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Summary 
In recent years, model theory has had remarkable success in 
solving important problems. Its importance lies in the 
observation that mathematical objects can be cast as models for a 
language. Ultraproduct is a method of constructing a new model 
from a family of models, In this paper, we deal with a new form 
of ultraproduct model for first-order lattice-valued logic LF(X) 
whose truth-value field is a finite lattice implication algebra. At 
the same time, Expansion theorem, two forms of fundamental 
theorem of ultraproducts and consistent theorem are obtained. 
Finally, another application of ultraproduct to algebra is 
discussed.  
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1. Introduction 

Lattice-valued logic is an important form of many-valued 
logic which extends the field of truth-values to lattices. 
More important, lattice-valued logic can represent the 
uncertainty, specially the incomparable property of 
people's thinking, judging and decision. Therefore, lattice-
valued logic is studied by many scholars [2,3,4]. 
However,their work are limited to the interval [0,1] or the 
finite chain of truth values. In order to establish a logic 
system with truth-values in a relatively general lattice, 
lattice implication algebras were defined by Xu Yang in 
[7] and its many properties were discussed.  Based on 
conclusions on lattice implication algebra, Xu Yang et al 
established several lattice-valued logic systems [8-12], 
where they established a first-order lattice-valued logic 
system LF(X) based on lattice implication algebra. On the 
basis of a set of grouping sentences or a theory, Wang 
Shiqiang et al in [2] proved the fundamental theorem of 
ultraproducts in lattice-valued model whenever the set of 
truth-values L is finite. Ying Mingsheng gave another 
form of the fundamental theorem of ultraproducts [13]. 
We have discussed one form of ultraproduct model for 
LF(X) [15], which is based on an ultrafilter on LI, where L 
is any lattice implication algebra, I is an index set. 
Moreover, the main difference between the ultroproduct 
models for classical logic and for LF(X) lies in the 
ultrafilter, the former is a generalization of the latter. In 

this paper, by virtue of the idea of [6, 13], we construct 
another form of ultraproduct model for LF(X) based on 
finite lattice implication algebra by a classical ultrafilter on 
the index set I.  

2. Preliminaries  

Definition 1[7] Let ),,,( ′∧∨L be a complemented lattice 
with universal bounds 0, 1. If the 
mapping LLL →×→: satisfies the following conditions: 
for all Lzyx ∈,, , 
(I1) ( ) ( )zxyzyx →→=→→ , 
(I2) 1=→ xx , 
(I3) xyyx ′→′=→ , 
(I4) If ,1=→=→ xyyx then x=y, 
(I5) ( ) ( ) xxyyyx →→=→→ , 
(l1) ( ) ( ) ( )zyzxzyx →∧→=→∨ , 
(l2) ( ) ( ) ( )zyzxzyx →∨→=→∧ , 
Then ),,,,( →′∧∨L is said to be a lattice implication 
algebra (shortly as L). 
Definition 2 [1] Assume I is a nonempty set and S(I)= 
{X;X⊆ I}. A filter D over I is defined to be a set D⊆ S(I) 
such that: 

(1) I D∈ ;  
(2) If X,Y D∈ , then DYX ∈∩ ; 
(3) If X D∈  and X⊆Y⊆ I, then Y D∈ . 

D is called an ultrafilter over I, if D is a filter over I and 
satisfies the following conditions: 

(4) For any X∈S(I), X D∈  if and only if I-X∉D. 
In the language of first-order lattice-valued logic LF(X), 

we will use the following symbols: 
(1) An infinite collection V of variables Nixi ∈, ; 
(2) Constant symbols: Kkck ∈, , where K is an index 

set. The set of constant symbols is written as C; 
(3) Relation symbols: RrPr

mr
∈, , where R is an index 

set, and r
mr

P is rm -ary, +∈Nmr ; 
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(4) Function symbols: JjF
jm ∈, , where J is an index 

set and 
jmF is jm -ary, +∈Nm j ; 

(5) Logical connectives: ,,, ′→∧∨ ; 
(6) Quantifiers: ∃∀, ; 
(7) Technical symbols: (,),´. 

We now define terms and formulas. 
 A term is defined as follows: 

(1) Each element of CV ∪  is a term, which is said to 
be a non-superscript term; 

(2) For any Jj∈ , if 
jmtt ,,1 L are non-superscript 

terms or terms, then 
jmF (

jmtt ,,1 L ) is a term; 

(3) Any term can be obtained from (1), (2). 
A well-formed formula (shortly as formula) is defined 

as follows. 
The set of formulas F is the smallest set F ′  satisfying 
the following conditions: 
(1) For any FL ′∈∈ αα , ; 

(2) For any Rr∈ , if 
rmtt ,,1 L are terms, then )(r

mr
P  

(
rmtt ,,1 L ) F ′∈ ; 

(3) If Fqp ′∈, , then Fpqpqpqp ′∈′→∨∧ ,,, ; 
(4) If Fp ′∈ , Vx∈ , then Fxpxp ′∈∃∀ , . 
Definition 3 [11] A model for LF(X) is defined as 
follows: 
μ= { } { } };{,;,;, KkcJjFRrPA kAjArA ∈∈∈ , 

where: 
(1) A is a nonempty set which is said to be the 

universe of the model; 
(2) For any Rr∈ , LAP rm

rA →: is an rm -
ary relation assigned to each relation 
symbol )(r

mr
P ; 

(3) For any Jj∈ , AAF jm
jA →: is a jm -

ary function assigned to each function 
symbol 

jmF ; 

(4) For any Kk ∈ , kAc  is a constant  assigned 

to each constant symbol kc . 
Definition 4 [11] Let  
μ= { } { } };{,;,;, KkcJjFRrPA kAjArA ∈∈∈  and 

λ = { } { } };{,;,;, KkcJjFRrPB kBjBrB ∈∈∈  be 

two models for LF(X). 
(1) If A⊆ B and for any Jj∈ , 

jmF  is an jm -ary 

function symbol, jm
jBjA AFF = ,  for any 

Kk ∈ , kBkA cc =  and for any Rr∈ , )(r
mr

P is an 

−rm ary  relation symbol, rm
rBrA APP = , then 

μ  is called a submodel of λ  or λ  is called an 
extension  of  μ, denoted as  μ⊂ λ . 

(2) μ  and λ  are said to be isomorphic, whenever there 
is a bijection BAg →: such that: 

For each jm -ary function symbol 
jmF and any 

sequence of elements Aaaa
jm ∈,,, 21 L , we have  

));(,),(),(()),,,(( 2121 njBnjA agagagFaaaFg LL =

For each rm -ary relation symbol )(r
mr

P  and any sequence 

of elements Aaaa
rm ∈,,, 21 L , we have 

));(,),(),((),,,( 2121 nrBnrA agagagPaaaP LL =
 For each constant symbol kc , we have kBkA ccg =)( , 

We write as λμ ≅  and call g is an isomorphic mapping.  
 

3. Expansion theorem and the fundamental 
theorem of ultraproducts 
Suppose the set of truth-values is a finite lattice 

implication algebra )1,0,,,,,( →′∧∨L , and L={ }nαα ,,1 L , 

i.e., L has n elements, Nn∈ and I is any nonempty index 
set, D is any proper filter on I (in classical sense), μi (i∈I) 
is a family of models for LF(X) whose universes are 
denoted Ai, respectively. Now we give a definition of 
reduced product.  
Definition 5 A reduced product ∏D iμ of μi (i∈I) is 

defined as follows: 
(1) Its universe is∏D iA ; 

(2) Suppose )(r
mr

P (r∈R, R is an index set) is an mr -

placed relation symbol in LF(X) and its 
corresponding interpretation in any model  μi  

is r
iP (i∈I), then its interpretation in ∏D iμ is the 

following relation P: 
 for any ∏∈ D i

m
DD Aff r,,1 L , let 

s
m

DD
rffP α=),,( 1 L  if and only if 

DififPIi s
mr

i
r ∈=∈ }))(,),((;{ 1 αL , ns ≤≤1 . 

(3) Suppose 
jmF  is an mj -placed functional symbol in 

LF(X) and its corresponding interpretation in any 
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model μi  is j
iF (i∈I), then its interpretation in 

∏D iμ is the following function F: for any 

∏∈ D i
m

DD Aff j,,1 L ,  

    

D
mj

i
m

DD
j IiififFffF jj >∈=< ));(,),((),,( 11 LL

    .                                                                        (1) 
(4) Suppose ck (k∈K, K is an index set ) is any 
constant symbol in LF(X),  and its interpretation in any 
model  μi  is k

ic , then its interpretation in ∏D iμ  is 

the  constant c=< k
ic ; i∈I>D. 

In addition,   If D is an ultrafilter of I, then the reduced 
product ∏D iμ of μi (i∈I) is called an ultraproduct of μi 

(i∈I). 
Lemma 1 Let I be any nonempty index set, D be a proper 
filter on I, μi  (i∈I) be a family of models for LF(X). 
(1) If rr m

D
m

D gfgf == ,,11 L , then for any 
s, ns ≤≤1 ,  

DififPIi s
mr

i
r ∈=∈ }))(,),((;{ 1 αL  if and only 

if DigigPIi s
mr

i
r ∈=∈ }))(,),((;{ 1 αL ; 

(2) If jj m
D

m
D gfgf == ,,11 L , then  

D
mj

i IiififF j >=∈< ));(,),(( 1 L  

           >∈< IiigigF jmj
i ));(,),(( 1 L .              (2) 

According to Lemma 1, the definition of reduced 
product ∏D iμ  is well defined, ),,( 1 rm

DD ffP L  and 

),,( 1 jm
DD

j
i ffF L  depend only on the equivalence 

classes rm
DD ff ,,1 L  and jm

DD ff ,,1 L , but not on the 
representatives of these equivalence classes. 
      Now we give the first conclusion, namely, expansion 
theorem. 
Theorem 1(Expansion Theorem) Let LF(X)* be an 
expansion of the language of LF(X), I a nonempty index 
set, D a proper filter on I. If for any i∈I, μi is a model for 
LF(X), λi is an expansion of the model μi on LF(X)*, then 
the reduced product ∏D iλ is an expansion of the model 

∏D iμ on LF(X)*. 

Proof.  It can be proved similarly to that of classical logic. 
The first form of the fundamental theorem of 

ultraproducts is given as follows: 
Theorem 2 (the fundamental theorem of ultraproducts I) 
Let L be a finite lattice implication algebra, 

L={ }nαα ,,1 L (n is a finite integer), I a nonempty index 
set, D an ultrafilter on I, μi (i∈I) a family of models for 
LF(X), and π=∏D iμ  an ultraproduct model for LF(X) 

whose universe is B, then 
(1) For any term t(x1,…,xm) and any Bff m

DD ∈,,1 L , 
            

;)]);(,),([(]),,[( 11
D

m
i

m
DD Iiififtfft >∈=< LL μπ

                                                                                         (3) 
(2) For any formula p(x1,…,xm) and any 

Bff m
DD ∈,,1 L , 

s
m

DD ffp απ =]),,[( 1 L  if and only if 

DififpIi s
m

i ∈=∈ })])(,),([(;{ 1 αμ L (

ns ≤≤1 ); 
(3) For any sentence p,  

sp απ =)(  if and only if 

DpIi si ∈=∈ })(;{ αμ ( ns ≤≤1 ). 
Proof.  It can be proved by induction over the construction 
of terms, and formulas in similar way to the proof of 
Theorem 1 [6].  
Theorem 3 (the fundamental theorem of ultraproducts II) 
Let L be a finite lattice implication algebra, 
L={ }nαα ,,1 L (n is a finite integer), I a nonempty index 
set, D an ultrafilter on I, μi (i∈I) a family of models for 
LF(X), and π=∏D iμ  an ultraproduct model for LF(X) 

whose universe is B, then 
(1) For any formula p(x1,…,xm) , any 

Bff m
DD ∈,,1 L and any Ls ∈α ,  

s
m

DD ffp απ ≥]),,[( 1 L  if and only if 

DififpIi s
m

i ∈≥∈ })])(,),([(;{ 1 αμ L  

( ns ≤≤1 ); 
(2) For any sentence p and any Ls ∈α ,  

sp απ ≥)(  if and only if 

DpIi si ∈≥∈ })(;{ αμ ( ns ≤≤1 ). 

Proof. (1) Suppose there are t elements greater than sα  in 

L, denoted as 1sα ,…, stα . If s
m

DD ffp απ ≥]),,[( 1 L , 

then there exists θα s , ss αα θ ≥ , such that 

θαπ s
m

DD ffp =]),,[( 1 L . By theorem 2, 

DififpIiX s
m

i ∈=∈= })])(,),([(;{ 1
θθ αμ L .  

Since })])(,),([(;{ 1
s

m
i ififpIiX αμθ ≥∈⊆ L  

and D is a filter, we have 
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DififpIi s
m

i ∈≥∈ })])(,),([(;{ 1 αμ L . 
Conversely, suppose 

DififpIi s
m

i ∈≥∈ })])(,),([(;{ 1 αμ L , then for 

any Xi∈ , s
m

i ififp αμ ≥)])(,),([( 1 L .  
Let 

,1},)])(,),([(;{ 1 tififpIiX s
m

i ≤≤=∈= θαμ θθ L

 then tXXX ∪∪= L1 . Since D is an ultrafilter, then 
there exists exactly one among X1,…,Xt belonging to D, 
we can suppose DX ∈

0θ
, i.e.,  

DififpIiX s
m

i ∈=∈= })])(,),([(;{
00

1
θθ αμ L . 

By Theorem 2, 

ss
m

DD ffp ααπ θ ≥=
0

]),,[( 1 L . 

(2) It is inferred from (1) directly. 
Definition 6 Let I be an any nonempty index set , D an 
ultrafilter on I, μi (i∈I) a family of models for LF(X), and 
π=∏D iμ  an ultraproduct model for LF(X). If   μi= μ 

holds for any i∈I , then denote π as ∏D
μ  and call it as 

an ultrapower of μ. 
Corollary 1 Let L be a finite lattice implication algebra 
and∏D

μ  an ultrapower of μ. Then 

(1)∏D
μ ≡μ; 

(2) The natural embedding of μ into the 
ultrapower ∏D

μ  is an elementary embedding, i.e., 

μ ∏< D
μ~ . 

Proof. (1) It is inferred from Theorem 2 (3) directly. 
(2) For any a∈A, let ∏

∈

∈
Ii

Aâ  and >∈=< Iiaa ;ˆ , 

i.e., for any i∈I, aia =)(ˆ .  Let d: A → ∏
D

A  be a 

mapping satisfying: for any a∈A, d(a)= Dâ , where 

DD Iiaa >∈=< ;ˆ . Obviously, d is a one-to-one 

mapping into ∏
D

A . For any formula p(x1,…,xm) and 

a1,…,am∈A, by Theorem 2,  we have 

∏D
μ (p[d(a1),…,d(am)])= sα  if and only if 

 DiaiapIi sm ∈=∈ })])(ˆ,),(ˆ[(;{ 1 αμ L  if and only 

if smaap αμ =]),,[( 1 L . Hence, μ ∏< D
μ~ . 

4. Applications of the fundamental theorem of 
ultraproducts 

Lemma 2 [1]  Let I be a index set, S(I) be its power set. 
Then D is an ultrafilter over I if and only if there exists 

Ii∈  such that }|)({ XiISXD ∈∈= . 
Theorem 3 Let L be a finite lattice implication algebra 
and I a nonempty index set, D an ultrafilter generated by 

Ii ∈0 , and {μi; i∈I} be any family of models for LF(X). 

If π=∏D iμ is an ultraproduct of {μi; i∈I}, then π
0i

μ≅ . 

Proof.  Suppose the universe of  π is B. Define a mapping 
as follows: 

0
: iAB →γ  

)( 0iff D a . 
(1) First we prove the mapping γ  is a bijection. Let 

Bgf DD ∈,  and DD gf ≠ , then gf D= does 

not hold,  )}()(|{0 igifIii =∈∉ , i.e.,  

)()( 00 igif ≠ , hence γ is an injection.  

For any 
00 ii Aa ∈ , define a mapping f as follows: for 

any Ii∈ , 
⎩
⎨
⎧

≠
=

=
,,

,
)(

0

,00

iia
iia

if
i

i  where ia  is chosen 

randomly in }{\, 0iIiAi ∈ . So 
0

)()( 0 iD aiff ==γ , 

then γ is a surjection. 

(2) Let 
jmF  is an mj -placed functional symbol, Jj∈ , 

for any Bfff jm
DDD ∈,,, 21 L , suppose  

>∈=< IiififFf jmj
i |))(,),(( 1 L .  By Definition 

5, we have  
)()()),,,(( 0

21 ifffffF D
m

DDD
j

B
j == γγ L  

= ))(,),(( 00
1

0
ififF jmj

i L  

))(,),(),(( 21
0

jm
DDD

j
i fffF γγγ L= . 

(3) Let )(r
mr

P  be an mr -placed relation symbol , r∈R, for 

any Bfff rm
DDD ∈,,, 21 L , suppose  

s
m

DD
rffP α=),,( 1 L  , by definition 5 we have  

DififPIi s
mr

i
r ∈=∈ }))(,),((;{ 1 αL , so 

s
mr

i ifififP r α=))(,),(),(( 00
2

0
1

0
L  . 

(4) Let Kkck ∈, be a constant symbol, 

0
)(

ikkB cc =γ holds obviously. 
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To sum up, γ is an isomorphism between the models π 

and 
0i

μ , so π
0i

μ≅ .  

Definition 7[14] A mapping from the set of all the 
sentences in LF(X) to lattice implication algebra L is 
called a (L-valued ) theory in LF(X). If T is a theory in 
LF(X), μ is an (L-valued ) model for LF(X), then for 
every sentence p,  μ(p) ≥ T(p), then it is called that μ 
satisfies T or μ is a model of T. 
Definition 8 [14] Let A, B be L-fuzzy subsets of the set of 
formulas in LF(X). B is called a finite limit of A, if there 
exists a set of finite formulas {p1,…, pm}⊆SuppA (the 
support of A), m∈N is finite, such that for any formula p,  

⎩
⎨
⎧ ≤≤=

=
.

1,
,
),(

)(
otherwise

mippif
O
pA

pB ii  

Now we prove the following consistent theorem 
mathematically by the fundamental theorem of 
ultraproducts, which is its very important application. 
Theorem 4 (Consistent Theorem) Let L be a finite lattice 
implication algebra, and T a theory in LF(X), and 

)(SuppTSI ω=  a set consisting of all finite subsets of 
SuppT. If for any i∈I, μi is a model of Ti, where Ti is a 
finite limit of T and it is defined as follows: 

⎪⎩

⎪
⎨
⎧ ∈

=
,,
,),(

)(
otherwiseO

ipifpT
pTi  

then there exists an ultrafilter on I, such that the 
ultraproduct ∏D iμ  is a model of T.  

Proof. For any sentence p∈SuppT, let { }ipIip ∈∈= ;ˆ , 
i.e., p̂  is a set consisting of finite subsets of SuppT 
containing p. Suppose E={ p̂ ;p∈SuppT}. Since for any 

npp ,,1 L ∈SuppT, { } nn pppp ˆˆ,, 11 ∩∩∈ LL , E 
has the finite intersection property. By Ultrafilter Theorem 
([20], Proposition 4.1.3), there exists an ultrafilter D on I, 
such that E⊆D. Construct ultraproduct model ∏D iμ of 

a family of models μi  (i∈I), we need to prove ∏D iμ is a 

model of T. In fact, for any sentence p, let T(p)= sα  and 

})(;{ si pIip αμ ≥∈= . Since for any pi ˆ∈ , we 

have ip∈ , then sii pTpTp αμ ==≥ )()()( , i.e., 

pi∈ , hence pp ⊆ˆ . By Ep∈ˆ , E⊆D and since D 

is an ultrafilter, we have Dp ∈ . It is inferred from 

Theorem 2 that ∏D iμ (p) sα≥ , i.e.,  

∏D iμ (p) )( pT≥ . Therefore, ∏D iμ is a model of T. 

Obviously, Theorem 4 can be described as follows: Let 
L be a finite lattice implication algebra, and T a theory in 
LF(X). If every finite limit of T has a model, then T has a 
model. 

Now we give another application of the fundamental 
theorem of ultraproducts. First, we give a notion. 
Definition 9 Let μ be a model for LF(X), its universe be A, 
{μi; i∈I} be a family of submodels of μ and their universe 
be Ai, respectively. If A=U

Ii
iA

∈

and for any i, j∈I, there 

exists k∈I, such that kji AAA ⊆∪ , then {μi; i∈I} is 

said to be a local system of μ. 
 For example, all finitely generated submodels of μ consist 
of a local system of μ. 
Theorem 5 Let μ be a model for LF(X), {μi; i∈I} a local 
system of μ . If there exists a family of models { iλ ; i∈I}, 

such that for any i∈I, μi is isomorphically embedded in iλ , 

i.e., μi ⊂~ iλ , then there exists an ultrafilter D on I, such 

that μ is isomorphically embedded in ∏D iλ , i.e., 

μ⊂~ ∏D iλ . 

Proof. Similar to the proof of the corresponding theorem 
of classical logic and omit it. 

5.Conclusions 
In this paper, we developed model theory of lattice-valued 
first-order logic LF(X) and gave an important conclusion, 
the fundamental theorem of ultraproducts. All of the above 
work will lay a solid foundation for further study on 
lattice-valued logic. More important, since a model in 
many-valued logic is namely a control process, so all the 
results on model theory that have been obtained here can 
help us to interpret the results of approximate reasoning on 
semantic level in some model. One of our future work is to 
further study model theory and construct approximate 
reasoning method by it. 
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