derived from the traversal database in Fig. 1 (b), and the 
augmented graph in Fig. 2. We assume the minimum 
support as 2, and the confidence level as 95%. The 
algorithm initializes the candidates C1 of length 1 with all 

the vertices. By scanning the database, the support of each 
candidate is determined as shown in C1. The candidates, 
whose support is larger than 2, become the frequent 
patterns of length 1 as in L1. By joining the frequent 
patterns, new candidates of length 2 are obtained as in C2, 
after deleting non-existing edges in the augmented graph. 
The database is again scanned to count the support of the 
candidates. The supports are then adjusted by using the 
confidence interval. For example, the support of the 
pattern <A B> is 5 initially, but must be decreased to 4. 
This is because the weighted traversal #7, (<A B D E C>, 
<1.4 2.3 4.4 3.2>) can not contribute for the support 
because the weight 1.4 of the edge <A B> lies outside the 
confidence interval 1.41~2.59. From the adjusted 
candidates, the frequent patterns L2 are obtained. Again, 
the candidates of length 3, C3, are obtained by joining the 
L2. For example, <A B> and <B C> result in <A B C>. 
The algorithm proceeds similarly up to the L3, and then 
terminates because there is no candidate of length 4 by 
joining the L3. 
 

C1 L1 
Candidate 

Pattern 
Pruned
Support

Frequent 
Pattern 

Pruned
Support

<A> 
<B> 
<C> 
<D> 
<E> 

8 
9 

10 
6 
4  

<A> 
<B> 
<C> 
<D> 
<E> 

8 
9 

10 
6 
4 

C2 L2 
Candidate 

Pattern 
Pruned
Support

Frequent 
Pattern 

Pruned
Support

<A B> 
<A C> 
<B C> 
<B D> 
<B E> 
<C A> 
<D C> 
<D E> 
<E C> 

4 
0 
2 
4 
2 
4 
2 
2 
4  

<A B> 
<B C> 
<B D> 
<B E> 
<C A> 
<D C> 
<D E> 
<E C> 

 

4 
2 
4 
2 
4 
2 
2 
4 
 

C3 L3 
Candidate 

Pattern 
Pruned
Support

Frequent 
Pattern 

Pruned
Support

<A B C> 
<A B D> 
<A B E> 
<B C A> 
<B D C> 
<B D E> 
<B E C> 
<C A B> 
<D C A> 
<D E C> 
<E C A> 

1 
2 
1 
1 
1 
1 
2 
1 
1 
2 
1  

<A B D> 
<B E C> 
<D E C> 

 
 
 
 
 
 
 
 

2 
2 
2 
 
 
 
 
 
 
 
 

Fig. 4 Example of frequent patterns 
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3.4 Priority of Patterns 

The algorithm determined the importance of frequent 
patterns, as in the previous works, according to the 
number of their occurrences in the traversals. Although 
such support is concerned as the primary criterion for most 
problems, variety of supplementary information can be 
adopted as secondary criteria. This paper proposes one 
possible criterion as follows. 
Priority of a pattern p = 
         support of p  

     + number of edges incident into p / total edges  
     + sum of edge weights of p / total edge weights 
     + sum of vertex weights of p / total vertex weights 

 
The priority of patterns are determined by the 

combination of support, ratio of incident edges, ratio of 
edge weights, and ratio of vertex weights. The reasoning 
behind the combination is that a pattern becomes more 
important as it occurs more times, more referred from 
other vertices, and contains edges and vertices with higher 
weights. Fig. 5 shows the pattern priority of the frequent 
patterns. Although the three patterns have the same 
support, they can be further ranked according to their 
priority.   
 

Frequent  
Pattern 

Pruned 
Support 

Pattern  
Priority Rank

<A B D> 
<B E C> 
<D E C> 

2 
2 
2 

2.93 
3.28 
3.42 

3 
2 
1 

Fig. 5 Example of pattern priority 

4. Experiments 

We conducted several experiments on the algorithm, 
specifically to evaluate the effect of confidence interval. 
The experiment adopts Windows 2000 Professional as the 
operating system, Microsoft Visual C++ 6.0 for the 
programming language, and Microsoft SQL Server 2000 
as the database. During the experiment, base graphs are 
generated synthetically according to the parameters, i.e., 
number of vertices and average number of edges per 
vertex. We then generate traversals, each of which 
traverses on the base graph. During the generation, 
weights are assigned to the edges, and have the normal 
distribution.  

Fig. 6 shows the effect of confidence interval on the 
length of frequent patterns. This experiment uses a base 
graph with 100 vertices and 20,000 edges, i.e., 20 average 
edges per vertex. The number of traversals varies from 
10,000 to 50,000, and the maximum length of traversals is 
51. The minimum support is 5%, which means that a 

pattern can be frequent only if it is subtraversals of more 
than 5% of the traversals. The confidence level is 95%, 
which means that roughly 95% of edge weights are 
confident, and remaining 5% are outliers. As shown in the 
figure, the length of frequent patterns is much lower when 
considering the confidence interval. This means that the 
exclusion of outliers by the confidence interval allows us 
to discover more reliable frequent patterns.  

Fig. 7 shows the trend of the length of frequent 
patterns according to the confidence level. The experiment 
is conducted on 100,000 traversals. As shown in the figure, 
the length of frequent patterns becomes larger as the 
confidence level increases. The length changes from 15 up 
to 51 as the confidence level increases from 80% to 100%. 
The change is very steep, so we need to select the 
confidence level with intention. 
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Fig. 6 Length of frequent patterns w.r.t the number of traversals 
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Fig. 7 Length of frequent patterns w.r.t confidence level 
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5. Conclusions 

This paper examined the problem of discovering frequent 
patterns from weighted traversals on graph. Differently 
from previous approaches, traversals have weights that 
reflect their importance. We presented a level-wise 
algorithm which takes the weights into account in the 
measurement of support. The traversals, which have 
weights outside the confidence interval, are treated as 
outliers, and do not contribute to the support. Through his 
approach, we can discover more reliable frequent patterns. 
The patterns are further ranked according to their priority, 
which reflects several criteria of patterns beside the 
support. We are currently working on new support criteria 
such as weighted support, and applications such as Web 
mining. 
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