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Abstract: Images acquired through modern cameras may 
be contaminated by a variety of noise sources (e.g. 
photon or on chip electronic noise) and also by 
distortions such as shading or improper illumination. 
Therefore a preprocessing unit has to be incorporated 
before recognition to improve image quality. General-
purpose image filters lacks the flexibility and adaptability 
for un-modeled noise types. The EHW architecture 
evolves filters without any apriori information. 
Adaptability is accomplished by calculating a score for 
the results obtained by the system on a set of data. This 
score is then used to manipulate the system in such a way 
that the system output will converge towards a desired 
result. Using evolutionary techniques on a digital filter-
system is a possible method for obtaining system 
adaptability. The approach chosen here is based on 
functional level evolution whose architecture contains 
many nonlinear functions and uses an evolutionary 
algorithm to evolve the best configuration. The proposed 
filter considers spatial domain approach and uses the 
overlapping window to remove the noise in the image.  
 
Keywords: Image processing, Evolvable hardware, 
Genetic algorithm. 
 
 
1. INTRODUCTION 
 

Many of today’s image and signal processing tasks 
are performed on real-time data. On systems that perform 
real-time processing of data, performance is often limited 
by the processing capability of the system. Providing a 
high processing speed is therefore often a crucial factor 
to be considered when implementing real-time systems. 
Also there is a need to have flexible systems that can be 
changed according to new specifications. Systems based 
on software are flexible, but often suffer from 
insufficient processing capability. Alternately, dedicated 
hardware can provide the highest processing 
performance, but is less flexible for changes. 
Reconfigurable hardware [1] devices offer both the 
flexibility of computer software, and the ability to 
construct custom high performance computing circuits. 
Thus, in many cases they make a good compromise 

between software and hardware solutions. The structure 
of a reconfigurable hardware device can be changed any 
number of times by downloading into the device a 
software bit string called configuration bits. Field 
Programmable Gate Arrays (FPGA) and Programmable 
Logic Devices (PLD) are typical examples of 
reconfigurable hardware devices. 

 
Evolvable Hardware (EHW) is a new concept in 

the development of online adaptive machines. In contrast 
to conventional hardware where the structure is 
irreversibly fixed in the design process, EHW is designed 
to adapt to changes in task requirements or changes in 
the environment through its ability to reconfigure its own 
hardware structure online and autonomously (Higuchi 
1999). The capacity for adaptation is achieved through 
evolutionary algorithms such as Genetic Algorithm (GA). 

 
In this paper, an EHW chip is configured using 

evolutionary algorithms to remove the noise and improve 
the quality of the images. The basic idea of EHW is to 
regard the architecture bits of a reconfigurable device as 
a chromosome for GA, which searches for an optimal 
hardware structure. The GA chromosome (architecture 
bits) is downloaded onto the reconfigurable device 
during genetic learning [3]. Thus, EHW can be 
considered as an online adaptive hardware.  
 

In the field of digital image processing, a broad 
and disparate range of applications using evolutionary 
computation can be found in the literature. The 
functional level EHW architecture is described in (Clark 
1999). The hardware implementation of the Genetic 
Algorithm model is explained in (Lei 2002).  The 
evolution of spatial masks to detect edges within gray 
scale images is described in (Hollingworth 1999). 
(Sekanina 2002) (Sekanina 2003) has achieved 
evolutionary design of image filters with virtual 
reconfigurable circuits in extrinsic EHW environment. 
Digital image processing operations, such as image 
smoothing, edge detection, and image compression, have 
been carried out in an extrinsic EHW environment, 
which exhibits the potential of EHW in digital image 
operator design. This paper presents complete evolvable 
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hardware architecture, dedicated for implementing high 
performance digital image filters on FPGA, so that the 
time for the evolution is greatly reduced. In Complete 
Hardware Evolution (CHE) the GA is implemented on 
the same chip as the evolving design.  The GA 
implementation configures the evolving design by 
placing individuals in Random Access Memory (RAM). 
The fitness value is calculated by the GA from the 
feedback signals originating in the evolving design. 
Since the GA and the evolving design are implemented 
on the same chip, the evolution process may 
continuously observe the evolving design. 

 
 

 2. EVOLVABLE HARDWARE 
 

Evolvable Hardware is the combination of 
Genetic Algorithms and the software reconfigurable 
devices. The structure of the reconfigurable device can 
be determined by downloading binary bit strings called 
the architecture bits (Gordon Hollingworth 2000). The 
architecture bits are treated as chromosomes in the 
population by the GA, and can be downloaded to the 
reconfigurable device resulting in changes to the 
hardware structure. The changed functionality of the 
device can then be evaluated and the fitness of the 
chromosome is calculated. The performance of the 
device is improved as the population is evolved by GA 
according to fitness. This process is repeated till the 
desired performance is achieved or particular number of 
generations. Figures 1 and 2 show the function level and 
gate level evolution model. The basic concept of 
evolvable hardware is shown in Figure 3. 

 
 

 
 
Figure 1 Functional level evolution 
 
 

 
Figure 2 Gate level evolution 
 
 
 

 
 
Figure 3 Basic concept of EHW 

 
In gate-level evolution, the hardware evolution is 

based on primitive gates such as AND-gates and OR-
gates as shown in Figure 1. The size of circuits generated 
by gate-level evolution is not very large because GA 
execution takes a long time to evolve large circuits. This 
makes it difficult to use gate-level EHW to produce 
hardware functions which are useful for practical 
applications.  

 
In function level evolution, hardware synthesis 

involves higher-level hardware functions than the 
primitive gates of gate-level evolution. With function-
level evolution, it is possible (1) to synthesize more 
useful hardware functions and (2) to design larger 
hardware circuits that are not possible with gate-level 
evolution. 

 
EHW offers three advantages over traditional 

hardware and software systems. First, it can 
autonomously improve its performance by changing its 
hardware configuration according to the GA. Second, it 
processes information much faster than software systems. 
Third, the reconfigurable devices can change their 
functionality in an on-line fashion during execution. 
EHW can therefore be applied to new areas of 
application, where more inflexible traditional hardware 
systems are not efficient.  
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3. GENETIC ALGORITHM 
 

Genetic Algorithm (Goldberg 1989) determines 
how the hardware structure should be reconfigured 
whenever a new hardware structure is needed for an 
improved performance. GA was proposed to model 
adaptation of natural and artificial systems through 
evolution, and is one of the most well known powerful 
search procedures. The canonical GA has a population of 
chromosomes; each of them is obtained by encoding a 
point in the search space. Usually, they are represented 
by the strings of binary characters. 

 
The sequence of operations performed by the GA 

is shown in Figure 4. In the initial state, chromosomes in 
the population are generated at random, and processed by 
many operations, such as evaluation, selection, crossover 
and mutation. The latter three operations are called the 
genetic operations, and one cycle of the evaluation and 
the genetic operation is counted as a generation. The 
evaluation assigns the fitness values to the chromosomes, 
which indicates how well the chromosomes perform as 
solutions of the given problem. The crossover chooses 
some pairs of chromosomes, and exchanges their sub-
strings at random. Finally, the mutation randomly 
chooses some positions in the chromosome and flips 
their values. 

 
 

 
Figure 4 Flow of Genetic algorithm  
 

The major advantages of GA are its robustness and 
superior search performance particularly in problems 
without aprior knowledge. If the evaluation can be 
executed very quickly by the specific hardware device, 
the most serious problem of GA i.e. time constraint for 
fitness evaluation can be solved, and one can use GA 
more effectively. Complete evolvable hardware is based 
on this concept, and utilizes the robust capability of GA 
by reducing its computational cost.  
 
4. HARDWARE IMPLEMENTATION OF EHW  
 

Although various evolvable systems have been 
implemented as Application Specific Integrated Circuits 
(ASIC), this solution is relatively expensive (Higuchi 
1999). Hence a great effort is invested to designing 
evolvable systems at the level of FPGAs. These solutions 
can be divided into two groups: 

 
1)FPGA is used for evaluation of circuits produced by 
evolutionary   algorithm, which is executed in software. 
 
2)The whole evolvable system is implemented in the 
FPGAs. This type of implementation integrates a 
hardware realization of evolutionary algorithm and a 
reconfigurable device. 
 

The typical feature of these approaches is that the 
chromosomes are transformed to configuration bit stream 
and the configuration bit stream is uploaded into the 
FPGA. However, it is not easy to decode usually very 
complex configuration bit stream of FPGA vendors. 
Furthermore, most families of FPGAs can be configured 
only externally (i.e. from an external device connected to 
the configuration port). Internal reconfiguration means 
that a circuit placed inside an FPGA can configure 
programmable elements of the same FPGA. Although the 
Internal Configuration Access Port (ICAP) has been 
integrated into the newest Xilinx Virtex II family, it is 
still too slow (Sekanina  2004). 
 

Virtual Reconfigurable Circuits (VRC) was 
introduced for digital evolvable hardware as a new kind 
of rapidly reconfigurable platform utilizing conventional 
FPGAs (Sekanina 2004). The approach utilizing VRC 
offers many benefits, such as 

1) It is relatively inexpensive, because the whole 
evolvable system is realized using an ordinary 
FPGA. 

2) The architecture of the reconfigurable device 
can be designed exactly according the needs of 
a given problem. 

3) Since, the whole evolvable system is available 
at the level of Hardware Description Language 
(HDL) code it can easily be modified and 
synthesized for various target platforms (FPGA 
families). 

 
 
5. IRTUAL RECONFIGURABLE CIRCUIT (VRC) 
 

Figure 5 shows the VRC.  It is in fact a new 
reconfigurable circuit consisting of 8 programmable 
elements realized on top of an ordinary FPGA. Slices 
have to implement a new array of programmable 
elements, new routing circuits and new configuration 
memory. The virtual circuit can be configured internally 
or from FPGA’s I/O pins if new configuration memory is 
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connected to them. The main advantage of the VRC is 
that the array, the routing circuits and the configuration 
memory can be designed exactly according to the 
requirements of a given application. Furthermore, style 
of reconfiguration and granularity of new virtual 
reconfigurable circuit can exactly reflect the needs of a 
given application. 
 

 
Figure 5 Example of VRC used in EHW 
 

The elements in VRC are referred as Processing 
Elements (PEs). Configuration bits determine PEs 
function and the places where its inputs are connected to. 
The routing circuits are implemented using multiplexers. 
The configuration memory is composed of flip-flops. All 
bits of the configuration memory are connected to 
multiplexers that control routing and selection of 
functions in PEs. The number of PEs utilized in the 
virtual reconfigurable circuit depends on a given 
application. VRC can be described in HDL and 
synthesized with various constraints for different target 
platforms. 
 
6. DIGITAL IMAGE FILTER DESIGN 
 

The digital image filter contains virtual 
reconfigurable circuit together with genetic unit. The 
corrupted image is given as input to the virtual 
reconfigurable circuit and the filtered image is obtained. 
The filtered image is compared with the original image 
and the fitness is evaluated. According to the fitness 
value, genetic unit finds the most desirable architecture 
of the virtual reconfigurable circuit such that the 
difference between the filtered image and the original 
image will get reduced. This is shown in figure 6. 

 
Figure 6 Block diagram of digital image filter using VRC 
 

 
The VRC processes nine 8-bit inputs I0 – I8 and 

produces a single 8-bit output. Every pixel value of the 
filtered image will be calculated using a corresponding 
pixel and its eight neighbors. The VRC consists of 25 
PE’s as shown in Fig. 4.2. The PE’s are indexed from the 
top, row-wise, and then column-wise. Four PE’s are 
considered as a single stage of the pipeline. 
  

Each PE has two 8-bit inputs and gives a single 8-
bit output. The outputs of PE’s are equipped with 
registers. The two inputs to every PE can be connected to 
one of the outputs from the previous l columns where l is 
the level back parameter. Every PE executes a certain 
function from Table 1, depending on the function code 
configuration, sel3 which is applied to its two inputs. 

 
The architecture of VRC with the 25 PE’s and 

that of the single PE are shown in Figures 7 and 8 
respectively. The configuration bit stream consists of ten 
bits for each PE. First six bits determine the places where 
PEs inputs will be connected to. One of 16 functions is 
selected from Table-1 using the last four bits. The output 
of the PE is given by 
 } sel3 mux(sel2), mux(sel1), { FOutput =  

 
 

Table-1 
Function 

Code  Function  Function 
Code  Function  

0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  

X >> 1  
X  

~ X  
X & Y  
X | Y  
X ^ Y  

(X+Y)>>2 
(X+Y) >>1 

1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  

X & 0x0F 
X & 0xF0 
X | 0x0F  
X | 0x F0  
Min(X,Y) 
Max(X,Y) 

Y<<1  
X+Y  



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5A, May 2006 
 
 

205

  
Figure 7 Architecture of VRC with 25 PE’s  
 

 
 
Figure 8 Architecture of a single PE 
 

Both sel1 and sel2 should not exceed the number of 
the multiplexer inputs. The sel3 input is the binary 
representation of the number of functions in the Table-.1. 
The fewer the functions, the faster is the evolution. 
Further functions can be included but this is dependant 
on the resource requirements, as there is a trade-off 
between the functionality and the complexity of the 
hardware structure. 
 
7. DETAILS OF EHW CHIP 
 

The proposed hardware implementation of the 
complete evolvable system is composed of basic 
modules; input buffer, virtual reconfigurable circuit, 
pseudo random number generator, population memory, 
selection unit, mutation unit, fitness evaluator and output 
buffer as shown in Figure 9. Both the Genetic unit and 
the Virtual reconfiguration unit reside in the chip and 
hence the configuration is complete. The configuration 
word contains details about the interconnection between 
the processing elements (PE) of the VRC and the 
functional operations performed within each PE. In this 
work, the interconnection between the PE’s is not 
restricted to its nearest neighbors.  

 
Figure 9 Block diagram of the complete EHW system 
 
 
7.1 Pseudo Random Number Generator 

The Pseudo Random Number Generator 
(PRNG) (Alfke 1996) is used in two of the major steps in 
GA. Firstly, during initial population creation, and 
secondly to select individuals for crossover and mutation. 
One of the most common PRNG for FPGA 
implementation is a Linear Feedback Shift Register 
(LFSR). In this work, a word size of 12 is chosen. It is 
important to choose a good polynomial to ensure that the 
PRNG can generate a maximal sequence of 2n-1 random 
numbers, while keeping the number of taps to a 
minimum for efficiency. For the chosen 12 bit word the 
polynomial  

 
x12 (xnor) x6 (xnor) x4 (xnor)x1  

 
is used. The block diagram of the LFSR is shown in 
Figure 10. 
 

 
Figure 10 Pseudo random noise generator 
 

The PRNG is designed so that a random 
number is generated in every clock. The 12th bit is taken 
as the random bit. Initial seed value is loaded in to the 
PRNG. To create a 10 bit random number, 10 single bit 
PRNG are combined in parallel.  
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7.2  Input Buffer 

Input buffer consists of RAM. Original and 
distorted images are read from the file and stored in the 
input buffer. During runtime pixels are given as input to 
the VRC from the input buffer.  
 
7.3  Initial Population Generation 

During initial population generation, a 250 
bit chromosome is created using 10 bit random number 
generator in 25 clock cycles. Chromosomes are stored in 
the Block RAM of FPGA. The initial population size is 
taken as 16. Totally 16x25 clock cycles are needed for 
initial population generation.   
 
7.4  Fitness Calculation 

MDPP fitness function is used to evaluate 
the chromosome. The original and filtered images are 
taken from the memory and the absolute difference 
between the corresponding pixel values is added and the 
fitness is evaluated.  
 
7.5  Selection Unit 

Selection unit selects the chromosome 
which has highest fitness as the best chromosome and it 
is retained for subsequent generations. 
 
7.6  Mutation Unit 

The chromosome which has highest fitness 
is selected for mutation. Using PRNG, bit by bit mutation 
is done for the creation of Childs. Fifteen new Childs are 
created in every generation and stored in the population 
memory. 
 
7.6  Output Buffer 

After the specified number of generations 
the evolution is completed and the best chromosome is 
stored in the memory. The fitness value and filtered 
image signal are calculated and stored in the output 
buffer. 
 
8.  CHROMOSOME FORMAT 

The logical configuration of the circuit is 
defined by a set of 250 bits, 10 bits for each one of the 25 
PEs in the reconfigurable architecture as shown   

  
111 000 0000 010 001 1100 110 010 0011 111 011 0010 
110 111 0100 ………… 101 000 1000 110 010 1010  
 
The first six bits of each ten bits represent the source of 
inputs to the PE (sel1& sel2) as labeled in Figure 8. The 
other four bits of each ten bit (sel3) indexes the function 
from Table 4.1 to be applied by the PE.  
 
 
9.  FITNESS FUNCTION 

             Various approaches exist to measure image 
visual quality. The Peak Signal-to-Noise Ratio (PSNR) 
and the Mean difference per pixel (MDPP) are the 
commonly used approaches. The MDPP fitness function 
is computationally easier for hardware implementation as 
compared to PSNR. In this work MDPP fitness function 
is taken for the fitness calculation.  
The fitness function using the PSNR is given by 

dB   
MSE

55210log  PSNR
2

10=
 

 
The fitness function using MDPP is given by 
 

∑
=

=
N

1ji,

|j)filt(i, - j)orig(i, |
NxN

1 MDPP  

 
where  
                     |orig(i,j) – filt(i,j)| 
is the absolute difference between the original and 
filtered images (Jain 2003). 
 
 
                          
10. DISCUSSION OF RESULTS  
 

The original and distorted bitmap images are 
stored in input buffer initially. It takes 128x128 clock 
cycles to store each image. At the same time using 
random number generator generates 16 initial 
chromosomes. 16x25x10 clock cycles are needed to 
generate the initial population. 128x128 clock cycles are 
used to evaluate the output for each chromosome. Totally 
16x128x128 clock cycles are needed to evaluate the 
output for all chromosomes. To select the best 
chromosome 16 clock cycles are needed. Bit by bit 
mutation is used and to generate the new population 
15x250 clock cycles are needed. 
 

Simulations were performed using Gaussian noise 
distorted bitmaps. Gaussian noise is chosen independent 
of the image. Filtering operation can be done either with 
a frequency filter or with a spatial filter. Generally, a 
spatial filter is preferable as it is computationally cheaper 
than a frequency filter. Bitmap of IEEE test image Lena 
is used as the target image at different distortion levels 
for the generality of the EHW architecture. All results 
were compared with the filtered results from the 
Gaussian filter. The bitmap images contaminated by 
Gaussian noise with mean 0 and variance 0.01, 0.02, 0.05, 
0.08 and 0.1 were used for the initial evolution. Figure 11 
is the original Lena bitmap of 128x128. Figure 12 is the 
Lena bitmap distorted by Gaussian noise with mean 0 
and variance 0.03. Figure 13 is the result from Gaussian 
filter. Figure 14 is the resulting image of the EHW filter. 
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The MDPP is 135602 for Gaussian filtered image and 
127985 for evolvable hardware filtered image.  

 
Figure 15 is the original Baboon bitmap image 

of size 128x128. Figure 16 is the image distorted by 
Gaussian noise with mean 0 and variance 0.008. Figure 
17 and Figure 18 are the image filtered by Gaussian filter 
and the EHW filter respectively. The Mean Difference is 
225353 and 215612 for Figure 17 and Figure 18 
respectively.  

 
Another image, Saturn, distorted by Gaussian 

noise of variance 0.007 is given as input to the evolved 
circuit and the output is verified. Figure 19 is the original 
Saturn bitmap image of size 128x128. Figure 20 is the 
image distorted by Gaussian noise. Figures 21 and 22 are 
the image filtered by Gaussian filter and the EHW filter 
respectively. The Mean Difference is 157912 for 
Gaussian filtered image and 100849 for evolvable 
hardware filtered image. The results are shown in Mean 
Difference, MSE in dB and PSNR in dB for different 
images with different levels of variance in Tables 2 to 4. 
 
Table 2 Comparison of Mean Difference for Various 

Standard Test Images 

Image Variance Gaussian 
Filter 

EHW 
Filter 

Lena 0.003 135602 127985 
Test 

pattern 0.005 160621 139955 

Chemical 
Plant 0.006 173449 143152 

Saturn 0.007 157912 100849 
Baboon 0.008 225353 215612 
Chart 0.008 198807 100531 
Man 0.009 203399 180606 

Moon 0.01 217764 143384 
Peppers 0.02 295040 237896 

 
Table 3 Comparison of Mean Square Error (dB) for 

Various Standard Test Images 

Image Variance Gaussian 
Filter 

EHW 
Filter 

Lena 0.003 20.46 20.36 
Test 

pattern 0.005 21.90 21.21 

Chemical 
Plant 0.006 22.44 21.08 

Saturn 0.007 22.10 19.42 
Baboon 0.008 24.79 24.64 
Chart 0.008 24.18 23.55 
Man 0.009 23.96 23.14 

Moon 0.01 24.41 20.98 
Peppers 0.02 27.07 26.08 

 

Table 4 Comparison of PSNR (dB) for Various 
Standard Test Images 

Image Variance Gaussian 
Filter 

EHW 
Filter 

Lena 0.003 27.67 27.77 
Test 

pattern 0.005 26.23 26.92 

Chemical 
Plant 0.006 25.69 27.05 

Saturn 0.007 26.03 28.71 
Baboon 0.008 23.34 23.49 
Chart 0.008 23.96 24.58 
Man 0.009 24.17 24.99 

Moon 0.01 23.72 27.15 
Peppers 0.02 21.06 22.05 

 
 
11. CHIP IMPLEMENTATION RESULTS 
 

The evolved filter is the result of the evolution 
of an array of 4x6 PEs with one PE at the output.  The 
level back parameter is set as 2. Number of generations is 
3000. The coding was done in VHDL and simulations 
were performed in ModelSim 6. The hardware evolution 
took 2 minutes on Xilinx Virtex FPGA xcv800 running 
at 49 MHz. This compares favorably with software 
simulations run previously which it took approximately 6 
hours (Pentium III/800 MHz system) to achieve the best 
chromosome, the speed has been increased by 180 times 
and the evolution time has been greatly reduced. Number 
of generations was taken as 3000. Hardware evolution 
took 12 minutes in Xilinx VirtexE FPGA xcv2000e. This 
compares favorably with software simulations run 
previously which took approximately 6 hours to give the 
best chromosome. 

The VRC takes 1754 slices of the Xilinx Virtex 
FPGA xcv800 (9408 slices) and the whole evolvable 
system including the GA takes 3204 slices. Since small 
amount of the resources are only used i.e only 34% of the 
resources, chromosomes can be operated in parallel and 
the processing time can be further reduced. The synthesis 
report obtained is given in Table-2 below. 
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Table 2 Synthesis Report - Device Utilization 
Summary 

 (Population Size = 16, Chromosome Length = 250) 
Target information: 

Vendor:  Xilinx 
Family:  Virtex 

Device:  v800fg680 
Speed:    -6 

Optimization Goal: Speed 

Number of Slices 
3204  out of   

9408 
34% 

Number of Slice Flip 

Flops 

1087  out of  

18816 
5% 

Number of 4 input 

LUTs 

6200  out of  

18816 
32% 

Number of bonded 

IOBs 

79  out of    

516 
15% 

Number of BRAMs 8  out of     28 28%  

Number of GCLKs 1 out of      4 25% 

Minimum period 20.160ns   

Maximum Frequency 49.603MHz  
Minimum input arrival 

time before clock 
27.706ns  

Maximum output 
required time after 

clock 
6.887ns  

 
 
 
 
 
12. CONCLUSION 
 
The work has presented a novel approach to digital 
image filter design based on the technique of evolvable 

hardware. FPGA model for the function level evolvable 
hardware is analyzed and associated with the 
evolutionary algorithms employed. The evolution time 
has been greatly reduced by implementing the 
evolutionary algorithm in hardware. The EHW 
architecture evolves filters without a priori information 
and out-performs conventional filter in terms of 
computational effort, filtered output signal and 
implementation cost.  
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Figure 11                                       Figure 12                                Figure 13                                  Figure 14 
Figure 11 represents Original Lena Image of size 128x128, Figure 12 Image Distorted by Gaussian 
Noise of Mean 0 and Variance 0.003, Figure 13 Image Filtered by Gaussian Filter, Figure 14 Image 
Filtered by EHW filter. 
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Figure 15                                       Figure 16                            Figure 17                               Figure 18 

Figure 15 represents Original Baboon Image of size 128x128, Figure 16 Image Distorted by Gaussian Noise of Mean 
0 and Variance 0.008, Figure 17 Image Filtered by Gaussian Filter, Figure 18 Image Filtered by EHW filter. 
 
 
 

 
 
 
Figure 19                                 Figure 20                            Figure 21                             Figure 22 
Figure 19 represents Original Saturn Image of size 128x128, Figure 20 Image Distorted by Gaussian Noise of 
Mean 0 and Variance 0.007, Figure 21 Image Filtered by Gaussian Filter, Figure 22 Image Filtered by EHW 
filter. 
 
 
 
 
 
 
 


