
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

146

Manuscript received May 5, 2006.
Manuscript revised May 25, 2006.

Experiences of Building Linux/RTOS Hybrid Operating Environments
on Virtual Machine Monitors

Shuichi Oikawa,† and Megumi Ito††,

University of Tsukuba, Ibaraki, JAPAN

Summary
This paper presents our experiences of building Linux/RTOS
hybrid operating environments on Xen and Gandalf virtual
machine monitors (VMMs). Xen is a popular open source VMM
while Gandalf is our in-house virtual machine monitor that was
designed and implemented from scratch to be a simple yet
extremely lightweight VMM. We ported an RTOS to both Xen
and Gandalf, which were enabled to host multiple RTOSes along
with Linux. One significant advantage of employing a VMM to
construct such a hybrid environment is that OSes executed on a
VMM can be spatially and temporally protected from each other.
Our experiences and evaluations show that Gandalf's approach,
which combines full- and para-virtualization methods, has clear
advantages in terms of both implementation cost and runtime
cost.
Key words:
Virtual Machine Monitors, Operating Systems, Real-Time
Systems, Information Appliances.

Introduction

The current embedded systems, especially consumer
electronics products, involve a number of complicated
requirements for their operating environments that are
difficult to satisfy them together at once by a single
operating system (OS). In order to cope with conflicting
requirements imposed by such complex embedded systems,
the hybrids of a general purpose OS and a real-time
operating system (RTOS) have been developed. While a
general purpose OS is good at the provision of GUI with
its rich set of middleware support, an RTOS covers real-
time processing. Typically in those hybrids, a general
purpose OS kernel and an RTOS's application tasks share
the same most privileged level of a processor without
protection. This hybrid model ay work well if a system is
designed from scratch having applications properly
classified into real-time and non real-time tasks. In reality,
however, the existing software resources inherited from
the past products need to be reused; thus, undesired
programs are also brought into the most privileged level to
run on an RTOS, and tend to become sources of problems
because of lack of protection.

This paper presents our experiences of building
Linux/RTOS hybrid operating environments on Xen and
Gandalf virtual machine monitors (VMMs). Xen is a

popular open source virtual machine monitor while
Gandalf is our in-house virtual machine monitor that was
designed and implemented from scratch to be a simple yet
extremely lightweight VMM combining full- and para-
virtualization methods. As a general purpose OS and an
RTOS hosted on VMMs, we use Linux and µITRON [15],
respectively. The implementations of those hybrid
operating environments are on the PC/AT compatible
platform with the Intel IA-32 processor. We chose
µITRON and Linux because of their popularity. In Japan
µITRON is the RTOS that has been the most widely used
in a variety of products, so that industries have a huge
amount of the existing software resources. Linux's
popularity is recently increasing for larger embedded
systems. Unlike the existing approach described above,
only VMMs execute at the most privileged level, and have
them execute within their own isolated protection
domains; thus, hosted OSes can be spatially and
temporally protected from each other. Additionally,
multiple RTOS instances can be hosted along with a
general purpose OS.

We describe our experiences of porting an RTOS and
Linux to Xen and Gandalf, and show from evaluations that
Gandalf's approach, which combines full- and para-
virtualization methods, has clear advantages in terms of
both implementation cost and runtime cost.

Background and Related Work

Making hybrids of an RTOS and a general purpose OS is
not a new idea. As a practical approach to deal with
complex systems, several of them have been developed,
and some are widely used. [3] introduced the executive
that support the co-residence of an RTOS and a general
purpose OS. RTLinux [1] and RTAI [8], which are poplar
among Linux users, have Linux kernel execute on an
RTOS kernel. There are some commercial products, such
as Accel-Linux 1 and Linux on NORTi, 2 that enable
µITRON to run aside of Linux kernel.

All of them take the same approach, which is that an
RTOS kernel, RTOS's application tasks, and a general

1
http://www.elwsc.co.jp/english/products/accel_linux.html
2 http://www.embedded-sys.co.jp/bios/index.htm

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

147

purpose OS kernel share the same protection domain at the
most privileged level; thus, there is noprotection among
them and hardware. Such lack of protection may not be a
problem if a system is designed from scratch having
applications properly classified into real-time and non
real-time tasks. After proper classification, there should be
only a small number of RTOS's application tasks that
specifically require real-time execution. It is, however,
problematic if the existing applications on an RTOS are
simply reused by taking advantage of the hybrid of an
RTOS and a general purpose OS. In such a system, there
tend to be a larger number of RTOS's application tasks,
which are brought from the past products. Since RTOS's
application tasks run at the most privileged level within
the same protection domain as RTOS and general purpose
OS kernels, their misbehavior is directly connected to
system malfunction or a crash. A general purpose OS
kernel also can be a source of problems because of its
execution at the most privileged level. A general purpose
OS kernel for the hybrid with an RTOS is usually
modified not to touch hardware's interrupt controlling
functions, so that interrupts are not disabled for a
indeterministically long time. Since a general purpose OS
kernel is still allowed to disable interrupts by controlling
hardware, there are chances to introduce kernel modules
that are not properly modified for the hybrid; thus, they
cause temporal malfunction.

Our approach is that a VMM, such as Xen and
Gandalf, hosts RTOSes and a general purpose OS. This
approach enables the provision of spatial and temporal
protection, which is missing in the existing hybrid systems.
With our approach, spatial protection is implemented by
having OSes run within their own protection domains.
Since there is no means provided to corrupt or steal the
programs or data of the other OSes, OSes' misbehavior
does not affect the execution of the other OSes. Temporal
protection is realized by limiting hardware access by OSes.
The OSes hosted on Gandalf execute at a less privileged
level, at which only limited hardware access is permitted;
thus, the hosted OSes cannot directly disable interrupts at
hardware's interrupt controller. Therefore, temporal
malfunction incurred by disabling interrupts can be
avoided.

The development of VMMs has a long history
beginning with IBM CP/67 [10] followed by IBM
VM/370 [5] and its successors for mainframe computers.
Since a few years ago VMMs revived to be a hot research
and development topic because of VMMs' capability to
accommodate multiple operating systems in a single
system. Researchers and developers consider VMMs an
excellent software tool to deal with increasing reliability
and security. In order to achieve better performance on
commodity platforms, which cannot be virtualized
efficiently [12], para-virtualization was introduced

[2,13,16]. With para-virtualization, VMM developers
define easily and efficiently virtualizable hardware as
interface for OSes to communicate with a VMM. Para-
virtualization can be used for the whole system platforms
[2] or partially for I/O devices only [14]. In contrast to
para-virtualization, which defines non-existing virtual
hardware, the method first taken by mainframe VMMs is
called full-virtualization, which defines the same interface
as the existing real hardware.

Xen takes para-virtualization method while Gandalf
VMM takes the hybrid of para- and full-virtualization
methods. Gandalf exports a virtual processor interface for
RTOSes while it enables a general purpose OS to run on it
with limited modifications. Gandalf's hybrid virtualization
method can balance implementation cost and runtime cost.

Paper Organization

The rest of this paper is organized as follows. The next
section describes our system building experiences of the
Linux/RTOS hybrid operating environments on the two
VMMs, Xen and Gandalf, along with their system
overviews. Section 3 evaluates and compares the two
hybrid operating environments quantitatively and
qualitatively. Finally, Section 4 summarizes the paper.

2. Hybrid Operating Environments

This section describes our system building experiences of
the Linux/RTOS hybrid operating environments on Xen
and Gandalf. For each of them, we describe the overview
of a VMM, on which a hybrid operating environment is
built, and the work required to port OSes on the VMM.

Fig. 1 shows the overall architecture of a
Linux/RTOS hybrid operating environment we built upon
a VMM.

Fig. 1 Overall Architecture of Linux/RTOS Hybrid Operating
Environment on VMM

There are multiple OSes running on a VMM. One of
OSes is Linux, and the others are RTOSes. RTOSes are

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

148

µITRON3 in our environments. OSes run within their own
isolated protection domains; thus, no access from an OS to
the other OSes is permitted. A VMM allows hosted OSes
only limited hardware access and schedules those OSes to
run; thus, those OSes cannot monopolize the whole CPU
time. Therefore, OSes hosted on a VMM can be spatially
and temporally protected from each other.

2.1 Xen

We first describe the hybrid operating environment on
Xen. We first present the overview of Xen, and then
describe our experience of porting µITRON. Since Xen is
distributed with Linux and NetBSD as its guest OSes,
porting Linux on Xen is described elsewhere [2].

2.1.1 Overview

Xen [2] is a VMM based on a virtualization method called
para-virtualization [2,13,16]. Para-virtualization lets a
VMM define its own interface for OSes to control
hardware resources. A processor's interface to control
hardware resources is privileged instructions, and an OS's
machine dependent layer uses those instructions to set up
operating environments for user programs. Since para-
virtualization alters such interface to control hardware
resources, an OS's machine dependent layer needs to be
modified to run on Xen. The application binary interface
(ABI) remains the same, so that the existing applications
require no modification.

Xen employs a hypercall mechanism and shared
memory as its para-virtualization interface for guest OSes
to communicate with Xen. Hypercalls are analogous to
system calls. While system calls are used by user
programs to communicate with the OS kernel, hypercalls
are used by guest OSes to communicate with the VMM.
When a guest OS kernel needs to execute privileged
instructions in order to set up and control operating
environments for its user programs, the kernel issues
hypercalls for that purpose. Along with hypercalls, shared
memory is also used as an efficient data transfer channel.

2.1.2 Porting µITRON on Xen

We ported µITRON RTOS on Xen to build a Linux/RTOS
hybrid operating environment. Although the source code
of µITRON is very simple, porting µITRON on Xen was
not actually a very straightforward task mainly because of
lack of Xen's para-virtualization interface documentation.
For example, the executable image of µITRON on Xen
needs to be linked to start from 0xc0000000 in order to

3 We use TOPPERS/JSP as our µITRON RTOS. The
information on TOPPERS/JSP can be found at
http://www.toppers.jp/.

be successfully loaded into memory and to start running as
a Xen's guest OS. Since µITRON does not provide virtual
memory, the original µITRON that runs on a bare
hardware is linked to start from a much lower address,
which is 0x100000. Obviously, there is no fair reason
why a guest OS cannot start from such a lower address if it
does not use virtual memory. It is simply a implementation
limitation of Xen, of which design did not take account of
running small RTOSes without using virtual memory.

We needed to understand the usage of Xen's
hypercall and shared memory interface from the source
code of Linux on Xen. Bringing the implementation of
such para-virtualization interface to µITRON's source
code was also cumbersome. The para-virtualization
interface is rich and complicated enough to support Linux
and NetBSD. Although the most of functions provided by
the interface is unnecessary for µITRON, they depend
upon each other among the interface; thus, we ended up
with bringing the whole para-virtualization interface to
µITRON's source code even if only few functions are
called from it.

Once we obtained enough understanding of Xen's
para-virtualization interface, brought the interface
implementation to µITRON's source code, and modified it
to use the interface, debugging the ported µITRON on
Xen was helped by Xen's ability to dynamically create and
destroy a guest OS. Xen starts the first Linux as a
privileged OS, which retains the capability of creating and
destroying other guest OSes. While debugging the ported
µITRON on Xen, the usual steps for debugging, which
involve building a linked executable image from the
source code, running it, and stopping it, can be done
without rebooting a target platform.

2.2 Gandalf

We describe the hybrid operating environment on Gandalf.
We first present the overview of Gandalf, and then
describe our experiences of porting µITRON and Linux to
be hosted on Gandalf.

2.2.1 Overview

Gandalf is a VMM that we designed from scratch as a
simple and efficient VMM in order to minimize
implementation and runtime costs incurred by
virtualization. Gandalf exports a para-virtualized processor
interface for RTOSes as Xen does for its guest OSes.
Gandalf also enables a general purpose OS to run on it
with very limited modifications. Since unmodified OSes
do not run on Gandalf, Gandalf does not provide full-
virtualization strictly; thus, we call this method nearly full-
virtualization.

We choose to take such hybrid of virtualization
methods, para-virtualization for RTOSes and nearly full-

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

149

virtualization for a general purpose OS, in order to balance
implementation cost and runtime cost. A general purpose
OS is huge and very complicated software. It tends to be
actively updated in order to incorporate new features and
to fix their bugs. Applying para-virtualization to such an
OS significantly increases implementation cost. It is also
hard to maintain the source code modified for para-
virtualization since it needs to keep up with rapid updates.
On the other hand, the implementation of RTOSes is
considerably simpler than a general purpose OS, and it
tends to be stable for a long time because keeping
reliability is more important than adding new features;
thus, once their source code base is modified for para-
virtualization, the amount of its maintenance work is
limited. Therefore, its implementation cost is negligible. In
fact, runtime cost is more important for RTOSes. In order
to have unmodified OSes execute at a less privileged level,
full-virtualization emulates a subset of hardware. Such
emulation costs at runtime. Para-virtualization can
decrease the overheads of emulation; thus, using para-
virtualization is desired for RTOSes in terms of both
implementation and runtime costs.

2.2.2 RTOS on Gandalf

We chose para-virtualization for µITRON as described
above in favor of less virtualization overheads at runtime.
Para-virtualization replaces privileged instructions, which
can be correctly executed only at the most privileged level,
with hypercalls, which are analogous to system calls
provided by Gandalf. By taking advantage of the
knowledge of µITRON's implementation and having
Gandalf tailored to execute a µITRON instance in specific
segments, only few hypercalls are actually required in
order to bring up µITRON on Gandalf.

The current implementation of Gandalf provides
µITRON with only three hypercalls as the replacements of
privileged instructions. One replaces lidt instruction,
which is used to register interrupt handlers. Another one
replaces sti and cli instructions, which enables and
disables interrupts, respectively. The last one replaces hlt
instruction, which halts a processor until an interrupt is
asserted. While some other privileged instructions are used,
they were removed because tailoring Gandalf to provide
an execution environment that matches µITRON's
expectation makes them no longer needed.

2.2.3 Linux on Gandalf

We use Linux as a general purpose OS. We first consider
full-virtualization to support Linux since Linux kernel is
huge and complicated software and is actively updated to
incorporate new features and to fix their bugs. Truly full-
virtualization, however, costs quite expensive to
implement a VMM and to execute an unmodified OS on it.

It requires a fully virtualizable processor [11], or it is
made possible only in return for the overheads of
virtualizing all computing resources. For example, an OS
kernel is designed to utilize the whole virtual address
space made available by a processor. If a processor is not
fully virtualizable as most of the current processors, there
is no room in the same virtual address space left for
locating a VMM in a way that it is protected from its guest
OS kernel and user processes. In this case, a VMM
requires another virtual address space, and heavy context
switching between a OS kernel and a VMM happens at
every time the VMM's intervention is needed. Such
intervention includes the emulation of privileged
instructions, handling interrupts and exceptions, and so on.
There are many other virtualization overheads caused by
full-virtualization. Achieving practical performance that
matches commercial VMMs, such as VMware [14] and
Microsoft VirtualPC, requires many techniques that even
include on-the-fly binary translation [13]; thus, the
provision of truly full-virtualization was dropped from our
choice.

We therefore decided to allow a few straightforward
modifications to bring up Linux on Gandalf. We call this
method nearly full-virtualization. Allowing a few
modifications enables the significant reduction of both
implementation and runtime costs. For example, by
reducing the virtual address range used by Linux, we can
create room for Gandalf and RTOSes in the same virtual
address space. It removes the necessity to switch virtual
address spaces at each time when Gandalf or RTOSes is
invoked. Such reduction of the virtual address range can
be done only by modifying a single line in a Linux source
code file. Thirteen lines in seven files are currently
modified to achieve our nearly full-virtualization of Linux
on Gandalf.

3. Evaluation

This section quantitatively and qualitatively evaluates and
compares the two hybrid operating environments we built
and described above. We first present quantitative
evaluation results, and then perform qualitative evaluation
on µITRON implementations on Xen and Gandalf.

3.1 Quantitative Evaluation

This section shows quantitative evaluation results for the
comparison of runtime costs between the two hybrid
operating environments on Xen and Gandalf. All
measurements reported below were performed on the Dell

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

150

Precision 470 Workstation with Intel Xeon 2.8GHz CPU.4
Hyper-threading was turned off, so that all measurements
were performed on a single CPU.

3.1.1 Basic Performance Evaluation

We first measured the basic costs related to running an OS
on a VMM. We measured the costs of issuing a hypercall,
processing a privileged instruction, and OS switching. The
costs of issuing a hypercall and processing a privileged
instruction were measured using µITRON. OS switching
cost is the time consumed to switch from µITRON to
Linux and then back to µITRON, which means that the
two times of OS switching are involved. Table 1 shows
the measurement results obtained from Xen and Gandalf.
We used cycle counts obtained from rdtsc instruction
for these measurements on both Xen and Gandalf. The all
numbers shown were the average costs after repeating
1,000 times. The cost of processing a privileged
instruction was measured only for Gandalf since Xen uses
only hypercalls to handle requests that are usually handled
by privileged instructions.

Table 1: Basic Performance Comparisons
 Xen Gandalf

Null Hypercall 0.43 µ sec 0.37 µ sec

Ignored Privileged Instruction N/A 0.56 µ sec

OS Switching Cost (round trip) 1.80 µ sec 1.02 µ sec

The results show that the costs of hypercalls on Xen

and Gandalf are very similar. Although handling a
hypercall on Gandalf is slightly faster, the difference is
negligible if we take account of other runtime overheads,
which frequently happen during the execution of programs,
including cache misses. Since hypercalls use the
processor's software interrupt mechanism, there is
relatively small room for software implementations to
make difference in this case. More interesting is that how
much processing a privileged instruction takes longer than
handling a hypercall. Processing a privileged instruction
involves more steps than handling a hypercall. It consists
of identifying the instruction address that caused an
exception, 5 fetching an instruction from the address,
decoding the instruction, and emulating it. The
measurement was done with hlt instruction, which is a
simple one byte instruction, and it does not include the

4 Linux reports this CPU as 2794.774 MHz. We use this
number to convert cycle counts obtained from rdtsc
instruction to micro seconds for accuracy.
5 On an IA-32 processor, the execution of a privileged
instruction at a less privileged level causes an exception
that is called a general protection fault.

emulation cost. In case of processing a longer privileged
instruction, it takes longer in order to decode and fetch a
emulating instruction and its operands.

The OS switching cost on Gandalf was measured by

using a pair of hlt instruction in Linux and its
replacement hypercall in µITRON. On Xen, the
XEN_yield hypercall was used in µITRON. We
presume that the reason of the smaller OS switching cost
on Gandalf is because of its use of segments to
accommodate µITRON in its own protection domain.
While µITRON and Linux share the same virtual memory
address space, they do not share their protection domains
by using disjoint segments. Therefore, the OS switching
cost on Gandalf does not include the cost of switching a
virtual memory address space, and its cost becomes less
than that of Xen.

3.1.2 Evaluating RTOS

In order to evaluate runtime environment's aspect of the
two hybrid operating environments from RTOS's point of
view, we measured the timer interrupt intervals in
µITRON. We used cycle counts obtained from rdtsc
instruction for these measurements, too. Fig. 2 and Fig. 3
show the measurement results on Xen and Gandalf. Please
note that because of Xen's limitation of the fixed timer
interval rate, the timer interval of µITRON on Xen is 10
milliseconds while on Gandalf it is 1 millisecond.

Fig. 2 Timer Interrupt Intervals in µITRON on Xen

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

151

Fig. 3 Timer Interrupt Intervals in µITRON on Gandalf

The measurement results show more jitter is observed
on Xen than on Gandalf. Most of the measured timer
interrupt intervals on Xen spread in range of 0.04
millisecond (40 µ seconds) between 9.96 and 10.02
milliseconds. In contrast to Xen, on Gandalf the measured
timer interrupt intervals are mostly the same at 1
millisecond as the timer device was configured to
periodically raise an interrupt every 1 millisecond. There
are, however, some spikes around 200 and 700
milliseconds in elapsed time. We need more investigations
to be performed in order to find out a cause of these spikes.

Gandalf is apparently more appropriate as a
Linux/RTOS hybrid operating environment if those spikes
were removed on Gandalf. Since timer interrupts are used
to invoke periodic tasks, which are a basis of real-time
scheduling, Gandalf's characteristic to provide precise and
stable timer interrupts suits with an RTOS.

3.1.3 Evaluating Linux

Finally, in order to evaluate our nearly full-virtualization
method used for Linux, we ran several programs included
in lmbench benchmark suite [9]. Fig. 4 and Fig. 5 show
the results of lmbench programs. We ran the same
programs on the original Linux (without virtualization),
XenLinux (Dom0), and Gandalf for comparison of
performance.

Fig. 4 Linux Performance Comparison (1)

Fig. 5 Linux Performance Comparison (2)

The measurement results show that our nearly full-
virtualization method reduces the runtime costs
significantly as Linux on Gandalf outperforms XenLinux
in all cases. The costs of process fork and exec are even
close to the original non-virtualized Linux and
significantly better than XenLinux.

3.2 Qualitative Evaluation

As qualitative evaluation, we compare the boot image
sizes and the total source code lines of µITRON
implementations on Xen and Gandalf. Table 2 shows them
along with those of the original µITRON implementation
that runs directly on an IA-32 hardware platform. The
boot image sizes are the values printed by UNIX size
command, which lists the section sizes and shows the total
of them. The source code lines include comments and
blank lines.

Table 2: Qualitative Comparisons of µITRON Implementations
 on Xen on Gandalf Original
Boot Image Size 129KB 87KB 80KB
Total Source Code Lines 20434 12248 13218

Table 2 shows that only µITRON on Xen is

significantly larger. Both of the boot image size and the
total source code lines are approximately 50% more than
the rest of them. This is because µITRON on Xen includes
the whole para-virtualization interface for Xen although
only few functions are called from µITRON. If we
become more familiar with Xen's para-virtualization
interface and can design the tailored interface to be used
with µITRON on Xen, the boot image size and the total
source code lines can be reduced. In this case, we need to
maintain the implementation of the tailored interface on
our own; thus, it significantly increases the
implementation cost. In contrast to Xen, µITRON on
Gandalf is more or less the same size as the original one in
terms of the boot image size and the total source code lines.
We see the reduction of the total source code lines on
Gandalf because the hardware interface, especially for

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

152

registering interrupt handlers, is simplified. Since only few
hypercalls are introduced, we consider the implementation
cost of Gandalf on Xen is negligible.

4. Summary

This paper presents our experiences of building
Linux/RTOS hybrid operating environments on two
VMMs, Xen and Gandalf. Xen is a popular open source
VMM while Gandalf is our in-house virtual machine
monitor that was designed and implemented from scratch
to be tailored to construct a Linux/RTOS hybrid operating
environment. Our experiences and evaluations showed
that Gandalf's approach, which combines full- and para-
virtualization methods, has clear advantages in terms of
both implementation cost and runtime cost.

References
[1] M. Barabanov and V. Yodaiken. Real-Time Linux. Linux

Journal, March 1996.
[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
Art of Virtualization. In Proceedings of the 19th ACM
Symposium on Operating System Principles, pp. 164--177,
October 2003.

[3] G. Bollella and K. Jeffay. Support for Real-Time
Computing within General Purpose Operating Systems -
Supporting Co-Resident Operating Systems. In Proceedings
of the 1st IEEE Real-Time Technology and Applications
Symposium, May 1995.

[4] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco:
Running Commodity Operating Systems on Scalable
Multiprocessors. In Proceedings of the 16th ACM SIGOPS
Symposium on Operating Systems Principles, pp. 143--156,
October 1997.

[5] R. J. Creasy. The Origin of the VM/370 Time-Sharing
System. IBM Journal of Research and Development, 25 (5),
1981.

[6] R. P. Goldberg. Survey of Virtual Machine Research. IEEE
Computer, pp. 34--45, June 1974.

[7] Intel Corporation. IA-32 Intel Architecture Software
Developer's Manual.

[8] P. Mantegazza, E. Bianchi, L. Dozio, and S.
Papacharalambous. RTAI: Real Time Application Interface.
Linux Journal, April 2000.

[9] L. McVoy and C. Staelin. lmbench: Portable Tools for
Performance Analysis. In Proceedings of the USENIX
Annual Technical Conference, pp. 279--294, January 1996.

[10] R. Meyer and L. Seawright. A Virtual Machine Time
Sharing System. IBM Systems Journal, 9 (3), pp. 199--218,
1970.

[11] G. Popek and R. Goldberg. Formal Requirements for
Virtualizable 3rd Generation Architectures.
Communications of the A.C.M., 17(7):412--421, 1974.

[12] J. S. Robin and C. E. Irvine. Analysis of the Intel Pentium's
Ability to Support a Secure Virtual Machine Monitor. In

Proceedings of the 9th USENIX Security Symposium, pp.
129--144, August 2000.

[13] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors:
Current Technology and Future Trends. IEEE Computer, pp.
39--47, May 2005.

[14] J. Sugerman, G. Venkitachalam, and B. H. Lim.
Virtualizing I/O Devices on VMware Workstation's Hosted
Virtual Machine Monitor. In Proceedings of 2001 USENIX
Annual Technical Conference, pp. 1--14, June 2001.

[15] H. Takada ed., µITRON4.0 Specification. TRON
Association, 1999. (In Japanese)

[16] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel. In Proceedings
of the 5th Symposium on Operating Systems Design and
Implementation, pp. 195--210, December 2002.

Shuichi Oikawa received the B.S.,
M.S., and Ph.D. degrees in Computer
Science from Keio University in 1989,
1991, and 1996, respectively. He is
an Associate Professor of the
Department of Computer Science at
University of Tsukuba from 2004.
Before joining University of Tsukuba,
he worked at Carnegie Mellon

University, Intel Corporation, Sun Microsystems, and Waseda
University. His research interests include operating systems,
virtual machine monitors, real-time systems, and embedded
systems.

Megumi Ito received the B.S.
degree in Computer Science from
University of Tsukuba in 2006. She is
currently a M.S. course student of the
Department of Computer Science at
University of Tsukuba. Her research
interests include operating systems
and virtual machine monitors.

