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Summary 
This paper presents our experiences of building Linux/RTOS 
hybrid operating environments on Xen and Gandalf virtual 
machine monitors (VMMs). Xen is a popular open source VMM 
while Gandalf is our in-house virtual machine monitor that was 
designed and implemented from scratch to be a simple yet 
extremely lightweight VMM. We ported an RTOS to both Xen 
and Gandalf, which were enabled to host multiple RTOSes along 
with Linux.  One significant advantage of employing a VMM to 
construct such a hybrid environment is that OSes executed on a 
VMM can be spatially and temporally protected from each other. 
Our experiences and evaluations show that Gandalf's approach, 
which combines full- and para-virtualization methods, has clear 
advantages in terms of both implementation cost and runtime 
cost. 
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Introduction 

The current embedded systems, especially consumer 
electronics products, involve a number of complicated 
requirements for their operating environments that are 
difficult to satisfy them together at once by a single 
operating system (OS). In order to cope with conflicting 
requirements imposed by such complex embedded systems, 
the hybrids of a general purpose OS and a real-time 
operating system (RTOS) have been developed. While a 
general purpose OS is good at the provision of GUI with 
its rich set of middleware support, an RTOS covers real-
time processing. Typically in those hybrids, a general 
purpose OS kernel and an RTOS's application tasks share 
the same most privileged level of a processor without 
protection. This hybrid model ay work well if a system is 
designed from scratch having applications properly 
classified into real-time and non real-time tasks. In reality, 
however, the existing software resources inherited from 
the past products need to be reused; thus, undesired 
programs are also brought into the most privileged level to 
run on an RTOS, and tend to become sources of problems 
because of lack of protection. 

This paper presents our experiences of building 
Linux/RTOS hybrid operating environments on Xen and 
Gandalf virtual machine monitors (VMMs). Xen is a 

popular open source virtual machine monitor while 
Gandalf is our in-house virtual machine monitor that was 
designed and implemented from scratch to be a simple yet 
extremely lightweight VMM combining full- and para-
virtualization methods. As a general purpose OS and an 
RTOS hosted on VMMs, we use Linux and µITRON [15], 
respectively. The implementations of those hybrid 
operating environments are on the PC/AT compatible 
platform with the Intel IA-32 processor. We chose 
µITRON and Linux because of their popularity. In Japan 
µITRON is the RTOS that has been the most widely used 
in a variety of products, so that industries have a huge 
amount of the existing software resources. Linux's 
popularity is recently increasing for larger embedded 
systems. Unlike the existing approach described above, 
only VMMs execute at the most privileged level, and have 
them execute within their own isolated protection 
domains; thus, hosted OSes can be spatially and 
temporally protected from each other. Additionally, 
multiple RTOS instances can be hosted along with a 
general purpose OS. 

We describe our experiences of porting an RTOS and 
Linux to Xen and Gandalf, and show from evaluations that 
Gandalf's approach, which combines full- and para-
virtualization methods, has clear advantages in terms of 
both implementation cost and runtime cost. 

Background and Related Work 

Making hybrids of an RTOS and a general purpose OS is 
not a new idea. As a practical approach to deal with 
complex systems, several of them have been developed, 
and some are widely used. [3] introduced the executive 
that support the co-residence of an RTOS and a general 
purpose OS. RTLinux [1] and RTAI [8], which are poplar 
among Linux users, have Linux kernel execute on an 
RTOS kernel. There are some commercial products, such 
as Accel-Linux 1  and Linux on NORTi, 2  that enable 
µITRON to run aside of Linux kernel. 

All of them take the same approach, which is that an 
RTOS kernel, RTOS's application tasks, and a general 

                                                           
1 
http://www.elwsc.co.jp/english/products/accel_linux.html 
2 http://www.embedded-sys.co.jp/bios/index.htm 
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purpose OS kernel share the same protection domain at the 
most privileged level; thus, there is noprotection among 
them and hardware. Such lack of protection may not be a 
problem if a system is designed from scratch having 
applications properly classified into real-time and non 
real-time tasks. After proper classification, there should be 
only a small number of RTOS's application tasks that 
specifically require real-time execution. It is, however, 
problematic if the existing applications on an RTOS are 
simply reused by taking advantage of the hybrid of an 
RTOS and a general purpose OS. In such a system, there 
tend to be a larger number of RTOS's application tasks, 
which are brought from the past products. Since RTOS's 
application tasks run at the most privileged level within 
the same protection domain as RTOS and general purpose 
OS kernels, their misbehavior is directly connected to 
system malfunction or a crash. A general purpose OS 
kernel also can be a source of problems because of its 
execution at the most privileged level. A general purpose 
OS kernel for the hybrid with an RTOS is usually 
modified not to touch hardware's interrupt controlling 
functions, so that interrupts are not disabled for a 
indeterministically long time. Since a general purpose OS 
kernel is still allowed to disable interrupts by controlling 
hardware, there are chances to introduce kernel modules 
that are not properly modified for the hybrid; thus, they 
cause temporal malfunction. 

Our approach is that a VMM, such as Xen and 
Gandalf, hosts RTOSes and a general purpose OS. This 
approach enables the provision of spatial and temporal 
protection, which is missing in the existing hybrid systems. 
With our approach, spatial protection is implemented by 
having OSes run within their own protection domains. 
Since there is no means provided to corrupt or steal the 
programs or data of the other OSes, OSes' misbehavior 
does not affect the execution of the other OSes. Temporal 
protection is realized by limiting hardware access by OSes. 
The OSes hosted on Gandalf execute at a less privileged 
level, at which only limited hardware access is permitted; 
thus, the hosted OSes cannot directly disable interrupts at 
hardware's interrupt controller. Therefore, temporal 
malfunction incurred by disabling interrupts can be 
avoided. 

The development of VMMs has a long history 
beginning with IBM CP/67 [10] followed by IBM 
VM/370 [5] and its successors for mainframe computers. 
Since a few years ago VMMs revived to be a hot research 
and development topic because of VMMs' capability to 
accommodate multiple operating systems in a single 
system. Researchers and developers consider VMMs an 
excellent software tool to deal with increasing reliability 
and security. In order to achieve better performance on 
commodity platforms, which cannot be virtualized 
efficiently [12], para-virtualization was introduced 

[2,13,16]. With para-virtualization, VMM developers 
define easily and efficiently virtualizable hardware as 
interface for OSes to communicate with a VMM. Para-
virtualization can be used for the whole system platforms 
[2] or partially for I/O devices only [14]. In contrast to 
para-virtualization, which defines non-existing virtual 
hardware, the method first taken by mainframe VMMs is 
called full-virtualization, which defines the same interface 
as the existing real hardware. 

Xen takes para-virtualization method while Gandalf 
VMM takes the hybrid of para- and full-virtualization 
methods. Gandalf exports a virtual processor interface for 
RTOSes while it enables a general purpose OS to run on it 
with limited modifications. Gandalf's hybrid virtualization 
method can balance implementation cost and runtime cost. 

Paper Organization 

The rest of this paper is organized as follows. The next 
section describes our system building experiences of the 
Linux/RTOS hybrid operating environments on the two 
VMMs, Xen and Gandalf, along with their system 
overviews. Section 3 evaluates and compares the two 
hybrid operating environments quantitatively and 
qualitatively. Finally, Section 4 summarizes the paper. 

2. Hybrid Operating Environments 

This section describes our system building experiences of 
the Linux/RTOS hybrid operating environments on Xen 
and Gandalf. For each of them, we describe the overview 
of a VMM, on which a hybrid operating environment is 
built, and the work required to port OSes on the VMM. 

Fig. 1 shows the overall architecture of a 
Linux/RTOS hybrid operating environment we built upon 
a VMM. 
 

 

Fig. 1 Overall Architecture of Linux/RTOS Hybrid Operating 
Environment on VMM 

There are multiple OSes running on a VMM. One of 
OSes is Linux, and the others are RTOSes. RTOSes are 
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µITRON3 in our environments. OSes run within their own 
isolated protection domains; thus, no access from an OS to 
the other OSes is permitted. A VMM allows hosted OSes 
only limited hardware access and schedules those OSes to 
run; thus, those OSes cannot monopolize the whole CPU 
time. Therefore, OSes hosted on a VMM can be spatially 
and temporally protected from each other. 

2.1 Xen 

We first describe the hybrid operating environment on 
Xen. We first present the overview of Xen, and then 
describe our experience of porting µITRON. Since Xen is 
distributed with Linux and NetBSD as its guest OSes, 
porting Linux on Xen is described elsewhere [2]. 

2.1.1 Overview 

Xen [2] is a VMM based on a virtualization method called 
para-virtualization [2,13,16]. Para-virtualization lets a 
VMM define its own interface for OSes to control 
hardware resources. A processor's interface to control 
hardware resources is privileged instructions, and an OS's 
machine dependent layer uses those instructions to set up 
operating environments for user programs. Since para-
virtualization alters such interface to control hardware 
resources, an OS's machine dependent layer needs to be 
modified to run on Xen. The application binary interface 
(ABI) remains the same, so that the existing applications 
require no modification. 

Xen employs a hypercall mechanism and shared 
memory as its para-virtualization interface for guest OSes 
to communicate with Xen. Hypercalls are analogous to 
system calls. While system calls are used by user 
programs to communicate with the OS kernel, hypercalls 
are used by guest OSes to communicate with the VMM. 
When a guest OS kernel needs to execute privileged 
instructions in order to set up and control operating 
environments for its user programs, the kernel issues 
hypercalls for that purpose. Along with hypercalls, shared 
memory is also used as an efficient data transfer channel. 

2.1.2 Porting µITRON on Xen 

We ported µITRON RTOS on Xen to build a Linux/RTOS 
hybrid operating environment. Although the source code 
of µITRON is very simple, porting µITRON on Xen was 
not actually a very straightforward task mainly because of 
lack of Xen's para-virtualization interface documentation. 
For example, the executable image of µITRON on Xen 
needs to be linked to start from 0xc0000000 in order to 
                                                           
3 We use TOPPERS/JSP as our µITRON RTOS. The 
information on TOPPERS/JSP can be found at 
http://www.toppers.jp/. 

be successfully loaded into memory and to start running as 
a Xen's guest OS. Since µITRON does not provide virtual 
memory, the original µITRON that runs on a bare 
hardware is linked to start from a much lower address, 
which is 0x100000. Obviously, there is no fair reason 
why a guest OS cannot start from such a lower address if it 
does not use virtual memory. It is simply a implementation 
limitation of Xen, of which design did not take account of 
running small RTOSes without using virtual memory. 

We needed to understand the usage of Xen's 
hypercall and shared memory interface from the source 
code of Linux on Xen. Bringing the implementation of 
such para-virtualization interface to µITRON's source 
code was also cumbersome. The para-virtualization 
interface is rich and complicated enough to support Linux 
and NetBSD. Although the most of functions provided by 
the interface is unnecessary for µITRON, they depend 
upon each other among the interface; thus, we ended up 
with bringing the whole para-virtualization interface to 
µITRON's source code even if only few functions are 
called from it. 

Once we obtained enough understanding of Xen's 
para-virtualization interface, brought the interface 
implementation to µITRON's source code, and modified it 
to use the interface, debugging the ported µITRON on 
Xen was helped by Xen's ability to dynamically create and 
destroy a guest OS. Xen starts the first Linux as a 
privileged OS, which retains the capability of creating and 
destroying other guest OSes. While debugging the ported 
µITRON on Xen, the usual steps for debugging, which 
involve building a linked executable image from the 
source code, running it, and stopping it, can be done 
without rebooting a target platform. 

2.2 Gandalf 

We describe the hybrid operating environment on Gandalf. 
We first present the overview of Gandalf, and then 
describe our experiences of porting µITRON and Linux to 
be hosted on Gandalf.  

2.2.1 Overview 

Gandalf is a VMM that we designed from scratch as a 
simple and efficient VMM in order to minimize 
implementation and runtime costs incurred by 
virtualization. Gandalf exports a para-virtualized processor 
interface for RTOSes as Xen does for its guest OSes. 
Gandalf also enables a general purpose OS to run on it 
with very limited modifications. Since unmodified OSes 
do not run on Gandalf, Gandalf does not provide full-
virtualization strictly; thus, we call this method nearly full-
virtualization. 

We choose to take such hybrid of virtualization 
methods, para-virtualization for RTOSes and nearly full-
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virtualization for a general purpose OS, in order to balance 
implementation cost and runtime cost. A general purpose 
OS is huge and very complicated software. It tends to be 
actively updated in order to incorporate new features and 
to fix their bugs. Applying para-virtualization to such an 
OS significantly increases implementation cost. It is also 
hard to maintain the source code modified for para-
virtualization since it needs to keep up with rapid updates. 
On the other hand, the implementation of RTOSes is 
considerably simpler than a general purpose OS, and it 
tends to be stable for a long time because keeping 
reliability is more important than adding new features; 
thus, once their source code base is modified for para-
virtualization, the amount of its maintenance work is 
limited. Therefore, its implementation cost is negligible. In 
fact, runtime cost is more important for RTOSes. In order 
to have unmodified OSes execute at a less privileged level, 
full-virtualization emulates a subset of hardware. Such 
emulation costs at runtime. Para-virtualization can 
decrease the overheads of emulation; thus, using para-
virtualization is desired for RTOSes in terms of both 
implementation and runtime costs. 

2.2.2 RTOS on Gandalf 

We chose para-virtualization for µITRON as described 
above in favor of less virtualization overheads at runtime. 
Para-virtualization replaces privileged instructions, which 
can be correctly executed only at the most privileged level, 
with hypercalls, which are analogous to system calls 
provided by Gandalf. By taking advantage of the 
knowledge of µITRON's implementation and having 
Gandalf tailored to execute a µITRON instance in specific 
segments, only few hypercalls are actually required in 
order to bring up µITRON on Gandalf. 

The current implementation of Gandalf provides 
µITRON with only three hypercalls as the replacements of 
privileged instructions. One replaces lidt instruction, 
which is used to register interrupt handlers. Another one 
replaces sti and cli instructions, which enables and 
disables interrupts, respectively. The last one replaces hlt 
instruction, which halts a processor until an interrupt is 
asserted. While some other privileged instructions are used, 
they were removed because tailoring Gandalf to provide 
an execution environment that matches µITRON's 
expectation makes them no longer needed. 

2.2.3 Linux on Gandalf 

We use Linux as a general purpose OS. We first consider 
full-virtualization to support Linux since Linux kernel is 
huge and complicated software and is actively updated to 
incorporate new features and to fix their bugs. Truly full-
virtualization, however, costs quite expensive to 
implement a VMM and to execute an unmodified OS on it. 

It requires a fully virtualizable processor [11], or it is 
made possible only in return for the overheads of 
virtualizing all computing resources. For example, an OS 
kernel is designed to utilize the whole virtual address 
space made available by a processor. If a processor is not 
fully virtualizable as most of the current processors, there 
is no room in the same virtual address space left for 
locating a VMM in a way that it is protected from its guest 
OS kernel and user processes. In this case, a VMM 
requires another virtual address space, and heavy context 
switching between a OS kernel and a VMM happens at 
every time the VMM's intervention is needed. Such 
intervention includes the emulation of privileged 
instructions, handling interrupts and exceptions, and so on. 
There are many other virtualization overheads caused by 
full-virtualization. Achieving practical performance that 
matches commercial VMMs, such as VMware [14] and 
Microsoft VirtualPC, requires many techniques that even 
include on-the-fly binary translation [13]; thus, the 
provision of truly full-virtualization was dropped from our 
choice. 

We therefore decided to allow a few straightforward 
modifications to bring up Linux on Gandalf. We call this 
method nearly full-virtualization. Allowing a few 
modifications enables the significant reduction of both 
implementation and runtime costs. For example, by 
reducing the virtual address range used by Linux, we can 
create room for Gandalf and RTOSes in the same virtual 
address space. It removes the necessity to switch virtual 
address spaces at each time when Gandalf or RTOSes is 
invoked. Such reduction of the virtual address range can 
be done only by modifying a single line in a Linux source 
code file. Thirteen lines in seven files are currently 
modified to achieve our nearly full-virtualization of Linux 
on Gandalf. 

3. Evaluation 

This section quantitatively and qualitatively evaluates and 
compares the two hybrid operating environments we built 
and described above. We first present quantitative 
evaluation results, and then perform qualitative evaluation 
on µITRON implementations on Xen and Gandalf.  

3.1 Quantitative Evaluation 

This section shows quantitative evaluation results for the 
comparison of runtime costs between the two hybrid 
operating environments on Xen and Gandalf. All 
measurements reported below were performed on the Dell 
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Precision 470 Workstation with Intel Xeon 2.8GHz CPU.4 
Hyper-threading was turned off, so that all measurements 
were performed on a single CPU. 

3.1.1 Basic Performance Evaluation 

We first measured the basic costs related to running an OS 
on a VMM. We measured the costs of issuing a hypercall, 
processing a privileged instruction, and OS switching. The 
costs of issuing a hypercall and processing a privileged 
instruction were measured using µITRON. OS switching 
cost is the time consumed to switch from µITRON to 
Linux and then back to µITRON, which means that the 
two times of OS switching are involved. Table 1 shows 
the measurement results obtained from Xen and Gandalf. 
We used cycle counts obtained from rdtsc instruction 
for these measurements on both Xen and Gandalf. The all 
numbers shown were the average costs after repeating 
1,000 times. The cost of processing a privileged 
instruction was measured only for Gandalf since Xen uses 
only hypercalls to handle requests that are usually handled 
by privileged instructions. 

Table 1: Basic Performance Comparisons 
 Xen Gandalf 

Null Hypercall 0.43 µ sec 0.37 µ sec 

Ignored Privileged Instruction N/A 0.56 µ sec 

OS Switching Cost (round trip) 1.80 µ sec 1.02 µ sec 

 
The results show that the costs of hypercalls on Xen 

and Gandalf are very similar. Although handling a 
hypercall on Gandalf is slightly faster, the difference is 
negligible if we take account of other runtime overheads, 
which frequently happen during the execution of programs, 
including cache misses. Since hypercalls use the 
processor's software interrupt mechanism, there is 
relatively small room for software implementations to 
make difference in this case. More interesting is that how 
much processing a privileged instruction takes longer than 
handling a hypercall. Processing a privileged instruction 
involves more steps than handling a hypercall. It consists 
of identifying the instruction address that caused an 
exception, 5  fetching an instruction from the address, 
decoding the instruction, and emulating it. The 
measurement was done with hlt instruction, which is a 
simple one byte instruction, and it does not include the 

                                                           
4 Linux reports this CPU as 2794.774 MHz. We use this 
number to convert cycle counts obtained from rdtsc 
instruction to micro seconds for accuracy. 
5 On an IA-32 processor, the execution of a privileged 
instruction at a less privileged level causes an exception 
that is called a general protection fault. 

emulation cost. In case of processing a longer privileged 
instruction, it takes longer in order to decode and fetch a 
emulating instruction and its operands. 

 
The OS switching cost on Gandalf was measured by 

using a pair of hlt instruction in Linux and its 
replacement hypercall in µITRON. On Xen, the 
XEN_yield hypercall was used in µITRON. We 
presume that the reason of the smaller OS switching cost 
on Gandalf is because of its use of segments to 
accommodate µITRON in its own protection domain. 
While µITRON and Linux share the same virtual memory 
address space, they do not share their protection domains 
by using disjoint segments. Therefore, the OS switching 
cost on Gandalf does not include the cost of switching a 
virtual memory address space, and its cost becomes less 
than that of Xen. 

3.1.2 Evaluating RTOS 

In order to evaluate runtime environment's aspect of the 
two hybrid operating environments from RTOS's point of 
view, we measured the timer interrupt intervals in 
µITRON. We used cycle counts obtained from rdtsc 
instruction for these measurements, too. Fig. 2 and Fig. 3 
show the measurement results on Xen and Gandalf. Please 
note that because of Xen's limitation of the fixed timer 
interval rate, the timer interval of µITRON on Xen is 10 
milliseconds while on Gandalf it is 1 millisecond. 
 

 

Fig. 2 Timer Interrupt Intervals in µITRON on Xen 
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Fig. 3 Timer Interrupt Intervals in µITRON on Gandalf  

The measurement results show more jitter is observed 
on Xen than on Gandalf. Most of the measured timer 
interrupt intervals on Xen spread in range of 0.04 
millisecond (40 µ seconds) between 9.96 and 10.02 
milliseconds. In contrast to Xen, on Gandalf the measured 
timer interrupt intervals are mostly the same at 1 
millisecond as the timer device was configured to 
periodically raise an interrupt every 1 millisecond. There 
are, however, some spikes around 200 and 700 
milliseconds in elapsed time. We need more investigations 
to be performed in order to find out a cause of these spikes. 

Gandalf is apparently more appropriate as a 
Linux/RTOS hybrid operating environment if those spikes 
were removed on Gandalf. Since timer interrupts are used 
to invoke periodic tasks, which are a basis of real-time 
scheduling, Gandalf's characteristic to provide precise and 
stable timer interrupts suits with an RTOS. 

3.1.3 Evaluating Linux 

Finally, in order to evaluate our nearly full-virtualization 
method used for Linux, we ran several programs included 
in lmbench benchmark suite [9]. Fig. 4 and Fig. 5 show 
the results of lmbench programs. We ran the same 
programs on the original Linux (without virtualization), 
XenLinux (Dom0), and Gandalf for comparison of 
performance. 
 

 

Fig. 4 Linux Performance Comparison (1) 

 

Fig. 5 Linux Performance Comparison (2) 

The measurement results show that our nearly full-
virtualization method reduces the runtime costs 
significantly as Linux on Gandalf outperforms XenLinux 
in all cases. The costs of process fork and exec are even 
close to the original non-virtualized Linux and 
significantly better than XenLinux.  

3.2 Qualitative Evaluation 

As qualitative evaluation, we compare the boot image 
sizes and the total source code lines of µITRON 
implementations on Xen and Gandalf. Table 2 shows them 
along with those of the original µITRON implementation 
that runs directly on an IA-32 hardware platform. The 
boot image sizes are the values printed by UNIX size 
command, which lists the section sizes and shows the total 
of them. The source code lines include comments and 
blank lines. 

Table 2: Qualitative Comparisons of µITRON Implementations 
 on Xen on Gandalf Original
Boot Image Size 129KB 87KB 80KB
Total Source Code Lines 20434 12248 13218

 
Table 2 shows that only µITRON on Xen is 

significantly larger. Both of the boot image size and the 
total source code lines are approximately 50% more than 
the rest of them. This is because µITRON on Xen includes 
the whole para-virtualization interface for Xen although 
only few functions are called from µITRON. If we 
become more familiar with Xen's para-virtualization 
interface and can design the tailored interface to be used 
with µITRON on Xen, the boot image size and the total 
source code lines can be reduced. In this case, we need to 
maintain the implementation of the tailored interface on 
our own; thus, it significantly increases the 
implementation cost. In contrast to Xen, µITRON on 
Gandalf is more or less the same size as the original one in 
terms of the boot image size and the total source code lines. 
We see the reduction of the total source code lines on 
Gandalf because the hardware interface, especially for 
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registering interrupt handlers, is simplified. Since only few 
hypercalls are introduced, we consider the implementation 
cost of Gandalf on Xen is negligible.  

4. Summary 

This paper presents our experiences of building 
Linux/RTOS hybrid operating environments on two 
VMMs, Xen and Gandalf. Xen is a popular open source 
VMM while Gandalf is our in-house virtual machine 
monitor that was designed and implemented from scratch 
to be tailored to construct a Linux/RTOS hybrid operating 
environment. Our experiences and evaluations showed 
that Gandalf's approach, which combines full- and para-
virtualization methods, has clear advantages in terms of 
both implementation cost and runtime cost. 
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