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Summary 
Bidirectional Associative Memories (BAM) based on Kosko’s 
model are implemented through iterative algorithms and present 
stability problems. Also, these models along with other models 
based on different methods, have not been able to perfectly recall 
all trained patterns. In this paper we present an English-Spanish / 
Spanish-English translator based on a new BAM model 
denominated Alpha-Beta BAM, whose process is non iterative 
and does not require to find stable states. The translator recalls 
the whole set of learned patterns, even when the presented word 
is incomplete. 
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Introduction 

The first bidirectional associative memory (BAM), 
introduced by Kosko [1], was the base of many models 
presented later. Some of this models substituted the 
learning rule for an exponential rule [2-4]; others used the 
method of multiple training and dummy addition in order 
to reach a greater number of stable states [5], trying to 
eliminate spurious states. With the same purpose, linear 
programming techniques [6], the descending gradient 
method [7-8] have been used, besides genetic algorithms 
[9] and BAM with delays [10-11]. Other models of non 
iterative bidirectional associative memories exist, such as 
morphological BAM [12] and Feedforward BAM [13]. All 
these models have arisen to solve the problem of low 
pattern recall capacity shown by the BAM of Kosko; 
however, none has been able to recall all the trained 
patterns. Also, these models demand the fulfillment of 
some specific conditions, such as a certain Hamming 
distance between patterns, solvability by linear 
programming, orthogonality between patterns, among 
other. 
The model of bidirectional associative memory presented 
in this paper is based on the Alpha-Beta associative 
memories [14], is not an iterative process, and does not 
present stability problems. Pattern recall capacity of the 
Alpha-Beta BAM is maximal, being 2min(n,m), where n and 
m are the input and output pattern dimensions, 
respectively. Also, it always shows perfect pattern recall 
without imposing any condition. 

In section 2 we present the Alpha-Beta autoassociative 
memories, base of our new model of BAM, and the 
theoretical sustentation of Alpha-Beta BAM. In section 3 
the model is applied to words translation. Conclusions 
follow in section 4. 

2. Alpha-Beta Bidireccional Associative 
Memories 

In this section the proposed model of bidirectional 
associative memory is presented. However, since it is 
based on the Alpha-Beta autoassociative memories, a 
summary of this model will be given before presenting the 
Alpha-Beta BAM model. 

2.1 Alpha-Beta Associative Memories 

Basic concepts about associative memories were 
established three decades ago in [15-17], nonetheless here 
we use the concepts, results and notation introduced in the 
Yáñez-Márquez's PhD Thesis [14]. An associative 
memory M is a system that relates input patterns, and 
outputs patterns, as follows: x→M→y with x and y the 
input and output pattern vectors, respectively. Each input 
vector forms an association with a corresponding output 
vector. For k integer and positive, the corresponding 
association will be denoted as (xk, yk). Associative 
memory M is represented by a matrix whose ij-th 
component is mij. Memory M is generated from an a priori 
finite set of known associations, known as the 
fundamental set of associations. 

If μ is an index, the fundamental set is represented as: 
( ){ } 21  , ,p,,μyx K=μμ  with p the cardinality of the set. 

The patterns that form the fundamental set are called 
fundamental patterns. M is autoassociative if it holds that 
xμ = yμ ∀μ∈ {1,…,p} , otherwise it is heteroassociative; 
in this latter case it is possible to establish that 
∃μ∈{1,…,p} for which μμ yx ≠  . A distorted version of a 

pattern xk to be recuperated will be denoted as kx~ . If 
when feeding a distorted version of ϖx  with 

{ }p,,2,1 K=ϖ   to an associative memory M, it happens 
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that the output corresponds exactly to the associated 
pattern ϖy  , we say that recall is perfect. 
The Alpha-Beta associative memories are able to operate 
in two different modes: max and min. The operator α is 
useful at the learning phase, and the operator β is the basis 
for the pattern recall phase. 
The heart of the mathematical tools used in the Alpha-Beta 
model, are two binary operators designed specifically for 
these memories. These operators are defined as follows: 
First, we define the sets A={0,1} and B={0,1,2}, then the 
operators α and β are defined as is shown in table 1. 

Table 1. α and β  binary operators 
 
         α: AxA→B                              β: BxA→A 

x y α(x,y)  x y β(x,y)
0 0 01  00 0 0 
0 1 00  00 1 0 
1 0 10  01 0 0 
1 1 01  01 1 1 
    10 0 1 
    10 1 1 

 
The sets A and B, the α and β operators, along with the 
usual ∧ (minimum) and ∨ (maximum) operators, form the 
algebraic system (A,B,α,β,∧,∨) which is the mathematical 
basis for the Alpha-Beta associative memories. 
Below are shown some characteristics of Alpha-Beta 
autoassociative memories: 
1. The fundamental set takes the form {(xμ,xμ) 

|μ=1,2,...,p}. 
2. Both input and output fundamental patterns are of the 

same dimension, denoted by n. 
3. The memory is a square matrix, for both modes, V and 

Λ. If xμ ∈ An  then 

( )μμ

μ

α ji

p

ij xxv ,
1
∨
=

=  (1) 

 and   ( )μμ

μ

αλ ji

p

ij xx ,
1
∧
=

=  (2) 

and according to α: A x A → B, we have that vij and λij ∈B, 
∀i ∈ {1, 2, ..., n} and ∀j ∈ {1, 2, ..., n}. 
In the recalling phase, when a pattern xμ  is presented to 
memories V and Λ, the i-th components of recalled 
patterns are: 

( ) ),(
1

ωω
β β jij

n

j
i

xv∧
=

=Δ xV   (3) 

and ( ) ),(
1

ωω
β λβ jij

n

j
i

x∨
=

=∇ xΛ    (4) 

2.2 Alpha-Beta Bidirectional Associative Memories 

The model proposed in this paper has been named Alpha-
Beta BAM since Alpha-Beta associative memories, both 
max and min, play a central role in the model design. 
However, before going into detail over the processing of 
an Alpha-Beta BAM, we will define the following. 
In this work we will assume that Alpha-Beta associative 
memories have a fundamental set denoted by 
{(xμ, yμ) | μ = 1, 2, …, p}  xμ ∈ An  and yμ ∈ Am , with 
A = {0, 1} , n ∈ Z+ , p ∈ Z+ , m ∈ Z+  and 1 < p ≤ min(2n, 
2m).  
Definition 1 (One-Hot) Let the set A be A = {0, 1} and 
p∈ Z+, p > 1, k∈ Z+, such that 1≤ k ≤  p. The k-th one-hot 
vector of p bits is defined as vector pk Ah ∈  for which it 
holds that the k-th component is 1=k

kh  and the ret of the 

components are 0=k
jh , ∀j ≠ k, 1 ≤  j ≤ p. 

Remark 1 In this definition, the value p = 1 is excluded 
since a one-hot vector of dimension 1, given its essence, 
has no reason to be. 
Definition 2 (Zero-Hot) Let the set A be A = {0, 1} and 
p∈ Z+, p > 1, k∈ Z+, such that 1≤ k ≤  p. The k-th zero-hot 

vector of p bits is defined as vector  pk
A∈h  for which it 

holds that the k-th component is 0=k
kh  and the ret of the 

components are 1=k
jh , ∀j ≠ k, 1 ≤  j ≤ p. 

Remark 2 In this definition, the value p = 1 is excluded 
since a zero-hot vector of dimension 1, given its essence, 
has no reason to be. 
Definition 3 (Expansion vectorial transform) Let the set 
A be A = {0, 1} and n∈ Z+,y m∈ Z+ . Given two arbitrary 
vectors x ∈ An and e ∈ Am, the expansion vectorial 
transform of order m, τe : An → An+m , is defined as τe (x, 
e) = X ∈ An+m, a vector whose components are: Xi = xi  
for 1≤ i ≤  n  and  Xi = ei  for 
n + 1 ≤ i ≤ n + m. 
Definition 4 (Contraction vectorial transform) Let the 
set A be A = {0, 1} and n∈ Z+,y m∈ Z+ such that 1≤ m <n. 
Given one arbitrary vector X ∈ An+m, the contraction 
vectorial transform of order m, τc : An+m → Am , is defined 
as τc(X, m)= c∈ Am, a vector whose components are: ci = 
Xi+n  for  1≤ i < m. 
In both directions, the model is made up by two stages, as 
shown in figure 1. 
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Fig. 1. Graphical schematics of of the Alpha-Beta bidirectional 
associative memory. 

For simplicity, first will be described the process 
necessary in one direction, in order to later present the 
complementary direction which will give bidirectionality 
to the model (see figure 2). 
 
 
 
 

 

 

Fig. 2. Schematics of the process done in the direction from x to y. Here, 
only Stage 1 and Stage 2 are shown. Notice that vk

k = 1,   vi
k = 0  ∀i ≠ k ,        

1 ≤ i ≤ p,  1 ≤ k ≤ p 

The function of Stage 2 is to offer a yk as ouput (k = 
1,...,p) given a xk as input. 
Now we assume that as input to Stage 2 we have one 
element of a set of p orthonormal vectors. Recall that the 
Linear Associator has perfect recall when it works with 
orthonormal vectors. In this work we use a variation of the 
Linear Associator in order to obtain yk, parting from a 
one-hot vector vk in its k-th coordinate. 
For the construction of the modified Linear Associator, its 
learning phase is skipped and a matrix M representing the 
memory is built. Each column in this matrix corresponds 
to each output pattern yμ . In this way, when matrix M is 
operated with a one-hot vector vk, the corresponding yk 
will always be recalled. 
The task of Stage 1 is: given a xk or a noisy version of it 
( kx~ ), the one-hot vector vk must be obtained without 
ambiguity and with no condition. In its learning phase, 
stage 1 has the following algorithm: 
1. For  1 ≤ k ≤ p do expansion: ),( kkek hxX τ=  

2. For 1 ≤ i ≤ n and 1 ≤ j ≤ n: ( )μμ

μ

α ji

p

ij XXv ,
1
∨
=

=  

 
3. For  1 ≤ k ≤ p do expansion: ),( kkek hxX τ=  

4. For 1 ≤ i ≤ n and 1 ≤ j ≤ n: 

  ( )μμ

μ
αλ ji

p

ij XX ,
1
∧
=

=  

5. Create modified Linear Associator. 
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Recall phase is described through the following algorithm: 
1. Present, at the input to Stage 1, a vector from the 

fundamental set ,nA∈μx  for some index μ ∈ {1, ..., 
p}. 

2. Build vector: i
p

i

hu ∑
=1

=  

3. Do expansion: pne A +∈= ),( uxF μτ  
4. Obtain vector: pnA +∈Δ= FVR β  

5. Do contraction: pc An ∈= ),(Rr τ  
If  r is one-hot vector, it is assured that k = μ ,                
yμ = LAy ⋅ r. STOP. 
Else: 

6. For 1 ≤ i ≤ p: wi = ui -1 
7. Do expansion: pne A +∈= ),( wxG μτ  
8. Obtain a vector: pnA +∈∇= GS βΛ  

9. Do contraction: pc An ∈= ),( μτ Ss  
10.If s is zero-hot vector then it is assured that k = μ, 

sLAyy ⋅=μ , where s  is the negated vector of s. 
STOP. Else: 

12. Do operation sr ∧ , where ∧ is the symbol of the 
logical AND operator, so )( srLAyy ∧⋅=μ . STOP. 

The process in the contrary direction, which is presenting 
pattern yk (k = 1,...,p) as input to the Alpha-Beta BAM and 
obtaining its corresponding xk, is very similar to the one 
described above. The task of Stage 3 is to obtain a one-hot 
vector vk given a yk. Stage 4 is a modified Linear 
Associator built in similar fashion to the one in Stage 2. 

4. Translator 

The programming language used to implement the code of 
the translator is Visual C++ 6.0. This software has the 
ability to translate words from English, to Spanish, and 
visceversa. For the learning phase two text files were used, 
containing 120 words in English and Spanish, respectively. 

Stage 1 Stage 2 

Stage 3 Stage 4 
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With these two files, the Alpha-Beta Bidirectional 
Associative Memory is built (see figure 3). 
 

 

Fig. 3. The Alpha-Beta Bidirectional Associative Memory is built by 
associating 120 words in Spanish with 120 words in English, which were 

container in two text files. 

The learning phase lasts, approximately, 1 minute and 6 
seconds, when the program was run on a 2.8 GHz Pentium 
4 Sony VAIO Laptop. 
Once the Alpha-Beta BAM has been built, a word is 
written during the recalling phase, either in English or 
Spanish, and the translation mode is selected. Immediately 
the word appears in the corresponding language. En 
example of this can be seen in figure 4, where the word to 
be translated was “accuracy” and its corresponding 
translation to Spanish is “exactitud”. 
 

 

Fig. 4. The word to be translated is written —in this example it was 
“accuracy”— and the translation mode is selected; immediately, its 

corresponding Spanish word appears, which in this case is “exactitud”. 

The translator offers other advantages as well. For 
instance, suppose only part of the word is entered, say 
“accur” instead of “accuracy”; the program will give as 
result “exactitud” (see figure 5). 
 

 

Fig. 5. The translator recalls perfectly the word associated to “accuracy” 
even though it is not complete. 

Now, assume that instead of writing a “y”, an “I” is keyed 
by mistake. The result is shown in figure 6. 
 

 

Fig. 6. Even when there is a writing mistake and a “y” is exchanged by an 
“i”, the program recalls ina perfect manner the word “exactitud”. 

We can see that in this example, a writing mistake, which 
at pattern level would be interpreted as introducing a noisy 
pattern, does not impede the performance of the translator. 
The advantages presented by the translator reflect the 
advantages of the Alpha-Beta BAM model. These 
memories are immune to a certain amount and kinds of 
noise, properties which still have not been characterized. 
Besides these kinds of tests, the full set of 120 words in 
English was entered, perfectly recalling their 
corresponding Spanish translations. Also, the 120 words 
in Spanish were written and, in a perfect manner and 
without ambiguities, the translator showed the 
corresponding words in English. 
 
 

Conclusions 

 
Only a portion of the theoretical basis of Alpha-Beta 
associative memories, foundation of the Alpha-Beta BAM, 
was presented. The structure of an Alpha-Beta BAM was 
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presented, along with the algorithm necessary to 
implement them. 
The cases which the translator can manage, clearly 
exemplify the advantages shown by the Alpha-Beta BAM. 
The most important characteristic of an Alpha-Beta BAM 
is that it can recall, in a perfect manner, all trained 
patterns: the translator is able to perfectly recall the 240 
words contained within it. 
The translator was able to recall the word corresponding to 
an incomplete or misspelled word; this means that Alpha-
Beta BAM are capable of recalling clean patterns from 
noisy patterns. 
The kind and amount of noise that an Alpha-Beta BAM 
can manage has not been characterized yet. 
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