
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
    
 

 

168 

Manuscript received  May 5, 2006. 
Manuscript revised  May 25, 2006. 

Maximize Parallelism for Nested Loops via Loop Striping 

Chun Xue†, Zili Shao††,Qingfeng Zhuge†, Meilin Liu†,Meikang Qiu† and Edwin H.-M. Sha† 

  
  

Hong Kong Polytechnic University††                                                                      University of Texas at Dallas             
 
Summary 
The majority of scientific and Digital Signal Processing (DSP) 
applications are recursive or iterative. Transformation techniques 
are generally applied to increase parallelism for these nested 
loops. Most of the existing loop transformations techniques 
either can not achieve maximum parallelism, or can achieve 
maximum parallelism but with complicated loop bounds and 
loop indexes calculations. This paper proposes a new technique, 
loop striping, that can maximize parallelism while maintaining 
the original row-wise execution sequence with minimum 
overhead. Loop striping groups iterations into stripes, where a 
stripe is a group of iterations in which all iterations are 
independent and can be executed in parallel. Theorems and 
efficient algorithms are proposed for loop striping 
transformations. The experimental results show that loop striping 
always achieves better iteration period than software pipelining 
and loop unfolding, improving average iteration period by 50% 
and 54% respectively.  
 
Key words: 
Loop Scheduling, Optimization, Loop Transformation. 

1. Introduction 

Nested loops are the most critical sections in applications 
such as signal processing, image processing, fluid 
mechanics, and weather forecasting. To improve the 
performance on these applications, parallel architectures 
and systems are generally used. How to generate code for 
nested loops on parallel architectures is a challenging 
problem for compilers. This paper proposes a new 
technique, loop striping, that can achieve maximum 
parallelism while maintaining the original row-wise 
execution sequence with minimal overhead. 
 
Existing loop transformation methods, like wavefront 
processing [2] [9], achieve higher level of parallelism for 
nested loops by changing the execution sequence of the 
nested loops. This sequence of execution is commonly 
associated with a schedule vector s, also called an ordering 
vector, which affects the order in which the iterations are 
performed. The iterations are executed along hyperplanes 
defined by s. When the execution of a hyperplane reaches 
the boundary of the iteration space, it advances to the next 

hyperplane according to the direction of s. All the 
iterations on the same hyperplane can be executed in 
parallel. 
 
Different methods have different means in the selection of 
an appropriate schedule vector. Among these loop 
transformation methods, unimodular transformation [6] 
[14] [15] is one of the major techniques. It unifies loop 
transformations like loop skewing [16], loop interchange 
[3], and loop reversal to achieve a particular goal, such as 
maximizing parallelism or maximizing data locality. The 
sequence of execution as well as the loop bounds and loop 
indexes are all changed as the result of unimodular 
transformation. Another technique, Multi-dimensional 
retiming [13], restructures the loop body to achieve full 
parallelism within an iteration. Then the actual scheduling 
of the fully-parallelized iterations can be done by 
unimodular transformation [15]. More researches have 
been conducted on top of unimodular transformation. 
Anderson and Lam [5] apply unimodular transformation to 
loop nests to increase the granularity of parallelism. Lim 
and Lam [4] [11] propose affine transformation that 
subsumes unimodular transformation to maximize 
parallelism and minimize synchronization. 
 
Unimodular transformation adds overhead to the 
transformed loops while achieving higher level of 
parallelism. First, non-linear index bound checking needs 
to be conducted on the new loop bounds to assure 
correctness. Second, loop indexes become more 
complicated compared to the original loop indexes, and 
additional instructions are needed to calculate each new 
index so that the actual array values stored in memory can 
be correctly referenced. 
 
To have simple loop bounds and simple loop indexes 
while achieving maximum parallelism, we propose a new 
loop transformation technique, loop striping. Loop 
striping selects iterations into stripes, where a stripe is a 
group of iterations in which all the iterations are 
independent and can be executed in parallel. With proper 
selection of iterations to be placed into the same stripe, 
loop striping ensures that all the iterations in the same 
stripe can be executed in parallel. In this way, it achieves 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
 
 

 

169

higher level of parallelism while maintaining simple loop 
bounds and loop indexes with minimal overhead. There 
are two main components in the loop striping technique, 
loop striping factor and loop striping offset. Loop striping 
factor determines how many iterations will be included in 
each stripe, and loop striping offset determines how the 
iterations will be selected in each stripe. These two 
components can be tailored to reach the ideal parallelism 
for any target architecture. 
 
Loop unfolding [12] is another popular transformation 
technique that can increase parallelism for loops. While 
both loop striping and loop unfolding group iterations to 
increase parallelism, loop striping is more advanced than 
loop unfolding for nested loops. Loop unfolding only 
unfolds iterations within the same dimension, and it does 
not change the dependencies between iterations. As a 
result, there exists a lower bound on iteration period which 
is the shortest average execution time of an iteration. The 
best loop unfolding can do is to reach this lower bound. In 
this paper, we show that loop striping can transform 
nested loops such that we can always group iterations into 
stripes, where there is no dependency among iterations in 
a stripe. Hence, there is no lower bound on iteration period 
for loop striping. We conduct experiments on a set of 
digital filters with two dimensional loops. Experimental 
results show that loop striping always achieves better 
iteration period than loop unfolding and software 
pipelining.  
 
The remainder of this paper is organized as follows. 
Section 2 provides a motivating example. Section 3 
introduces basic concepts and definitions. Theorems and 
algorithms are proposed in Section 4. Experimental results 
and concluding remarks are presented in Section 5 and 6, 
respectively. 

2. Motivating Example 

In this section, we provide a motivating example to 
demonstrate the advantage of loop striping compared to 
loop unfolding and unimodular transformation. The 
example loop program is shown in Figure 1(a). The 
MDFG representation of the loop is shown in Figure 1(b). 
MDFG stands for Multi-dimensional Data Flow Graph. A 
node in an MDFG represents a computation, and an edge 
in an MDFG represents a dependence relation between 
two nodes. Each edge is associated with a delay that helps 
to identify which two nodes are linked by this edge. For 
example, in Figure 1(b), the node A represent the 
computation of A[i, j] = B[i, j-1] + B[i-1, j] , the edge 

with delay (1, -1) from node A to node B represents the 
calculation of B[i, j] depends on the value of A[i-1, j+1]. 
The detail formal definitions are presented in section 3. 
 

     

end for

for j=0 to m do

B[i,j] = A[i,j] + A[i−1,j+1];

for i=0 to n  do

end for

A[i,j] = B[i,j−1] + B[i−1,j]; A B

(1,−1)

(1,0)

(0,1)

(b)(a)  
 

Fig. 1: A nested loop and its MDFG. 
 
To show the dependencies among iterations, we often 
represent iterations in a Cartesian space, called iteration 
space. Figure 2 shows a representation of the iteration 
space for the MDFG presented in Figure 1(b), in which 
each node represents an iteration, and each edge represents 
a dependence relation between two iterations. For example, 
node X(1, 1) represent the iteration of: 
 

⎩
⎨
⎧

+=
+=

=
]2,0[]1,1[]1,1[
]1,0[]0,1[]1,1[

)1,1(
AAB
BBA

X  

       
And there is an edge from node Y(0, 2) to node X(1, 1) 
because the calculation of B[1, 1] depends on the value of 
A[0, 2]. This can be more easily seen in Figure 3. Figure 3 
shows a magnification of the nodes in the iteration space 
so that we can see the internal operations of each iteration. 
For simplicity, we will always show a small section of the 
iteration space with respect to our examples.   
 

1

2

3

4

2 3 4 50 1

Y

X

i

j 
 

Fig. 2: The iteration space of the original nested loop. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
    
 

 

170 

  
 

A B A B

A BA B

A B A B A B

A B

A B

 (2,2) (2,1) (2,0)

 (1,0)

 (0,0)  (0,1)

 (1,2) X(1,1)

 Y(0,2)  
 

Fig. 3: A close look at the cells of the iteration space. 
 
For the nested loop in Figure 1(a), we apply unfolding 
with an unfolding factor of two. A new loop program and 
a new MDFG are obtained as shown in Figure 4.  From 
the new unfolded graph, we can see that the longest path 
with zero delay is four, which means, all four nodes need 
to be scheduled sequentially. Figure 5 shows the iteration 
space after unfolding with an unfolding factor of two. In 
this example, we do not uncover parallelism by unfolding. 
 

(a)

for i=0 to n do
for j=0 to m step by 2 do

A[i,j] = B[i,j−1] + B[i−1,j];
B[i,j] = A[i,j] + A[i−1,j+1];
A[i,j+1] = B[i,j] + B[i−1,j+1];
B[i,j+1] = A[i,j+1] + A[i−1,j+2];

end for
end for

A1 B1

(b)

(1,0)

(1,0)

(1,0)

A0 B0

(1,−1)

(0,1)

 
 

Fig. 4: Loop after unfolding and DFG after loop unfolding. 
 

1

2

3

4

2 3 4 50 1

i

j 
 

Fig. 5: The iteration space after unfolding. 
 
 
For the same nested loop in Figure 1, we apply 
unimodular transformation. The loop becomes:  
 
for i' = 0 to 2N + M   
    for j' = max(0, ceil((i'- M) / 2)) to min ( N, floor( i' / 2))   
         A[j',i'-2j'] = B[j', i'-2j'-1] + B[j'-1,i'-2j']   
         B[j',i'-2j'] = A[j',i'-2j'] + A[j'-1,i'-2j'+1]  
    end for   
end for  
 
We can see that both loop bounds and loop indexes 
calculation become quite complicated. The iteration space 
of the transformed nest loop is shown in Figure 6. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
 
 

 

171

1

2

3

4

2 3 4 50 1 j’’

Time
s=(1,0)

i’’

 
Fig. 6: The iteration space after wavefront transformation. 
 
 
Figure 7(a) shows the code after loop striping 
transformation with a striping factor of two and a striping 
offset of two. Figure 7(b) shows the MDFG after loop 
striping. Figure 8 shows iterations striped from the 
original iteration space, and Figure 9 shows the new 
iteration space with new iteration dependencies. Since the 
iterations that are striped into the same stripe can be 
executed in parallel, we reduce the original iteration 
period by half. Clearly it is better than unfolding with an 
unfolding factor of two.  The code generated by loop 
striping has simple loop bounds as well as simple loop 
indexes which unimodular transformation can not achieve. 
In the rest of this paper, we will present the loop striping 
technique in detail. 
  

     

end for
B[i,j] = A[i,j] + A[i−1,j+1];
A[i,j] = B[i,j−1] + B[i−1,j];

     
B[i,j] = A[i,j] + A[i−1,j+1];
A[i,j] = B[i,j−1] + B[i−1,j];

for i=0 to n step by 2 do
for j=0 to 1 do

for j=2 to m do

     

end for

     

A[i+1,j−2] = B[i+1,j−3] + B[i,j−2];
B[i+1,j−2] = A[i+1,j−2] + A[i,j−1];

end for
end for

B[i+1,j] = A[i+1,j] + A[i,j+1];
A[i+1,j] = B[i+1,j−1] + B[i,j];

for j=m−1 to m do

Epilog

Prolog

(a)

(1,3) (0,2)

A1 B1
(0,1)

(0,1)

(0,1)

(1,−2)

(b)

A0 B0

 
 

Fig. 7: Loop after striping and its DFG. 
 

1

2

3

4

5

2 3 4 5 60 1

i

j 
 

Fig. 8: The iteration space after loop striping. 
 

i

j0  
 

Fig.9: The simplified iteration space after loop striping. 

3. Basic Concepts and Definitions 

In this section, we introduce the basic concepts which will 
be used in the later sections. First we present the model 
and notations that we use to analyze the nested loops. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
    
 

 

172 

Second, several related loop transformation techniques are 
introduced. 

 
Multi-dimensional Data Flow Graph is used to model 
loops and is defined as follows. A Multi-dimensional Data 
Flow Graph (MDFG) G = < V, E, d, t> is a node-
weighted and edge-weighted directed graph,  where V is 
the set of computation nodes, E is the set of dependence 
edges, d is the multi-dimensional delays between two 
nodes, also known as dependence vectors, and t is the 
computation time of each node. We use d(e) = (d.x, d.y) as 
a general formulation of any delay shown in a two-
dimensional DFG (2DFG). An example is shown in Figure 
1. The MDFG in Figure 1(b) models the nested loop in 
Figure 1(a). 

 
An iteration is the execution of each node in V exactly 
once. The computation time of the longest path without 
delay is called the iteration period. For example, the 
iteration period of the MDFG in Figure 1(b) is 2 from the 
longest path without delay, which is from node A to B. 
Iterations are identified by a vector i, equivalent to a MD 
index. An iteration is associated to a static schedule. A 
static schedule of a loop is repeatedly executed for the 
loop. A static schedule must obey the precedence relations 
defined by the subgraph of an MDFG, consisting of edges 
without delays. If a node v at iteration j, depends on a 
node u at iteration i, then there is an edge e from u to v, 
such that d(e) = j - i. An edge with delay (0, 0, ..., 0) 
represents a data dependence within the same  iteration. A 
legal MDFG must have no zero-delay cycles. 
 
Iterations can be represented as integral points in a 
Cartesian space, called iteration space, where the 
coordinates are defined by loop indexes. Such points are 
identified by a vector i, equivalent to a multi-dimensional 
index. The components of i are arranged from the 
outermost loop control index to the innermost one, always 
implying a row-wise execution.  

 
A schedule vector s is the normal vector for a set of 
parallel equitemporal hyperplanes that define the sequence 
of execution of an iteration space. By default, a given 
nested loop is executed in a row-wise fashion, where the 
schedule vector s = (1, 0). 

 
To manipulate MDFG characteristics represented on 
vector notations, such as the delay vectors, we make use of 
component-wise vector operations. Considering two-
dimensional vectors P and Q, represented by their 
coordinates (P.x, P.y) and (Q.x, Q.y), examples of 
arithmetic operations are P + Q = (P.x + Q.x, P.y + Q.y) 

and P X Q = (P.x * Q.x, P.y * Q.y). The notation P · Q  
indicates the inner product between P and Q, i.e., P · Q 
=P.x * Q.x + P.y *Q.y. Vectors are ordered in a left-to-
right lexicographic order, i.e., for two n-dimensional 
vectors P = (P1, P2, P3, ..., Pn) and Q = (Q1, Q2, Q3,..., Qn), 
P > Q, if for some 1 ≤ i ≤ n, Pi > Qi and ∀  j < i, Pj = Qj. 
For example, (1, 0, 0) > (0, 2, 1) > (0, 1, 1). Vectors are 
also used to indicate the sequence of computation. In this 
paper, the sequence of execution is defined as a row-wise 
computation, i.e., iteration i is executed before iteration j if 
i < j. 

 
Unfolding is also called unrolling or unwinding. It is 
widely used in compiler design [1]. A schedule of 
unfolding factor f can be obtained by unfolding the 
original schedule f times. That is, a total of f iterations are 
scheduled together, and the schedule is repeated every f 
iterations. We say the unfolded MDFG Gf = <Vf, Ef, df, tf> 
is an MDFG obtained by unfolding the original MDFG f 
times. Set Vf is the union of V0, V1, ..., Vf-1. One cycle in Gf 
consists of all computation nodes in Vf. The period during 
which all computations in a cycle are executed is called 
cycle period. The cycle period C(Gf) of Gf is defined as:  
 
C(Gf) =  max { tf (pf) | df (pf) = 0, ∀ pf ∈  Gf }. 
 
Where pf represent a path in Gf, and tf(pf) represent the 
total computation time of path pf. During a cycle period of 
Gf, f iterations of G are executed. The iteration period of 
Gf is equal to C(Gf) / f, in other words, the average 
computation time for each iteration in G. For the original 
MDFG G, the iteration period is equal to C(G). An 
algorithm can find C(G) for an MDFG in time O(|E|) [10].  
 
The iteration bound is defined as the maximum time-to-
delay ratio of all cycles, B(G) = max T(l) / D(l)  for all 
cycle l ∈  G where T(l) is the sum of computation time in 
cycle l, and D(l) is the sum of delay counts in cycle l. A 
schedule is rate-optimal if the iteration period of this 
schedule equals its iteration bound. The value B(G) can be 
found in time O(|V||E|log|V|), when the total number of 
delays and total computation time are upper bounded by 
O(|V|k), where k is a constant [7]. For a unit-time DFG, it 
takes only time O(|V||E|) to compute the bound B(G) [8]. 

 
When there is no resource constraint and a sufficiently 
large number of iterations are executed together, there is 
always a static schedule that can achieve the rate-
optimality. For a general-time DFG, Parhi and 
Messerschmitt [12] show that if the unfolding factor is the 
least common multiple of the delay counts of all cycles, a 
rate-optimum schedule can be achieved. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
 
 

 

173

 
 Unimodular is a loop transformation technique that 
unifies all combinations of loop interchange or 
permutation, skewing and reversal. It can generate an 
optimal solution in compilation for parallel machines to 
determine which loop transformations, and in what order, 
should be applied to achieve a particular goal, such as 
maximizing parallelism or maximizing data locality [15]. 
The derivation of the optimal compound transformation 
consists of two steps. The first step puts the loops into a 
canonical form, namely a fully permutable loop nest. And 
the second step transforms the fully permutable loop nest 
to exploit the target architecture. Specifically, wavefront 
transformation is used in the second step to maximize the 
degree of fine-grain parallelism.  

4. Loop Striping 

In this section, we propose a new loop transformation 
technique, loop striping. First the basic concepts are 
introduced, and the properties and theorems related to loop 
striping are discussed. Then the procedures and algorithms 
to transform the loops after striping are presented. In the 
following, theorems and algorithms are presented with two 
dimensional notations, which can be easily extended to 
multi-dimensions. 

4.1 Basic Concepts 

In this section, we introduce the theoretical foundations 
for the proposed loop transformation technique, loop 
striping.  

 
A stripe is a group of iterations where there is no 
dependency among the iterations. We call a nested loop 
after loop striping transformation a striped nested loop.  
To group iterations into stripes, we need to use loop 
striping technique defined as follows. Given an MDFG G 
= <V, E, d, t> representing an n-dimensional nested loop, 
loop striping with vector s = (f, g) will group iterations 
into stripes. Two important variables for the loop striping 
technique, f and g, are defined in the following definition. 

 
Striping factor f determines the number of iterations that 
will be placed into the same stripe. Striping offset g is the 
offset in the inner-most dimension. It determines the 
direction of the loop striping. 
 
For example, when the striping factor f = 2, iteration (1, 0) 
and iteration (0, g) will be placed in the same stripe. Loop 
striping groups multiple iterations into one stripe to be 

scheduled together. With a carefully selected striping 
offset g, we can group the iterations such that there is no 
dependency among them. In this way, there is no lower 
bound on the iteration period. This is the key difference 
between loop striping and loop unfolding. In the following 
section, we prove that we can always find such a striping 
offset g, so that there is no dependency among the striped 
iterations. Before we prove that we can always find a 
proper striping offset g, we will first introduce the 
following lemma. 
 

0

b

1

III

III IV

d’ d’’’
d’’

i

j

s=(1,0)

 
 

Fig. 10: The relation of vector b and d. 
 
Lemma 4.1. Given an MDFG G = <V, E, d, t> 
representing an n-dimensional nested loop, and set D is the 
set that ∀ d ∈D, d(e) ≠ (0,0), we can always find a vector 
b = (x, 1),  such that ∀ d ∈D, d  · b > 0. 
Proof: 
We will prove by finding such a vector b = (x, 1). Since 
we are given an MDFG that represents an n-dimensional 
nested loop, by default, this nested loop can be executed in 
a row-wise fashion. 
=> The schedule vector s = (1, 0) is always realizable. 
=> ∀ d ∈  D, d · s ≥ 0. 
=> All d ∈  D stay in region I and II only as shown in 
Figure 10. 
 
With this understanding, we will find a vector b = (x, 1) as 
following. We will first sort all d ∈D by its angle with j 
axis. Let d' be such a d ∈D, that the angle between d' and 
j axis is the largest. We can easily find a vector b = (x, 1) 
that can satisfy d' · b > 0, this same vector will be able to 
satisfy ∀ d ∈D, d · b > 0. Here is how we find such a 
vector b = (x, 1): 
 
Let d' = (d'i, d'j), since b = (x, 1), d' · b > 0 
=> d'i · x + d'j · 1 > 0 
=> d'i · x > - d'j  
=> x > - d'j/d'i  



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
    
 

 

174 

Since x > 0 and x is an integer, 

      
⎡ ⎤

⎪
⎩

⎪
⎨

⎧

>
=
<+−

=
0'0
0'1
0'1'/'

jd
jd
jdidjd

x  

 
With this selection of x, we know we can always find such 
a vector b = (x, 1), that ∀ d ∈D, d  · b > 0. 

  

III

III IV

i

j

1

2

3

2 3 40 1

i

j

(1,1)

(0,0)

d’=(0,1)

d’’=(−1,−1)

s=(1,0)

(a) (b)  
 

Fig. 11: An example show why d · s(1,0) ≥ 0 
 

We use an example to explain why when schedule vector 
is (1, 0), all d ∈  D will be in region I and II only. As 
shown in Figure 11(a), we have d'' = (-1,-1) in region III, 
and d''  · (1, 0) = -1 < 0. We can see from the iteration 
space in Figure 11(b) that with this d'' the schedule is not 
feasible with the default row-wise scheduling, where 
schedule vector s = (1, 0) can not be realized. In Figure 11, 
even the first iteration (0, 0) can not be executed, because 
it is waiting for the dependency data from iteration (1, 1) 
that has not completed yet. 
 
Theorem 1. Given an MDFG G = <V, E, d, t> 
representing an n-dimensional nested loop, a striping 
offset g can always be found so that there is no 
dependence between the striped iterations. 
Proof: 
By definition, assuming a striping factor of 2, for a 
striping offset g, iteration (1, 0) and iteration (0, g) will be 
in the same stripe. To prove that we can always find such 
a g that iteration (1, 0) and iteration (0, g) have no 
dependency between them, first we describe how to find 
such a g, and then prove that this g fits our criteria. 
 
Step 1, find g: 
Following Lemma 4.1, we can always find a vector b = (x, 
1), such that d(e) · b > 0 for every d(e) ≠ (0, 0,..., 0). We 
construct a new vector c = (1, g) where g = x, so that 
vector c is orthogonal to b. Use this g as the striping offset. 
 

Step 2, g fits our criteria: 
If there is such a delay d'(e) that runs between the 
iterations in a stripe, then d'(e) is orthogonal to vector b, 
then d'(e) · b = 0. But we know for every d(e), d(e) · b > 0. 
Contradiction. 

 
Therefore, we can always find a striping offset g such that 
there is no dependence among the striped iterations. 
 
Theorem 2. There is no lower bound on iteration period 
for nested loops after loop striping transformation is 
applied. 
Proof: 
From Theorem 1, we know that we can always find a 
striping offset g such that there is no dependency among 
the iterations in a stripe. Then the iteration period can be 
reduced by dividing the striping factor. For example, if the 
original iteration period is I, and striping factor is f, then 
the new iteration period is I / f. With sufficient resources 
and sufficient number of iterations, we can increase 
striping factor f to reduce iteration period as much as 
possible. 
 
After the loop striping transformation, the new program 
can still keep row-wise execution, which is an advantage 
over the loop transformation techniques that need to do 
wavefront execution and need to have extra instructions to 
calculate complex loop bounds and loop indexes. 

   

4.1 Loop Striping Technique 

In this section, we present how to implement the loop 
striping transformation technique. First, we propose an 
MDFG transformation algorithm to obtain MDFGs for the 
striped nested loop. Second, an algorithm to generate the 
code for loop striping is presented. 
 
Based on a specific architecture, considering the resource 
constraints, we can find a corresponding loop striping 
factor and loop striping offset that can achieve the desired 
parallelism. Then based on the striping factor and striping 
offset, our algorithms can generate the code and MDFGs 
for striped nested loops.  
 
4.1.1 The MDFG Transformation Algorithm 
 
The MDFG transformation algorithm for striped nested 
loops is presented in Algorithm 4.1. The MDFGs for 
striped nested loops generated from Algorithm 4.1 can 
help us efficiently perform scheduling for a specific 
architecture. The properties like iteration period, critical 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
 
 

 

175

path, etc., can be easily obtained based on the generated 
MDFGs. It also provides a foundation for other loop 
transformation techniques such as Multi-dimensional 
retiming for further optimization. 
 
Given an MDFG G = <V, E, d, t>, loop striping with (f, g) 
will transform G into Gs = <Vs, Es, ds, ts>, where set Vs is 
the union of V0, V1, ..., Vf-1, and ts(ui) = t(u). Each edge e in 
G is associated with a delay d in the form of (d(e).i, d(e).j). 
Each edge es in Gs is associated with a delay ds in the form 
of (ds(es).i, ds(es).j). Procedure to construct Es and ds is 
given as follow. 
 
 
Algorithm 4.1 The MDFG generation for loop striping 
REQUIRE: MDFG G=<V, E, d, t>, striping factor f, 
striping offset g. 
ENSURE: Es and ds. 
for every edge e = (u, v) ∈  E 
    δ  d(e).i  % f;   
    ρ   ⎡ ⎤fied /).( ;  
    for x = 0 to f - δ -1 
       Add edge es = (ux, vx+δ) to Es ; 
       ds(es)  (ρ, d(e).j + δ * g); 
    end for    
    for  x = f - δ to f - 1 
       Add edge es = (ux, vx+δ-f) to Es ; 
       ds(es)  (ρ + 1, d(e).j + (δ - f)* g); 
    end for  
end for 
 
In this algorithm, for each edge in the original MDFG, we 
generate f new edges, and assign a proper delay for each 
new edge. All the dependencies within a stripe are 
considered intra-stripe dependencies and are represented 
as edges without delay. The dependency from the stripe (i, 
j) to the stripe (i', j') is represented by an edge with delay 
of (i'-i, j'-j). Since f iterations in the i direction compose 
one stripe, every f delay in d(e).i is represented as 1 delay 
in ds(es).i. The transformation from d(e).j to each copy of 
ds(es).j is more involved, and the details are given in the 
algorithm. 
 
Some nice properties about the new MDFG after the loop 
striping transformation are shown as follows, which can 
be used for further loop optimization. 
 
PROPERTY 4.1 Let u and v be the nodes in G, 

vu e⎯→⎯ . 
1. The summation of the delays of the f copies of edge es is   
     ∑i=0

f-1 (ds(es
i)) = ( d(e).i , d(e).j * g ). 

2. The f copies of edge e in Gs are the set of edges ui        
v(i+d(e).i)%f  for every 0 ≤ i < f.  
  
Algorithm 4.1 takes O(|E|f) to execute, where |E| is the 
number of edges and f is the striping factor. 
 
 
 
4.1.2 The Code Transformation Algorithm 
 
We first present some notations. Assume that the original 
nested loop and the loop striping transformed loop are in 
the following format: 
 
Original Nested Loop: Loop Striping transformed 

Loop: 
for I1 = Lo

1 to Uo
1 

    for I2 = Lo
2 to Uo

2 
    … 
    Bo(I1, I2, I3, …, Ii) 
    .. 
    end for 
end for 

for I1 = Ln
1 to Un

1  step by Sn
1 

   for I2 = Ln
2 to Un

2 step by Sn
2

    … 
    Bn(I1, I2, I3, …, Ii) 
    .. 
   end for 
end for 

 
where I1, I2, I3, …, Ii are the loop indexes,  Lo

1, Lo
2, Lo

3, …, 
Lo

i are the minimum values for each of the loop indexes in 
the original loop, Uo

1, Uo
2, Uo

3, …, Uo
i are the maximum 

values for each of the loop indexes in the original loop, 
and Bo(I1, I2, I3, …, Ii) is the function that represent the 
loop body of the original loop with I1, I2, I3, …, Ii as the 
input parameters. For the striped nested loop, we use the 
same notations except that subscript n replaces the 
subscript o. 

 
Using these notations, the algorithm that transform the 
original nested loop into the new nested loop after striping 
is given as Algorithm 4.2. 
 
Algorithm 4.2 The code generation for loop striping 
REQUIRE: MDFG G=<V, E, d, t>, striping factor f, 
original loop body function Bo(I1,I2,I3, …, Ii), original loop 
bounds Lo

1,Lo
2, …, Uo

1,Uo
2,… 

ENSURE: new loop body function Bn(I1,I2, …, Ii), new 
loop bounds Ln

1,Ln
2, …,Un

1,Un
2,…, new loop steps 

Sn
1,Sn

2, … 
   g  find_offset(G) (shown in Algorithm 4.3); 
   for x = 0 to f-1 
      Append function Bo(I1 + x, I2 - x * g, I3, …, Ii) to  Bn(I1, 
I2, I3, …, Ii) ; 
   end for  
   for y = 0 to i  



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
    
 

 

176 

      Ln
y = Lo

y; 
      Un

y = Uo
y; 

      Sn
y = 1; 

   end for 
   Ln

2 = g;    
   Sn

1 = f; 
 
 
In the algorithm, we first duplicate the original loop body f 
times. Each time we increase the loop index I1 by 1 and 
decrease the loop index I2 by striping offset g. After the 
new loop body is generated, we will change the minimum 
value of loop index Ln

2 to be g, which means the starting 
point of the second level loop is offset by the striping 
offset g. Finally, the step variable of the outer most loops 
is increased by the striping factor f, which is because we 
are scheduling f original iterations at a time. In the 
algorithm, we use the function shown in Algorithm 4.3 to 
obtain a striping offset.  

 
Algorithm 4.3 Function find_offset(G) 
REQUIRE: MDFG G=< V, E, d, t> 
ENSURE: Striping offset g. 
   D  {d | d ≠ (0, 0, …, 0) };   
   Find d' = (d'i, d'j) ∈D where d'j / d'i is the minimum ; 
   

 
⎡ ⎤

⎪
⎩

⎪
⎨

⎧

>
=
<+−

=
0'0
0'1
0'1'/'

jd
jd
jdidjd

g  

   
   Return g; 
 
For Algorithm 4.2, it takes O (|E|) time to find the striping 
offset g, where |E| is the number of edges in the original 
MDFG. It takes O (f  x N) to complete the code generation, 
where f is the striping factor and N is the number of 
instructions in the original loop body. Hence the total time 
complexity for Algorithm 4.2 is O (|E| + f  x N). 

5. Experiment 

In this section, we conduct experiments based on a set of 
DSP benchmarks with two dimensional loops: WDF 
(Wave Digital Filter), IIR (Infinite Impulse Response 
Filter), 2D (Two Dimensional Filter), Floyd (Floyd-
Steinberg Algorithm), and DPCM (Differential Pulse-
Code Modulation Device). Table 1 shows the number of 
nodes and the number of edges for each benchmark. 
 

Bench Nodes Edges Bench Nodes Edges

IIR 16 23 WDF 12 16 

Floyd 16 20 DPCM 16 23 
2D(1) 34 49 MDFG1 4 6 
2D(2) 4 6 MDFG2 32 58 

Table 1: Benchmarks Information. 
 

For each benchmark, we compare the iteration period of 
the initial loops, the iteration period of the transformed 
loop obtained by software pipelining, the iteration period 
of the transformed loops obtained by loop unfolding, and 
the iteration period of the transformed loops obtained by 
loop striping. The results are shown in Table 2. In Table 2, 
columns “Initial”, “S. Pipe.”, “Unfolding”, and “Striping”, 
represent the iteration periods of the initial loops, the 
iteration periods after applied software pipelining, the 
iteration periods of the unfolded loops, and the iteration 
periods of the striped loops, respectively. Iteration periods 
in Table 2 are average iteration periods. For unfolded or 
striped loops, the iteration periods are obtained by two 
steps: first we calculate the cycle periods for the unfolded 
or striped loops and then divide the cycle periods by the 
unfolding factor or striping factor. At the end of Table 2, 
row “Avg. Iter. Period” shows the average iteration period 
for each according column. The last row “Iter-re. Avg. 
Impv.” is the average improvement obtained by comparing 
loop striping with other techniques. Compared to loop 
unfolding, loop striping reduces iteration period by 54%. 
Compared to software pipelining, loop striping reduces 
iteration period by 50%. 
 
From our experiment results, we can clearly see loop 
striping technique can do much better in uncovering 
parallelism and increasing timing performance for nested 
loops than software pipelining and loop unfolding. While 
software pipelining and loop unfolding improves iteration 
period for single dimensional loops, loop striping 
technique significantly reduces iteration period for multi-
dimensional loops by exploring multiple dimensions. 

 
 
  

Bench Iteration Period (cycles) 
Unfolding/striping factor=2 

Bench Initial S. Pipe. Unfoldin
g Striping

IIR 5 2 4.5 2.5 
WDF 6 1 3 3 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
 
 

 

177

FLOYD 10 8 10 5 
2D(1) 9 1 5.5 4.5 
2D(2) 4 4 4 2 
DPCM 5 2 4.5 2.5 
MDFG1 7 7 7 3.5 
MDFG2 10 10 10 5 

Unfolding/striping factor=4 

Bench Initial S. Pipe. Unfoldin
g Striping

IIR 5 2 3.3 1.3 
WDF 6 1 1.5 1.5 
FLOYD 10 8 10 2.5 
2D(1) 9 1 3.8 2.3 
2D(2) 4 4 4 1.0 
DPCM 5 2 3.3 1.3 
MDFG1 7 7 7 1.8 
MDFG2 10 10 10 2.5 

Unfolding/striping factor=6 

Bench Initial S. Pipe. Unfoldin
g Striping

IIR 5 2 2.8 0.8 
WDF 6 1 1 1 
FLOYD 10 8 10 1.7 
2D(1) 9 1 3.2 1.5 
2D(2) 4 4 4 0.7 
DPCM 5 2 2.8 0.8 
MDFG1 7 7 7 1.2 
MDFG2 10 10 10 1.7 

Unfolding/striping factor=8 

Bench Initial S. Pipe. Unfoldin
g Striping

IIR 5 2 2.6 0.6 
WDF 6 1 0.8 0.8 
FLOYD 10 8 10 1.3 
2D(1) 9 1 2.9 1.1 
2D(2) 4 4 4 0.5 
DPCM 5 2 2.6 0.6 
MDFG1 7 7 7 0.9 
MDFG2 10 10 10 1.3 
Avg. Iter. 
Period. 7 4.38 4.82 2.2 

Iter-re. Avg. 
Impv. 68% 50% 54%  

   
Table 2: Comparison of iteration period among list 
scheduling, software pipelining, loop unfolding and loop 
striping.  

6. Conclusion 

In this paper, we propose a new loop transformation 
technique, loop striping. Loop striping can achieve 
maximum parallelism while maintaining the original 
schedule vector, namely keeping the row-wise execution 
sequence. In this way, loop striping simplifies the new 
loop bounds and loop indexes calculation and reduces 
overhead. 

 
References 
[1] A. Aiken and A. Nicolau. Optimal loop parallelization. 

ACM Conference on Programming Lauguage Design and 
Implementation, pages 308-317, 1988. 

[2] A. Aiken and A. Nicolau. Fine-Grain Parallelization and the 
Wavefront Method. MIT Press, 1990. 

[3] J. R. Allen and K. Kennedy. Automatic loop interchange. 
ACM SIGPLAN symposium on Compiler construction, 
pages 233-246, 1984 

[4] G. I. C. Amy W. Lim and M. S. Lam. An affine partitioning 
algorithm to maximize parallelism and minimize 
communication. International Conference on 
Supercomputing, pages 228-237, 1999. 

[5] J. M. Anderson and M. S. Lam. Global optimizations for 
parallelism and locality on scalable parallel machines. ACM 
SIGPLAN Conference on Programming Language Design 
and Implementations, pages 112-125, Jun. 1993. 

[6] U. Banerjee. Unimodular Transformations of Double Loops. 
MIT Press, 1991. 

[7] K. Iwano and S. Yeh. An efficient algorithm for optimal 
loop parallelization. Dec. 1990. 

[8] R. M. Karp. A characterization of the minimum cycle mean 
in a digraph. Discrete Math. 23:309-311, 1978. 

[9] L. Lamport. The parallel execution of do loops. 
Communications of the ACM SIGPLAN, 17:82-93, Feb 
1991. 

[10] C. E. Leiserson and J. B. Saxe. Retiming synchronous 
circuitry. Algorithmica, 6:5-35, 1991. 

[11] A. W. Lim and M. S. Lam. Maximizing parallelism and 
minimizing synchronization with affine transformations. 
ACM SIGPLAN Symposium on Priciple of Programming 
Languages, pages 201-214, Jan. 1997. 

[12] K. K. Parhi and D. G. Messerschmitt. Static rate-optimal 
scheduling of iterative data-flow programs via optimum 
unfolding. IEEE Transactions on Computers, 40:178-195, 
Feb 1991. 

[13] N. L. Passos and E. H.-M. Sha. Full parallelism in uniform 
nested loops using multi-dimensional retiming. International 
Conference on Parallel Processing, pages 130-133, Aug. 
1994. 

[14] M.E. Wolf and M. S. Lam. A data locality optimizing 
algorithm. ACM SIGPLAN conference on Programming 
Language Design and Implementation, 2:30-44, June 1991. 

[15] M.E. Wolf and M. S. lam. A loop transformation theory and 
an algorithm to maximize parallelism. IEEE Transactions 
on Parallel and Distributed Systems, 2:452-471, Oct. 1991. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
    
 

 

178 

[16] M. Wolfe. Loop skewing: the wavefront method revisited. 
International Journal of Parallel Programming, 15(4):284-
294, Aug. 1986. 

 
Chun Xue received the BS Degree in Computer Science 
and Engineering from University of Texas at Arlington in May 
1997, and MS Degree in computer Science from University of 
Texas at Dallas, in Dec 2002. He is currently a computer science 
PhD candidate at University of Texas at Dallas. His research 
interests include performance and memory optimization for 
embedded systems, and software/hardware co-design for parallel 
systems.    
 
Zili Shao  received the BE Degree in Electronic 
Mechanics from University of Electronic Science and 
Technology of China, China, 1995. He received the MS and PhD 
Degrees from the Department of Computer Science at the 
University of Texas at Dallas, in 2003 and 2005, respectively. He 
has been an Assistant Professor in the Department of Computing 
at the Hong Kong Polytechnic University since 2005. His 
research interests include embedded systems, high-level 
synthesis, compiler optimization, hardware/software co-design 
and computer security. 
 
Qingfeng Zhuge received her PhD from the Department of 
Computer Science at the University of Texas at Dallas. She 
obtained her BS and MS Degrees in Electronics Engineering 
from Fudan University, Shanghai, China. Her research interests 
include embedded systems, real-time systems, parallel 
architectures, optimization algorithms, high-level synthesis, 
compilers, and scheduling. 
 
Meilin Liu received the BS and MS Degree in Electrical 
Engineering from Hohai University, Nanjing, China in 1992 and 
2000, respectively, and the MS and PhD in computer Science 
from University of Texas at Dallas, in 2004 and 2006, 
respectively. Her research interests include optimization of loop 
execution, loop transformations, and compiler optimization for 
embedded systems. 
 
Meikang Qiu received BE and ME from Shanghai Jiao 
Tong University, China; he received MS of Computer Science 
from University of Texas at Dallas, in 2003 and now he is a Ph.D. 
candidate there. He has worked at Chinese Helicopter R&D 
Institute, IBM HSPC, etc. His research interests include 
embedded systems, information security, etc. 
 
Edwin Sha received the BSE Degree in computer 
science from National Taiwan University, Taiwan, in 1986, and 
received MA and PhD Degrees from the Department of 
Computer Science, Princeton University, in 1991 and 1992, 
respectively. Since 2000, he has been a tenured full Professor in 
the Department of Computer Science at the University of Texas 
at Dallas. He has published more than 200 research papers in 
refereed conferences and journals. He has been serving as an 
editor for many journals, and program committee members and 
chairs in numerous conferences. He received NSF CAREER 
Award and Teaching award in 1998. 

 
   
 


