
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

179

Manuscript received May 5, 2006.
Manuscript revised May 25, 2006.

Transformation from Seal Calculus to Mobile Ambient Calculus

Zhang Jing†, Zhang Li-Cui †† ,Guo De-Gui†††

†,†††College of Computer Science and technology, Key Laboratory of Symbolic Computation and Knowledge
Engineering of Ministry of Education of P.R.China Jilin University, ChangChun, 130012;

††College of Communication Engineering, Jilin University, ChangChun, 130012

Summary
Based on analyzing syntax structrure and semantics
reduction system of Seal calculus and Mobile Ambient
calculus, we investigate three equivalence relations of the
two calculus : communication’s equivalence,
communication primitives’s equivalence and code
movement equivalence. Then we show the structural
transformation technology from Seal to Mobile Ambient.
Our work proposes a systemitical method for analysising
and comparing logical structure and expressive power of
different formal systems, proves expressive power of Seal
calculus. The results presented in this paper summarize
our work on formal foundations of mobile languages.
Key words:
Seal calculus; Mobile ambient calculus; process
communication; mobile computation

Introduction

We relate two models of distributed mobile programming,
the Seal calculus[1] and the Mobile Ambient
calculus(MA)[2]. Technically, these two models have a lot
of common. They consist of name-passing process calculi
in the spirit of the π-calculus[3]. They make explicit the
spatial structure of the computation by distributing
processes over a tree of nested locations(seals or ambients)
that stand for both machines and agents. They provide
some mechanism to rearrange the location tree as part of
the computation, thereby describing agent migration. Still,
these two models address different aspects of wide-area
distributed computations, and thus yield different
interpretations of locality[4].

In the Seal calculus, the association between names and
locations is weak. Names are merely tags used by parent
seals to tell their children apart. They can be changed at
the parent’s whim. Physical and logical resources are
modeled by channels, which are named computational
structures used to synchronize processes. Channels can be
interpreted as located or shared. The seal calculus
differentiates between local and remote process interaction.
To retain a realistic programming model, interaction
between locations is restricted to the asynchronous

sending of messages or sub-locations. Overall, locations in
the Seal calculus are adequate for high-level programming
with asynchronous messages and agents[4].

In the MA calculus, locality and control are tightly
connected; each ambient acts as an opaque box, and
interactions can occur only between processes that are in
adjacent ambients. The routing of a process from one
ambient to another is kept explicit; to accomplish the
migration, the moving ambient must be aware of the path
in the ambient tree; if an intermediate ambient decides to
block the migration, or if the path evolves during the
migration, ambients may get stuck or lost. Interaction is
local, in the sense that any reduction involves processes
separated by at most one ambient boundary, but the
synchronization between these processes is rather complex.
Overall, ambients are good at expressing administrative
domains, highly dynamic environments, and controlled
migration[5].

To investigate the relation between Seal and MA and
establish the theory foundation of a distributed
programming language, we describe a transformation
technique from Seal to MA. This paper is structured as
follows. Section 2 and Section 3 present a review of MA
calculus and Seal respectively, includes the syntax and
semantics. Section 4 discusses the communication,
communication primitives, code mobility in both calculus
firstly; then presents three equivalence relations:
communication equivalence, communication primitives’
equivalence, code mobility equivalence; finally, gives a
structural transformation function from Seal’s
communication processes into Ambient’s communication
processes. Section 5 states some conclusions and outlines
future directions of investigation.

2. Mobile Ambient Calculus

2.1 Syntax

We briefly describe the Mobile Ambient calculus, from[2].

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

180

Processes P，Q ::= (νn)P restriction

| 0 inactivity
| P | Q composition
| !P replication
| M[P] ambient
| M.P action
|（ xr）.P input
| < M

r
> output

Expressions M ::= n name
 | in M can enter M
 | out M can exit M
 | open M can open M
 | ε empty
 | M.M′ path

2.2 Semantics

We now give an operational semantics of the calculus of
section 2.1, based on a structural congruence between
processes, ≡, and a reduction relation →. This is a
semantics in the style of Milner’s reaction relation[6] for
the π-calculus, which was itself inspired by the Chemical
Abstract Machine of Berry and Boudol[7].

Structural Congruence

P ≡ P (Struct Refl)
P ≡ Q ⇒ Q ≡ P (Struct Symm)
P ≡ Q ，Q ≡ R ⇒ P ≡ R (Struct Trans)
P ≡ Q ⇒ (νn)P ≡ (νn)Q (Struct Res)
P ≡ Q ⇒ P|R ≡ Q|R (Struct Par)
P ≡ Q ⇒ ！P ≡ ！Q (Struct Repl)
P ≡ Q ⇒ n[P] ≡ n[Q] (Struct Amb)
P ≡ Q ⇒ M.P ≡ M.Q (Struct Action)
P ≡ Q ⇒(n).P ≡ (n).Q (Struct Input)
P | Q ≡ Q | P (Struct Par Comm)
(P | Q)| R ≡ P | (Q | R) (Struct Par Assoc)
!P ≡ P | !P (Struct Repl Par)
(νn)(νm)P ≡ (νm) (νn)P if n≠m (Struct Res Res)
(νn)(P | Q) ≡ P | (νn)Q if n∉ fn(P) (Struct Res Par)
(νn)m[P] ≡ m[(νn)P] if n≠m (Struct Res Amb)
P | 0 ≡ P (Struct Zero Par)
(νn) 0 ≡ 0 (Struct Zero Res)
!0 ≡ 0 (Struct Zero Repl)
ε.P ≡ P (Struct ε)
(M.M′).P ≡ M.M′.P (Struct .)

Reduction

n[in m.P | Q]|m[R] → m[n[P | Q] | R]
m[n [out m.P | Q] | R] → n[P | Q] | m[R]
open n.P | n[Q] → P | Q
(x).P | <M> → P {x←M}
P → Q ⇒ （νn）P→（νn）Q
P → Q ⇒ n[P] n[Q]
P → Q ⇒ P | R → Q | R
P′ ≡ P，P→ Q，Q ≡Q′ ⇒ P′→ Q′
→* reflexive and transitive closure of →

3. Seal Calculus:Syntax and Semantics

3.1 Syntax

In the Seal calculus[1], the main concepts of distributed
computing are distilled down to three abstractions:
processes, locations, and resources. Process are sequential
threads of control modeled on the π-calculus with terms to
denote the inert process, sequential and parallel
composition, and replication. Locations with an internal
process are denoted by terms called seals. Resources are
modeled by channels, which are named computational
structures used to synchronize processes, they
can be either located or shared. In this paper, we use
shared channel. We use zyxnm ,,,,, K to range over
variables, P,Q,R,S to range over processes, nxr to denote
the tuple 1,..., nx x , and just xrwhen arity is not important
or clear from the context. The syntax of Seal is formally
defined by the following grammar:

Processes P, Q::=0 inactivity

 ∣ P‖Q composition

 ∣ ! α.P replication

 ∣ (xν)P restriction

 ∣ α .P action
 | χ [P] seal

Actions α ::= ()yx rη output

| ()yx rλη input

| { }x yη send

| { }x yη r
 receive

Locations η ::= n down

| ↑ up
| * local

3.2 Semantics

*(). || *(). { / }||x u P x v Q P v u Q→
r r r r

 (write local)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

181

. || [() .]yx v P y z x u Qν ↑< > < > →
r rr

|| [() { / }]P y z Q v u z vν ∩ = ∅
r r rr r

 (write in)

(). || [() () 1 || 2]yx u P y z x Q Qν ν↑ →
rr r

() { / } || [(\) 1 || 2]v z P v u y z v Q Qν ν∩
s r r rs r

 (write

out)

*{ }. || *{ }. || []x u P x v Q v B →
r

1|| || [] || ... || []nP Q u B u B (move local)

. || [] || [() . ||]yx v P v R y z x u Q Sν ↑< > < > →
rr

|| [()(|| || 1[] || ... [])]P y z Q S u R un Rν r (move in)

. || [() . || [] ||]yx u P y z x v Q v R Sν ↑< > < > →r
|| [] || [() ||]P u R y z Q Sν r (move out)

4. Equivalence Relation

In this section, equivalence relation between Seal Calculus
and Mobile Ambient Calculus is given. This research
helps to compare logical relation and function of the two
calculus, aids to optimize process expression and
transform between different process . The main problem
faced when transform from Seal to MA is channel and
code mobility, because there are channels in Seal and no
channel in MA; Code mobility expressions in the two
calculus have different syntax structure; in MA, primitive
open can dissolve ambient’ s boundary, in Seal, boundary
can not be dissolved.

4.1 Communication Based on Channels

Communication in the basic ambient calculus happens in
the local ether of an ambient. Messages are simply
dropped into the ether, without specifying a recipient other
than any process that does or will exist in the current
ambient. However, most process calculi use
communication based on named channels, like Seal. In
Seal, there are many named channels to be used by a seal
to communication[8,9]. While in MA, we should think of
a channel as a new entity that may reside within an
ambient. In particular, communications executed on the
same channel name but in separate ambients will not
interact, at least until those ambients are somehow merged.
So, we need to generate an ambient to act as a channel,
called as channel ambient.

The basic idea for representing channels is as follows;
see[10] for details. If c is the name of a channel we want
to represent, then we use a name c to name an ambient that

acts as channel ambient. Due to each ambient can
participate in communication actions, we need create a
subambient for each non-channel ambient to act as
channel ambient and name it as c. Channel ambients open
all the incoming packet and activate communication
interaction. So, an output on channel c is represented as a
communication packet that enters c(where it is opened up)
and that contains an input operation; after the input is
preformed, the rest of the process exits c to continue
execution. The creation of a channel name c is represented
as the creation of c[！ (x)<x> | <x>]. Similarly, the
communication of a channel name c is represented as local
communication of ambient c.

First, we review the structure of communication
expression of the two calculus. According the syntax,
communication in Seal includes three kinds: local
communication, upwords communication and dowards
communication; there is only local communication in
Ambient. So in order to describe the upwards
communication and downwards communication, we need
utilize Ambient’s mobility primitives.

The standard Ambient calculus’s mobility is called
“subjective mobility”, because processes can control their
own mobility, however, process mobility in Seal is called
“objective mobility” for processes can not decide when or
where to move and they are controlled by their parent.
Objective mobility can be simulated by subject mobility,
but the program is very tedious. So we induce an objective
mobile primitive“go” and expression go N.M[P] denotes
move process M[P] to ambient N along the rout N, then
activate it. We call “go” as an objective primitive because
when process M[P] moves, the ambient enclosing it
doesn’t move, which is different from in, out primitive. In
fact, go N.M[P] equivals to (νk)k[N.M[out k.P]] in terms
of process mobility.

The following is the syntax and semantics of the extended
Ambient calculus with a special mobility primitive go.

Processes P, Q ::= ……same to 2.1
 | go N.M[P]
Structural Congruence
P ≡ Q ⇒ go N.M[P] ≡ go N.M[Q] (Struct Go)
go ε .M[P] ≡ M[P] (Struct Go ε)
Reduction：

go (in m.N).n[P] | m[Q] → m[go N.n[P] | Q] (Red Go In)
m[go (out m.N).n[P] | Q]→ go N.n[P] | m[Q] (Red Go
Out)

Then, we discuss the equivalence relation between the
communication process based on channel in Seal and
communication process without channel. What in the left

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

182

of ⇔ is Seal’s communication expression, what in the
right of ⇔ is corresponding MA communication
expression, symbol ⇔ denotes semantics equivalence.

Communication Equivalence（⇔）
c *<y> | c*<λz> ⇔

go in c.<y> | go in c.(z) (local
communication)
s[c ↑<y>] | c*<λz> ⇔

s[go out s.in c.<y>] | go in c.(z) (up-
communication)
cs<λy> | s[c *<y>] ⇔

go in s.in c.(y) | s[go in c.<y>] (down-
communication)
s[c↑<λy>] | c *<y> ⇔

s[go out s.in c.(y)] | go in c.<y> (up-
mobility)
c s<y> | s[c*<λy>] ⇔

go in s.in c.<y> | s[go in c.(y)] (down-
mobility)

The above is the basic principle of channel and
communication handling. We discuss the equivalent
theorem of Seal’s communication primitives and MA’s
communication expression, this theorem can be used to
implement transformation from Seal to MA.

Communication primitives equivalence（=）
m[c *<y>] = m[go in c.<y>]
m[c*<λy>] = m[go in c.(y)]
m[c ↑<y>] = m[go out m.in c.<y>]
m[c↑<λy>] = m[go out m.in c.(y)]
m[c s<y>] = m[go in s.in c.<y>]
m[cs<λy>] = m[go in s.in c.(y)]

Term in the left of = is a seal, term in the right of = is an
ambient, they equivalent in terms of communication effect.

4.2 Process Mobility

The most difficult problem of transformation from Seal to
MA is process’s mobility, because the process
expression’s syntax structure of Seal is different from that
of MA’s.

Difference between Seal and Mobile Ambient in code
mobility are listed as follows:
a) mobility in Seal is objective, that is seal’s mobility is
controlled by its enclosing seal. However, mobility in MA
is subjective, that is ambients’ mobility is controlled by
itself;

b)mobility in Seal is implemented by communication
between processes. However, mobility in Ambients is
implemented by mobile primitives.
c)seals in Seal doesn’t move, what moves is the body of
seal, however, ambient and its body move together.
In Seal, since processes’ mobility is implemented by
communication, so the mobility in Seal is also devides into
local mobility, in which process moves in the same seal;
upwords mobility, in which process moves from subseal
into parent seal; downwords mobility, in which process
moves from parent into subseal. These three mobility are
described in Fig.1.

In Fig.1, the text tagged by arcs are Seal’s process
expression, the arcs illustrate code’s movement track. Seal
body is transitted on channel, when the receiver received
the code, then give it a new name. The text circled by
frames are the result process expression of code movement.
In the following , we discuss the corresponding MA
processes.

In syntax, the prominence difference between MA and
Seal are: (1) In Seal, there are explicit location symbol ↑,
* and u to denotes location, in MA, ambients’ name
denotes location directly; (2) Seal implements mobility
using sending and receiving action, MA implements
mobility using mobile primitives: in or out, without the
synchronous between sending and receiving actions.

Suppose we want to move an ambient n[Bn] into ambient
m[Bm], then the notation of Seal and MA are as follows:

for under their reduction rules respectively, they get the
similar result m[n[Bn] | Bm].

P | Q | s’[R]

Seal : c *(s).P | s[R] | c*(s’).Q

P | u[s’[R] | Q]

Seal : c u{s}.P | s[R] | u[c*(s’).Q]

u[P] | s’[R]|Q

Seal: u[c ↑{s}.P | s[R]] | cu{s’}.Q

Fig.1.Seal calculus’s process mobility

Seal ：n[c ↑{n} | Bn]|c*{n}. c m{n} | m[c*{n} | Bm]
Mobile Ambient ：n[in m . Bn] | m[Bm]

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

183

Suppose we want to enhance an ambient m[Bm] out of n
from n[P | m[Bm]], then the notation of Seal and MA are
as follows:

for under their reduction rules respectively, they get the
similar result m[Bm] | n[P].

Based on the above analysis, we summary equivalence
relation between these two calculus as follows:

1）n[c ↑{n} | Bn]|c*{n}. c m{n} | m[c*{n} | Bm] ↔
n[in m . Bn] | m[Bm]

2）n[c ↑{m} | P | m[Bm]]| c*{m} ↔ n[P | m[out n .
Bm]]
where ↔ represents equivalence function.

3.3 Tranformation from Seal to Mobile Ambient

A complete transformation system from Seal processes to
MA processes is just like a huge, complicate compiler
system. Due to the intrinsic difference between Seal and
MA, we can not give a complete transformation system in
text level. So we just give a structural transformation from
Seal’s communication processes into MA’s
communication processes. We use 【E】m to denotes
transformation functions of processes, that is 【E】m
represents the equival MA process of E in the environment
m, where E represents Seal’s process, m represents the
current Seal’s name. The transformation function is
defined as follows:
【0】m = 0
【P | Q】m = 【P】m | 【Q】m
【(νx)P】m = (νx)x[！(y)<y> | <y>] | 【P】m
【χ [P]】m = x[【P】m | c [！(y)<y> | <y>]]
【α .P】m = 【α 】m | 【P】m
【 c *<y>】m = go in c.<y>
【c*<λy>】m = go in c.(y)
【 c ↑<y>】m = go out m.in c.<y>
【c↑<λy>】m = go out m.in c.(y)
【 c s<y>】m = go in s.in c.<y>
【cs<λy>】m = go in s.in c.(y)

4 Conclusions and Future Work

 Mobile Ambients calculus (MA) is the first abstract
calculus for describing global computation and mobile c
omputation successfully, there is a mature theory
research for MA. While Seal calculus is a new calculus
based on MA, so exploring the relation between Seal and
MA bears an important theory meaning. This paper

presents an equivalence relation between Seal calculus
and MA calculus and proposes a transformation
technique from Seal calculus to MA calculus. This work
helps to deeply understand mobility and communication
of Seal calculus and MA calculus, which establishs the
theory foundation of a unified mobile computation
framework.

Finally let us point out some directions in which further
work could be done. First, the MA can be extended to
include communication based on names, and increase the
transformation functions correspondingly, then get the
equal Seal representation; Also we only give the mobility
equivalence between the two calculus, further
transformation functions need to be defined, maybe
intermediate language can be used to implement
transformation from MA to Seal.

References
[1] J.Vitek and G.Castagna. Seal: A Framework for secure

Mobile Computations. In Internet Programming Languages,
number 1686 in Lectures Notes in Computer Science, pages
47-77. Springer-Verlag, 1999.

[2] L.Cardelli and A.D.Gordon. Mobile Ambients. In M.Nivat,
editor,Foundations of Software Science and Computational
Structures, number 1378 in LNCE, Springer-Verlag, 1998,
140-155.

[3] Milner R., and Walker D. A Calculus of Mobile Processes,
Part I/II. Information and Computation, 100:1-77,1992.

[4] C.Fournet and A.Schmitt. An implementation of Ambients
in JoCAML. http://join.inria.fr/ambients.html, 1999.

[5] Luca Cardelli, Andrew D.Gordon, Mobile Ambients,
Foundations of software Science and Computation
Structures, LNCS 1578(1999).

[6] Milner, R., Functions as processes. Mathematical Structures
in Computer Science 92. Springer Verlag. 1980.

[7] Berry, G. and G.Boudol, The chemical abstract machine.
Theoretical Computer Science 96(1), 217-248, 1992.

[8] Cardelli L. and Ghelli G., and Gordon A.D. Mobility types
for mobile ambients[R]. Technical Reports. Microsoft
Research Center. MSR-TR-99-32. 1999.

[9] Hennessy M, Riely Z. Type-safe Execution of Mobile
Agents in Anoynymous Networks[A]. In Proceedings of the
Workshop on Internet Programming Languages, (WIPL)[C].
Chicago, 1998.

[10] Abadi M, Fournet C, Gonthier G. Secure Implementation of
Channel Abstractions[DB/OL]. Long version(Draft). http ://
citeseer. ist.psu.edu/abadi00secure.html, 1998-09.

Seal ：n[c ↑{m} | P | m[Bm]]| c*{m}
Mobile Ambient ：n[P | m[out n . Bm]]

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

184

Zhang Jing received the B.S. and M.S.
degrees in College of Computer S cience
and Technology of Jilin University in 1998
and 2001, respectively. Since 2001, she
has been a Ph.D student in College of
Computer Science and Technology of Jilin
University. The main research objects
include formal method and compiling
technique of programming languages..

