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Summary

In recent years, model theory has had remarkable success in
solving important problems. Its importance lies in the
observation that mathematical objects can be cast as models for a
language. Ultraproduct is a method of constructing a new model
from a family of models, In this paper, we deal with a new form
of ultraproduct model for first-order lattice-valued logic LF(X)
whose truth-value field is a finite lattice implication algebra. At
the same time, Expansion theorem, two forms of fundamental
theorem of ultraproducts and consistent theorem are obtained.
Finally, another application of ultraproduct to algebra is
discussed.
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1. Introduction

Lattice-valued logic is an important form of many-valued
logic which extends the field of truth-values to lattices.
More important, lattice-valued logic can represent the
uncertainty, specially the incomparable property of
people's thinking, judging and decision. Therefore, lattice-
valued logic is studied by many scholars [2,3,4].
However,their work are limited to the interval [0,1] or the
finite chain of truth values. In order to establish a logic
system with truth-values in a relatively general lattice,
lattice implication algebras were defined by Xu Yang in
[7] and its many properties were discussed. Based on
conclusions on lattice implication algebra, Xu Yang et al
established several lattice-valued logic systems [8-12],
where they established a first-order lattice-valued logic
system LF(X) based on lattice implication algebra. On the
basis of a set of grouping sentences or a theory, Wang
Shigiang et al in [2] proved the fundamental theorem of
ultraproducts in lattice-valued model whenever the set of
truth-values L is finite. Ying Mingsheng gave another
form of the fundamental theorem of ultraproducts [13].
We have discussed one form of ultraproduct model for
LF(X) [15], which is based on an ultrafilter on L', where L
is any lattice implication algebra, | is an index set.
Moreover, the main difference between the ultroproduct
models for classical logic and for LF(X) lies in the
ultrafilter, the former is a generalization of the latter. In
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this paper, by virtue of the idea of [6, 13], we construct
another form of ultraproduct model for LF(X) based on
finite lattice implication algebra by a classical ultrafilter on
the index set I.

2. Preliminaries

Definition 1[7] Let (L,v,A,") be a complemented lattice
with universal bounds 0, 1. If the
mapping —: L x L — L satisfies the following conditions:
forall x,y,zeL,
() x> (y>z2)=y—> (x> 2),
(D)x—>x=1,
(B)x—>y=y —>x,
(I)) If x > y=y—x=1then x=y,
(I) (x> y)>y=(y—>x)—> x,
() (xvy)=>z=(x>2z)A(y—>2),
(1) (xAy)>z=(x>2)v(y - 2),
Then (L,v,A,’,—>) is said to be a lattice implication
algebra (shortly as L).
Definition 2 [1] Assume | is a nonempty set and S(I)=
{X; X 1}. Afilter D over | is defined to be a set D < S(1)
such that:

1) 1e D;

2 fXYyeD,then XNY €D;

3 IfXeDandXcYcl, thenYe D.

D is called an ultrafilter over I, if D is a filter over | and
satisfies the following conditions:
(4) Forany X e S(1), X e D ifand only if I-X & D.
In the language of first-order lattice-valued logic LF(X),
we will use the following symbols:

(1) Aninfinite collection V of variables x;,i € N ;

(2) Constant symbols: ¢,k € K, where K is an index
set. The set of constant symbols is written as C;
(3) Relation symbols: Pn:, ,I € R, where R is an index

set, and Py is m -ary, m e N_;
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(4) Function symbols: ij , ] € J, where J is an index function symbol, F, = FjB‘Amj . for any
setand F, is m;-ary, m; e N, ; keK, Cp=Cgand for any reR, P{”is an
©) Logicz?llconnectives:v,/\,—>, ; m, —ary relation symbol, P,, = P,|A™ , then
(6) Quantifiers: V,3;
(7) Technical symbols: (,),". u is called a submodel of A or A is called an
We now define terms and formulas. extension of p, denotedas nc 4.
A term is defined as follows: (2) n and A are said to be isomorphic, whenever there
(1) Each element of V U C is a term, which is said to is a bijection g : A — B such that:
be a non-superscript term; . E
(2) Forany jed , if t,--t, are non-superscript For each m; -ary function symbol F, ~and any
terms or terms, then ij (t ""’tmj ) is a term:; sequence of elements @, , az,...,amj € A, we have
(3) Any term can be obtained from (1), (2). 9(Fia(ay,a,,-+,8,)) = Fg(9(a), 9(a,),- 9(a,));
a?f;/\lllec:\ll;iormed formula (shortly as formula) is defined For each m, -ary relation symbol Pnfrr) and any sequence
The set of formulas F is the smallest set F' satisfying of elements a,,a,,---,a, € A, we have

the following conditions:
(1) Forany ael,acF';

(2) Forany reR,if t,---,t
(-t ) e F':

(3) If p,geF' then pag,pva,p—>q,p eF’;

4) IfpeF',xeV , then Vxp,IxpeF'.

Definition 3 [11] A model for LF(X) is defined as

Pa(a,a,,-+,8,) =Ps(9(a,),9(a,),++,9(a,));

For each constant symbol ¢, , we have §(C,,) = Cyg,

are terms, then p"

m m,

We write as & = A and call g is an isomorphic mapping.

3. Expansion theorem and the fundamental
theorem of ultraproducts

follows: Suppose the set of truth-values is a finite lattice
u=(A{P,ir e R} {F,-A; jedj ke K}). implication algebra (Lv,x,",—.,01), and L={a,, -+, a, |,

. i.e., L has nelements, n € N and I is any nonempty index
where:

set, D is any proper filter on | (in classical sense), p;(iel)
is a family of models for LF(X) whose universes are

) . denoted A, respectively. Now we give a definition of
(2 For anyreR, P, :A™ — Lis an m, - reduced product.

ary relation assigned to each relation Definition 5 A reduced product | I M; of pj (iel) is
(. D
symbol P ;

(1) A is a nonempty set which is said to be the
universe of the model;

defined as follows:
(3) Forany jeld Fj,: A" > Alis a m; - (1) Its universe isl_[DAi ;

ary function assigned to each function (2)Suppose Pn(]r) (reR, R is an index set) is an m, -

symbol F_ ; . . .
i placed relation symbol in LF(X) and its
(4) Forany k e K ,Cya IS @ constant assigned corresponding interpretation in any model
to each constant symbol C, . is I:’ir (iel), then its interpretation in HD M is the
Definition 4 [11] Let following relation P:
p= (APt e RLF, € Ij{oik € K3) and forany .-, f e [T A let
A= <B,{PrB;r € R},{FjB; je J},{ckB;k € K}> be P(f5,--, for) =, ifand only if
. . 1y: . (i _
two models for LF(X). {fiel;,P(f (i), f™(@{)=ca}eD,1<s<n.

(1) If AcBand forany jeJ, F, isan m,-ary (3)Suppose F,, is an m; -placed functional symbol in

LF(X) and its corresponding interpretation in any
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model p; is Fij (iel), then its interpretation in

HD,ui is the following function F: for any

SRR EHDAi ,
FI(fg, -, f3")=<FJ(f*(@),---, f ™ (@));iel >,

: 1)
(4) Suppose cx (keK, K is an index set ) is any
constant symbol in LF(X), and its interpretation in any

model ; is Cik, then its interpretation in HD,ui is

the constant c=< Cik viel>p,

In addition, If D is an ultrafilter of I, then the reduced
product HD,ui of p;(iel) is called an ultraproduct of
(iel).

Lemma 1 Let | be any nonempty index set, D be a proper

filter on I, p; (il) be a family of models for LF(X).

@ 1f ft=,g", f™=,9™ , then for any
1<s<n,

{ie ;P (f(i), -, f™(i))=a.}e D if and only

if {ie ;P (g"(), -, 9™ (1)) =, }e D;

@ If fr=, gt f™ =, g™, then

< Fij(fl(i)a"', fm (H));iel>=,

<Flj(gl(|)1’gml(l))’|6| >. (2)

According to Lemma 1, the definition of reduced
product HD/“i is well defined, P(fz2,---, fJ*) and

(1,

classes fé,m, fo" and fé,m, f;,nj , but not on the

representatives of these equivalence classes.

Now we give the first conclusion, namely, expansion
theorem.
Theorem 1(Expansion Theorem) Let LF(X)" be an
expansion of the language of LF(X), | a nonempty index
set, D a proper filter on I. If for any iel, y;is a model for
LF(X), Aiis an expansion of the model ; on LF(X)", then

the reduced product Ho/ii is an expansion of the model
HD 4; on LF(X)".

Proof. It can be proved similarly to that of classical logic.
The first form of the fundamental theorem of

ultraproducts is given as follows:

Theorem 2 (the fundamental theorem of ultraproducts I)

Let L be a finite lattice implication algebra,

,fij) depend only on the equivalence

197

L= {al,---,an }(n is a finite integer), |1 a nonempty index
set, D an ultrafilter on I, y; (iel) a family of models for
LF(X), and n= HD A; an ultraproduct model for LF(X)
whose universe is B, then

(1) For any term t(Xy,...,Xm) and any fé,-u, fy €B,

RQLEL, -, 10D =< QLF ), FP DI e 1 >0
3)

(2) For any formula and any
fl.. fMeB,
x(p[fa,---, f2']) = a, if and only if

{i e L0 (pLFH(), -, £7(0)]) = @} € D(
1<s<n);

p(X]_,. . ~:Xm)

(3) For any sentence p,
7z(p) =« ifand only if

{fielu(p)=a}eD(@l<s<n).

Proof. It can be proved by induction over the construction
of terms, and formulas in similar way to the proof of
Theorem 1 [6].

Theorem 3 (the fundamental theorem of ultraproducts I1)
Let L be a finite lattice implication algebra,

L= {al,--',an }(n is a finite integer), |1 a nonempty index
set, D an ultrafilter on I, y; (iel) a family of models for
LF(X), and = HD A; an ultraproduct model for LF(X)

whose universe is B, then

(8] For any formula  p(Xy,....Xm) , any
fo, -, f) eBandany , e L,
a(plf, - f0D>a, if and only if

{ielim(pLf @), f" () 2a}eD

(1<s<n);
(2) For any sentence pand any «, € L,

7z(p) = a if and only if
{fielu(p)2a}yeD(1<s<n).

Proof. (1) Suppose there are t elements greater than ¢, in
L, denoted as & ...,y . Z(pLfS, -, 1) > ay,
then there exists o, , a,, 2, , such that
x(p[fl,---, 12']) = @, . By theorem 2,
X, ={i e L (pLF (), £ " (D)) =t} e D
Xy c{ie g (pLEr (), " (0] 2 .}

and D is a filter, we have

Since
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{ielim(plt @), ") 2a}eD.
Conversely, suppose
{iel;u(p[f @), f"O])>a}eD, then for
any i€ X, g, (pLE(D), -, T ()]) 2 ez,
Let
Xog={ie iy (pL () f" D) =a,}1<0<t,
then X = X, U---U X,. Since D is an ultrafilter, then

there exists exactly one among Xj,...,X; belonging to D,
we can suppose Xg0 eD,ie,

Xg, ={ie b (PLTI() -, ")) =@y, }eD .
By Theorem 2,

z(plfo. fo ) =ay, 2 a;.

(2) Itis inferred from (1) directly.

Definition 6 Let | be an any nonempty index set , D an
ultrafilter on I, p;(iel) a family of models for LF(X), and

n:l_[D,ui an ultraproduct model for LF(X). If = pn

holds for any i€l , then denote = as HD,u and call it as

an ultrapower of p.
Corollary 1 Let L be a finite lattice implication algebra

and HD M an ultrapower of p. Then

] [ow=w

(2) The natural embedding of p into the
ultrapower HD,u is an elementary embedding, i.e.,

u<]],u

Proof. (1) It is inferred from Theorem 2 (3) directly.

(2) For any acA, let éeHA and A=<ajiel >,

iel
ie, for any icl, a(i)=a. Letd A— HA be a
D

mapping satisfying: for any acA, d(a)= éD , Where
a, =<ajiel >, . Obviously, d is a one-to-one

ai,...,am€A, by Theorem 2, we have
HD M (p[d(ay),....d(an)])= a if and only if

{i el; u(pla,(i),---,a,,()]) = .} D if and only
if u(pla,,---,a,]) =« . Hence, u EHD,u.

4. Applications of the fundamental theorem of
ultraproducts

Lemma 2 [1] Let I be a index set, S(I) be its power set.
Then D is an ultrafilter over | if and only if there exists

iel suchthat D={X e S(Il)|i e X}.

Theorem 3 Let L be a finite lattice implication algebra
and | a nonempty index set, D an ultrafilter generated by

I, € I, and {w;; iel} be any family of models for LF(X).
If n= HD M4 is an ultraproduct of {p; iel}, then 1= M, -

Proof. Suppose the universe of = is B. Define a mapping
as follows:

7:B>A
fo > f(i,).

(1) First we prove the mapping » is a bijection. Let
fr,0p €B and fy =gy, then f =, g does
nothold, iy ¢{i 1] f(i)=g(@i)} ie.

f (i) # g(iy), hence y is an injection.
For any q, € Aio, define a mapping f as follows: for

a;, i= io .
° " where & is chosen
a, i#iy,

any iel, f(i):{

randomly in A, i€ 1\ {i}. So y(f) = f(i,) =3,

then ¥ is a surjection.

(2) Let ij is an m; -placed functional symbol, j € J,
for any fé, fDZ,---, fij e B, suppose

f =<FJ(f'(i),---, f™(i))|ie | >. By Definition

5, we have

y(Fs! (fo, 5., f5") = 7(fo) = £ (i)

=FJ(F1 (o), £ ()

=F (r(f5), 7 (£8), -, v (£5")).

(3) Let Pngr) be an m;, -placed relation symbol , reR, for

any f3, f2,---, 2" € B, suppose
P(f5, -, fJ") = a, , by definition 5 we have
Gel:P (fi), - f™ () =a}eD ., so

Pior(fl(io)' f Z(io)""v f7 (i) = e .
(4) Let c,,keK be a constant symbol,
7(Cp) = Cy,, holds obviously.
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To sum up, yis an isomorphism between the models =
and M SOTE L .

Definition 7[14] A mapping from the set of all the
sentences in LF(X) to lattice implication algebra L is
called a (L-valued ) theory in LF(X). If T is a theory in
LF(X), p is an (L-valued ) model for LF(X), then for
every sentence p, u(p) = T(p), then it is called that p
satisfies T or w is a model of T.

Definition 8 [14] Let A, B be L-fuzzy subsets of the set of
formulas in LF(X). B is called a finite limit of A, if there
exists a set of finite formulas {ps,..., pm}=SuppA (the
support of A), meN is finite, such that for any formula p,

A(p;), if p=p;L<i<m
B(p) = P=Pit
O, otherwise.

Now we prove the following consistent theorem
mathematically by the fundamental theorem of
ultraproducts, which is its very important application.
Theorem 4 (Consistent Theorem) Let L be a finite lattice
implication algebra, and T a theory in LF(X), and

I =S, (SuppT) a set consisting of all finite subsets of

SuppT. If for any iel, p;is a model of T;, where T; is a
finite limit of T and it is defined as follows:

T(p), if pei,
T_ =
/() {O, otherwise,

then there exists an ultrafilter on |, such that the
ultraproduct HD M, isamodel of T.

Proof. For any sentence peSuppT, let p = {i el;pe i},
i.e., f) is a set consisting of finite subsets of SuppT
containing p. Suppose E={ f) ;peSuppT}. Since for any

Puey Py €SuppT, {pyy o, pyfe B By E
has the finite intersection property. By Ultrafilter Theorem
([20], Proposition 4.1.3), there exists an ultrafilter D on I,

such that EcD. Construct ultraproduct model HD,ui of
a family of models p; (iel), we need to prove HD,ui isa
model of T. In fact, for any sentence p, let T(p)=c, and
||p||:{i el;u;(p)>a}. Since for any ie P, we
have pei, then 4 (p)>T,(p)=T(p)=c,, ie,
i e|| p|| hence P < ||p|| By p € E, EcD and since D
is an ultrafilter, we have || p|| e D. It is inferred from

Theorem 2 that l_ID,ui P z2a, , ie,
HD 4 ()= T(p). Therefore, HD 4, is amodel of T.

Obviously, Theorem 4 can be described as follows: Let
L be a finite lattice implication algebra, and T a theory in
LF(X). If every finite limit of T has a model, then T has a
model.

Now we give another application of the fundamental
theorem of ultraproducts. First, we give a notion.
Definition 9 Let p be a model for LF(X), its universe be A,
{u;; iel} be a family of submodels of p and their universe

be A, respectively. If A:U A, and for any i, jel, there
iel
exists kel, such that Ay U A; < A, then {; iel} is

said to be a local system of p.

For example, all finitely generated submodels of p consist
of a local system of p.

Theorem 5 Let u be a model for LF(X), {w; iel} a local

system of . If there exists a family of models { 4; ; iel},

such that for any iel, ; is isomorphically embedded in A,

i.e., c /Ii , then there exists an ultrafilter D on I, such

that p is isomorphically embedded in HD/ii , e,

nc Hoﬂ“i .

Proof. Similar to the proof of the corresponding theorem
of classical logic and omit it.

5.Conclusions

In this paper, we developed model theory of lattice-valued
first-order logic LF(X) and gave an important conclusion,
the fundamental theorem of ultraproducts. All of the above
work will lay a solid foundation for further study on
lattice-valued logic. More important, since a model in
many-valued logic is namely a control process, so all the
results on model theory that have been obtained here can
help us to interpret the results of approximate reasoning on
semantic level in some model. One of our future work is to
further study model theory and construct approximate
reasoning method by it.
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