
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

201

 Digital Filter Design using Evolvable Hardware Chip for Image
Enhancement

*A.Sumathi, and **Dr.R.S.D.Wahida Banu

*Associate Professor, Adhiyamaan college of Engg., Hosur
**Professor, Government college of Engineering, Salem, India

Abstract: Images acquired through modern cameras may
be contaminated by a variety of noise sources (e.g.
photon or on chip electronic noise) and also by
distortions such as shading or improper illumination.
Therefore a preprocessing unit has to be incorporated
before recognition to improve image quality. General-
purpose image filters lacks the flexibility and adaptability
for un-modeled noise types. The EHW architecture
evolves filters without any apriori information.
Adaptability is accomplished by calculating a score for
the results obtained by the system on a set of data. This
score is then used to manipulate the system in such a way
that the system output will converge towards a desired
result. Using evolutionary techniques on a digital filter-
system is a possible method for obtaining system
adaptability. The approach chosen here is based on
functional level evolution whose architecture contains
many nonlinear functions and uses an evolutionary
algorithm to evolve the best configuration. The proposed
filter considers spatial domain approach and uses the
overlapping window to remove the noise in the image.

Keywords: Image processing, Evolvable hardware,
Genetic algorithm.

1. INTRODUCTION

Many of today’s image and signal processing tasks
are performed on real-time data. On systems that perform
real-time processing of data, performance is often limited
by the processing capability of the system. Providing a
high processing speed is therefore often a crucial factor
to be considered when implementing real-time systems.
Also there is a need to have flexible systems that can be
changed according to new specifications. Systems based
on software are flexible, but often suffer from
insufficient processing capability. Alternately, dedicated
hardware can provide the highest processing
performance, but is less flexible for changes.
Reconfigurable hardware [1] devices offer both the
flexibility of computer software, and the ability to
construct custom high performance computing circuits.
Thus, in many cases they make a good compromise

between software and hardware solutions. The structure
of a reconfigurable hardware device can be changed any
number of times by downloading into the device a
software bit string called configuration bits. Field
Programmable Gate Arrays (FPGA) and Programmable
Logic Devices (PLD) are typical examples of
reconfigurable hardware devices.

Evolvable Hardware (EHW) is a new concept in

the development of online adaptive machines. In contrast
to conventional hardware where the structure is
irreversibly fixed in the design process, EHW is designed
to adapt to changes in task requirements or changes in
the environment through its ability to reconfigure its own
hardware structure online and autonomously (Higuchi
1999). The capacity for adaptation is achieved through
evolutionary algorithms such as Genetic Algorithm (GA).

In this paper, an EHW chip is configured using

evolutionary algorithms to remove the noise and improve
the quality of the images. The basic idea of EHW is to
regard the architecture bits of a reconfigurable device as
a chromosome for GA, which searches for an optimal
hardware structure. The GA chromosome (architecture
bits) is downloaded onto the reconfigurable device
during genetic learning [3]. Thus, EHW can be
considered as an online adaptive hardware.

In the field of digital image processing, a broad
and disparate range of applications using evolutionary
computation can be found in the literature. The
functional level EHW architecture is described in (Clark
1999). The hardware implementation of the Genetic
Algorithm model is explained in (Lei 2002). The
evolution of spatial masks to detect edges within gray
scale images is described in (Hollingworth 1999).
(Sekanina 2002) (Sekanina 2003) has achieved
evolutionary design of image filters with virtual
reconfigurable circuits in extrinsic EHW environment.
Digital image processing operations, such as image
smoothing, edge detection, and image compression, have
been carried out in an extrinsic EHW environment,
which exhibits the potential of EHW in digital image
operator design. This paper presents complete evolvable

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

202

hardware architecture, dedicated for implementing high
performance digital image filters on FPGA, so that the
time for the evolution is greatly reduced. In Complete
Hardware Evolution (CHE) the GA is implemented on
the same chip as the evolving design. The GA
implementation configures the evolving design by
placing individuals in Random Access Memory (RAM).
The fitness value is calculated by the GA from the
feedback signals originating in the evolving design.
Since the GA and the evolving design are implemented
on the same chip, the evolution process may
continuously observe the evolving design.

 2. EVOLVABLE HARDWARE

Evolvable Hardware is the combination of
Genetic Algorithms and the software reconfigurable
devices. The structure of the reconfigurable device can
be determined by downloading binary bit strings called
the architecture bits (Gordon Hollingworth 2000). The
architecture bits are treated as chromosomes in the
population by the GA, and can be downloaded to the
reconfigurable device resulting in changes to the
hardware structure. The changed functionality of the
device can then be evaluated and the fitness of the
chromosome is calculated. The performance of the
device is improved as the population is evolved by GA
according to fitness. This process is repeated till the
desired performance is achieved or particular number of
generations. Figures 1 and 2 show the function level and
gate level evolution model. The basic concept of
evolvable hardware is shown in Figure 3.

Figure 1 Functional level evolution

Figure 2 Gate level evolution

Figure 3 Basic concept of EHW

In gate-level evolution, the hardware evolution is

based on primitive gates such as AND-gates and OR-
gates as shown in Figure 1. The size of circuits generated
by gate-level evolution is not very large because GA
execution takes a long time to evolve large circuits. This
makes it difficult to use gate-level EHW to produce
hardware functions which are useful for practical
applications.

In function level evolution, hardware synthesis

involves higher-level hardware functions than the
primitive gates of gate-level evolution. With function-
level evolution, it is possible (1) to synthesize more
useful hardware functions and (2) to design larger
hardware circuits that are not possible with gate-level
evolution.

EHW offers three advantages over traditional

hardware and software systems. First, it can
autonomously improve its performance by changing its
hardware configuration according to the GA. Second, it
processes information much faster than software systems.
Third, the reconfigurable devices can change their
functionality in an on-line fashion during execution.
EHW can therefore be applied to new areas of
application, where more inflexible traditional hardware
systems are not efficient.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

203

3. GENETIC ALGORITHM

Genetic Algorithm (Goldberg 1989) determines
how the hardware structure should be reconfigured
whenever a new hardware structure is needed for an
improved performance. GA was proposed to model
adaptation of natural and artificial systems through
evolution, and is one of the most well known powerful
search procedures. The canonical GA has a population of
chromosomes; each of them is obtained by encoding a
point in the search space. Usually, they are represented
by the strings of binary characters.

The sequence of operations performed by the GA

is shown in Figure 4. In the initial state, chromosomes in
the population are generated at random, and processed by
many operations, such as evaluation, selection, crossover
and mutation. The latter three operations are called the
genetic operations, and one cycle of the evaluation and
the genetic operation is counted as a generation. The
evaluation assigns the fitness values to the chromosomes,
which indicates how well the chromosomes perform as
solutions of the given problem. The crossover chooses
some pairs of chromosomes, and exchanges their sub-
strings at random. Finally, the mutation randomly
chooses some positions in the chromosome and flips
their values.

Figure 4 Flow of Genetic algorithm

The major advantages of GA are its robustness and
superior search performance particularly in problems
without aprior knowledge. If the evaluation can be
executed very quickly by the specific hardware device,
the most serious problem of GA i.e. time constraint for
fitness evaluation can be solved, and one can use GA
more effectively. Complete evolvable hardware is based
on this concept, and utilizes the robust capability of GA
by reducing its computational cost.

4. HARDWARE IMPLEMENTATION OF EHW

Although various evolvable systems have been
implemented as Application Specific Integrated Circuits
(ASIC), this solution is relatively expensive (Higuchi
1999). Hence a great effort is invested to designing
evolvable systems at the level of FPGAs. These solutions
can be divided into two groups:

1)FPGA is used for evaluation of circuits produced by
evolutionary algorithm, which is executed in software.

2)The whole evolvable system is implemented in the
FPGAs. This type of implementation integrates a
hardware realization of evolutionary algorithm and a
reconfigurable device.

The typical feature of these approaches is that the
chromosomes are transformed to configuration bit stream
and the configuration bit stream is uploaded into the
FPGA. However, it is not easy to decode usually very
complex configuration bit stream of FPGA vendors.
Furthermore, most families of FPGAs can be configured
only externally (i.e. from an external device connected to
the configuration port). Internal reconfiguration means
that a circuit placed inside an FPGA can configure
programmable elements of the same FPGA. Although the
Internal Configuration Access Port (ICAP) has been
integrated into the newest Xilinx Virtex II family, it is
still too slow (Sekanina 2004).

Virtual Reconfigurable Circuits (VRC) was
introduced for digital evolvable hardware as a new kind
of rapidly reconfigurable platform utilizing conventional
FPGAs (Sekanina 2004). The approach utilizing VRC
offers many benefits, such as

1) It is relatively inexpensive, because the whole
evolvable system is realized using an ordinary
FPGA.

2) The architecture of the reconfigurable device
can be designed exactly according the needs of
a given problem.

3) Since, the whole evolvable system is available
at the level of Hardware Description Language
(HDL) code it can easily be modified and
synthesized for various target platforms (FPGA
families).

5. IRTUAL RECONFIGURABLE CIRCUIT (VRC)

Figure 5 shows the VRC. It is in fact a new
reconfigurable circuit consisting of 8 programmable
elements realized on top of an ordinary FPGA. Slices
have to implement a new array of programmable
elements, new routing circuits and new configuration
memory. The virtual circuit can be configured internally
or from FPGA’s I/O pins if new configuration memory is

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

204

connected to them. The main advantage of the VRC is
that the array, the routing circuits and the configuration
memory can be designed exactly according to the
requirements of a given application. Furthermore, style
of reconfiguration and granularity of new virtual
reconfigurable circuit can exactly reflect the needs of a
given application.

Figure 5 Example of VRC used in EHW

The elements in VRC are referred as Processing
Elements (PEs). Configuration bits determine PEs
function and the places where its inputs are connected to.
The routing circuits are implemented using multiplexers.
The configuration memory is composed of flip-flops. All
bits of the configuration memory are connected to
multiplexers that control routing and selection of
functions in PEs. The number of PEs utilized in the
virtual reconfigurable circuit depends on a given
application. VRC can be described in HDL and
synthesized with various constraints for different target
platforms.

6. DIGITAL IMAGE FILTER DESIGN

The digital image filter contains virtual
reconfigurable circuit together with genetic unit. The
corrupted image is given as input to the virtual
reconfigurable circuit and the filtered image is obtained.
The filtered image is compared with the original image
and the fitness is evaluated. According to the fitness
value, genetic unit finds the most desirable architecture
of the virtual reconfigurable circuit such that the
difference between the filtered image and the original
image will get reduced. This is shown in figure 6.

Figure 6 Block diagram of digital image filter using VRC

The VRC processes nine 8-bit inputs I0 – I8 and

produces a single 8-bit output. Every pixel value of the
filtered image will be calculated using a corresponding
pixel and its eight neighbors. The VRC consists of 25
PE’s as shown in Fig. 4.2. The PE’s are indexed from the
top, row-wise, and then column-wise. Four PE’s are
considered as a single stage of the pipeline.

Each PE has two 8-bit inputs and gives a single 8-
bit output. The outputs of PE’s are equipped with
registers. The two inputs to every PE can be connected to
one of the outputs from the previous l columns where l is
the level back parameter. Every PE executes a certain
function from Table 1, depending on the function code
configuration, sel3 which is applied to its two inputs.

The architecture of VRC with the 25 PE’s and

that of the single PE are shown in Figures 7 and 8
respectively. The configuration bit stream consists of ten
bits for each PE. First six bits determine the places where
PEs inputs will be connected to. One of 16 functions is
selected from Table-1 using the last four bits. The output
of the PE is given by
 } sel3 mux(sel2), mux(sel1), { FOutput =

Table-1
Function

Code Function Function
Code Function

0000
0001
0010
0011
0100
0101
0110
0111

X >> 1
X

~ X
X & Y
X | Y
X ^ Y

(X+Y)>>2
(X+Y) >>1

1000
1001
1010
1011
1100
1101
1110
1111

X & 0x0F
X & 0xF0
X | 0x0F
X | 0x F0
Min(X,Y)
Max(X,Y)

Y<<1
X+Y

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

205

Figure 7 Architecture of VRC with 25 PE’s

Figure 8 Architecture of a single PE

Both sel1 and sel2 should not exceed the number of
the multiplexer inputs. The sel3 input is the binary
representation of the number of functions in the Table-.1.
The fewer the functions, the faster is the evolution.
Further functions can be included but this is dependant
on the resource requirements, as there is a trade-off
between the functionality and the complexity of the
hardware structure.

7. DETAILS OF EHW CHIP

The proposed hardware implementation of the
complete evolvable system is composed of basic
modules; input buffer, virtual reconfigurable circuit,
pseudo random number generator, population memory,
selection unit, mutation unit, fitness evaluator and output
buffer as shown in Figure 9. Both the Genetic unit and
the Virtual reconfiguration unit reside in the chip and
hence the configuration is complete. The configuration
word contains details about the interconnection between
the processing elements (PE) of the VRC and the
functional operations performed within each PE. In this
work, the interconnection between the PE’s is not
restricted to its nearest neighbors.

Figure 9 Block diagram of the complete EHW system

7.1 Pseudo Random Number Generator

The Pseudo Random Number Generator
(PRNG) (Alfke 1996) is used in two of the major steps in
GA. Firstly, during initial population creation, and
secondly to select individuals for crossover and mutation.
One of the most common PRNG for FPGA
implementation is a Linear Feedback Shift Register
(LFSR). In this work, a word size of 12 is chosen. It is
important to choose a good polynomial to ensure that the
PRNG can generate a maximal sequence of 2n-1 random
numbers, while keeping the number of taps to a
minimum for efficiency. For the chosen 12 bit word the
polynomial

x12 (xnor) x6 (xnor) x4 (xnor)x1

is used. The block diagram of the LFSR is shown in
Figure 10.

Figure 10 Pseudo random noise generator

The PRNG is designed so that a random
number is generated in every clock. The 12th bit is taken
as the random bit. Initial seed value is loaded in to the
PRNG. To create a 10 bit random number, 10 single bit
PRNG are combined in parallel.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

206

7.2 Input Buffer

Input buffer consists of RAM. Original and
distorted images are read from the file and stored in the
input buffer. During runtime pixels are given as input to
the VRC from the input buffer.

7.3 Initial Population Generation

During initial population generation, a 250
bit chromosome is created using 10 bit random number
generator in 25 clock cycles. Chromosomes are stored in
the Block RAM of FPGA. The initial population size is
taken as 16. Totally 16x25 clock cycles are needed for
initial population generation.

7.4 Fitness Calculation

MDPP fitness function is used to evaluate
the chromosome. The original and filtered images are
taken from the memory and the absolute difference
between the corresponding pixel values is added and the
fitness is evaluated.

7.5 Selection Unit

Selection unit selects the chromosome
which has highest fitness as the best chromosome and it
is retained for subsequent generations.

7.6 Mutation Unit

The chromosome which has highest fitness
is selected for mutation. Using PRNG, bit by bit mutation
is done for the creation of Childs. Fifteen new Childs are
created in every generation and stored in the population
memory.

7.6 Output Buffer

After the specified number of generations
the evolution is completed and the best chromosome is
stored in the memory. The fitness value and filtered
image signal are calculated and stored in the output
buffer.

8. CHROMOSOME FORMAT

The logical configuration of the circuit is
defined by a set of 250 bits, 10 bits for each one of the 25
PEs in the reconfigurable architecture as shown

111 000 0000 010 001 1100 110 010 0011 111 011 0010
110 111 0100 ………… 101 000 1000 110 010 1010

The first six bits of each ten bits represent the source of
inputs to the PE (sel1& sel2) as labeled in Figure 8. The
other four bits of each ten bit (sel3) indexes the function
from Table 4.1 to be applied by the PE.

9. FITNESS FUNCTION

 Various approaches exist to measure image
visual quality. The Peak Signal-to-Noise Ratio (PSNR)
and the Mean difference per pixel (MDPP) are the
commonly used approaches. The MDPP fitness function
is computationally easier for hardware implementation as
compared to PSNR. In this work MDPP fitness function
is taken for the fitness calculation.
The fitness function using the PSNR is given by

dB
MSE

55210log PSNR
2

10=

The fitness function using MDPP is given by

∑
=

=
N

1ji,

|j)filt(i, - j)orig(i, |
NxN

1 MDPP

where
 |orig(i,j) – filt(i,j)|
is the absolute difference between the original and
filtered images (Jain 2003).

10. DISCUSSION OF RESULTS

The original and distorted bitmap images are
stored in input buffer initially. It takes 128x128 clock
cycles to store each image. At the same time using
random number generator generates 16 initial
chromosomes. 16x25x10 clock cycles are needed to
generate the initial population. 128x128 clock cycles are
used to evaluate the output for each chromosome. Totally
16x128x128 clock cycles are needed to evaluate the
output for all chromosomes. To select the best
chromosome 16 clock cycles are needed. Bit by bit
mutation is used and to generate the new population
15x250 clock cycles are needed.

Simulations were performed using Gaussian noise
distorted bitmaps. Gaussian noise is chosen independent
of the image. Filtering operation can be done either with
a frequency filter or with a spatial filter. Generally, a
spatial filter is preferable as it is computationally cheaper
than a frequency filter. Bitmap of IEEE test image Lena
is used as the target image at different distortion levels
for the generality of the EHW architecture. All results
were compared with the filtered results from the
Gaussian filter. The bitmap images contaminated by
Gaussian noise with mean 0 and variance 0.01, 0.02, 0.05,
0.08 and 0.1 were used for the initial evolution. Figure 11
is the original Lena bitmap of 128x128. Figure 12 is the
Lena bitmap distorted by Gaussian noise with mean 0
and variance 0.03. Figure 13 is the result from Gaussian
filter. Figure 14 is the resulting image of the EHW filter.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

207

The MDPP is 135602 for Gaussian filtered image and
127985 for evolvable hardware filtered image.

Figure 15 is the original Baboon bitmap image

of size 128x128. Figure 16 is the image distorted by
Gaussian noise with mean 0 and variance 0.008. Figure
17 and Figure 18 are the image filtered by Gaussian filter
and the EHW filter respectively. The Mean Difference is
225353 and 215612 for Figure 17 and Figure 18
respectively.

Another image, Saturn, distorted by Gaussian

noise of variance 0.007 is given as input to the evolved
circuit and the output is verified. Figure 19 is the original
Saturn bitmap image of size 128x128. Figure 20 is the
image distorted by Gaussian noise. Figures 21 and 22 are
the image filtered by Gaussian filter and the EHW filter
respectively. The Mean Difference is 157912 for
Gaussian filtered image and 100849 for evolvable
hardware filtered image. The results are shown in Mean
Difference, MSE in dB and PSNR in dB for different
images with different levels of variance in Tables 2 to 4.

Table 2 Comparison of Mean Difference for Various

Standard Test Images

Image Variance Gaussian
Filter

EHW
Filter

Lena 0.003 135602 127985
Test

pattern 0.005 160621 139955

Chemical
Plant 0.006 173449 143152

Saturn 0.007 157912 100849
Baboon 0.008 225353 215612
Chart 0.008 198807 100531
Man 0.009 203399 180606

Moon 0.01 217764 143384
Peppers 0.02 295040 237896

Table 3 Comparison of Mean Square Error (dB) for

Various Standard Test Images

Image Variance Gaussian
Filter

EHW
Filter

Lena 0.003 20.46 20.36
Test

pattern 0.005 21.90 21.21

Chemical
Plant 0.006 22.44 21.08

Saturn 0.007 22.10 19.42
Baboon 0.008 24.79 24.64
Chart 0.008 24.18 23.55
Man 0.009 23.96 23.14

Moon 0.01 24.41 20.98
Peppers 0.02 27.07 26.08

Table 4 Comparison of PSNR (dB) for Various
Standard Test Images

Image Variance Gaussian
Filter

EHW
Filter

Lena 0.003 27.67 27.77
Test

pattern 0.005 26.23 26.92

Chemical
Plant 0.006 25.69 27.05

Saturn 0.007 26.03 28.71
Baboon 0.008 23.34 23.49
Chart 0.008 23.96 24.58
Man 0.009 24.17 24.99

Moon 0.01 23.72 27.15
Peppers 0.02 21.06 22.05

11. CHIP IMPLEMENTATION RESULTS

The evolved filter is the result of the evolution
of an array of 4x6 PEs with one PE at the output. The
level back parameter is set as 2. Number of generations is
3000. The coding was done in VHDL and simulations
were performed in ModelSim 6. The hardware evolution
took 2 minutes on Xilinx Virtex FPGA xcv800 running
at 49 MHz. This compares favorably with software
simulations run previously which it took approximately 6
hours (Pentium III/800 MHz system) to achieve the best
chromosome, the speed has been increased by 180 times
and the evolution time has been greatly reduced. Number
of generations was taken as 3000. Hardware evolution
took 12 minutes in Xilinx VirtexE FPGA xcv2000e. This
compares favorably with software simulations run
previously which took approximately 6 hours to give the
best chromosome.

The VRC takes 1754 slices of the Xilinx Virtex
FPGA xcv800 (9408 slices) and the whole evolvable
system including the GA takes 3204 slices. Since small
amount of the resources are only used i.e only 34% of the
resources, chromosomes can be operated in parallel and
the processing time can be further reduced. The synthesis
report obtained is given in Table-2 below.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

208

Table 2 Synthesis Report - Device Utilization
Summary

 (Population Size = 16, Chromosome Length = 250)
Target information:

Vendor: Xilinx
Family: Virtex

Device: v800fg680
Speed: -6

Optimization Goal: Speed

Number of Slices
3204 out of

9408
34%

Number of Slice Flip

Flops

1087 out of

18816
5%

Number of 4 input

LUTs

6200 out of

18816
32%

Number of bonded

IOBs

79 out of

516
15%

Number of BRAMs 8 out of 28 28%

Number of GCLKs 1 out of 4 25%

Minimum period 20.160ns

Maximum Frequency 49.603MHz
Minimum input arrival

time before clock
27.706ns

Maximum output
required time after

clock
6.887ns

12. CONCLUSION

The work has presented a novel approach to digital
image filter design based on the technique of evolvable

hardware. FPGA model for the function level evolvable
hardware is analyzed and associated with the
evolutionary algorithms employed. The evolution time
has been greatly reduced by implementing the
evolutionary algorithm in hardware. The EHW
architecture evolves filters without a priori information
and out-performs conventional filter in terms of
computational effort, filtered output signal and
implementation cost.

13. REFERENCES

1. Vandenberg et al (1992), “Digital image processing techniques,
fractal dimensionality and scale-space applied to surface roughness”,
Wear, 159, 17-30
2. Kiran et al (1998), “Evaluation of surface roughness by vision
system”, International J. Mach. Tools Manufact. Vol. 38, Nos 5-6, pp.
685-690.
3. Suresh et al (2002), “A Genetic algoritm approach for optimization
of Surface roughness prediction model”, The International Jnl. Of
Machine Tools & Manufacture, Vol. 42, pp.675-680
4. Samhouri et al (2005), “Surface Roughness in Grinding: Off-line
Identification with an Adaptive Neuro Fuzzy Inference system”, Paper
submitted to NAMRAC 33-2005 conference, May 24-27, Columbia.

14. BIOGRAPHIES

1) M.Sumathi is working as an associate Professor, ECE dept. In
Adiamman Engg. College, Hosur, affiliated to the Anna university. Her
areas of interest includes VLSI Signal processing, Evolvable
Computing, Image processing and neural networks.

2) R.S.D.Wahida Banu completed her doctoral degree from Anna
university in 1996. She is presently working as a professor, ECE dept.
In Government college of Engg. Salem. Her areas of interest includes
Computer networks, image processing, Networks and evolvable
hardware.

Figure 11 Figure 12 Figure 13 Figure 14
Figure 11 represents Original Lena Image of size 128x128, Figure 12 Image Distorted by Gaussian
Noise of Mean 0 and Variance 0.003, Figure 13 Image Filtered by Gaussian Filter, Figure 14 Image
Filtered by EHW filter.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006

209

Figure 15 Figure 16 Figure 17 Figure 18

Figure 15 represents Original Baboon Image of size 128x128, Figure 16 Image Distorted by Gaussian Noise of Mean
0 and Variance 0.008, Figure 17 Image Filtered by Gaussian Filter, Figure 18 Image Filtered by EHW filter.

Figure 19 Figure 20 Figure 21 Figure 22
Figure 19 represents Original Saturn Image of size 128x128, Figure 20 Image Distorted by Gaussian Noise of
Mean 0 and Variance 0.007, Figure 21 Image Filtered by Gaussian Filter, Figure 22 Image Filtered by EHW
filter.

