
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

9

Manuscript received May 5, 2006.
Manuscript revised May 25, 2006.

On a Web Mail System based on Web Agents

Tadachika Ozono†, Toramatsu Shintani†, and Yujiro Fukagaya†

Computer Science and Engineering, Graduate School of Engineering
 Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya 466-8555 JAPAN

Summary
In this paper, we propose an intelligent notification of a new
e-mail, and describe an implementation of the notification system.
There are two ways to read e-mails by using a computer. One way
is a mail system on a user’s personal computer. The other way is a
web mail system on a web server. Using a web mail system is
better for users because they can read e-mails by using other
person’s personal computers. A web mail system has a problem. A
web mail system is low immediacy. Users have to look at a web
page of a web mail system again and again to check new e-mails.
To solve this problem, we implemented a web mail system
WisdomMail. WisdomMail is a web application based on a web
agent. WisdomMail has a function that shows a notification of
new e-mails without special plug-ins in a web browser. This
system uses the web agent framework MiSpider. MiSpider
enables developers to implement a web agent having a persistent
function, a message passing function, and a graphical user
interface. By using MiSpider, a notification of a new e-mail
appears on a web page that a user is browsing. A feature of this
system is that a notification of a new e-mail appears on any web
pages. Also, the notification system automatically adjusts
notification timing and a position of a notification on a web page.
By using the notification system, users can read new e-mails
without looking at a web page of a web mail system. Finally, we
evaluated the scalability of the notification system and show
experimental results.
Key words:
E-Mail, Web mail system, Web agent

1. Introduction

In this paper, we propose a web mail system that shows an
intelligent notification of a new e-mail. E-mail is one of the
most successful computer applications [11]. There are two
ways to check and read e-mails by using a computer. One
way is a mail system (e.g., Microsoft Outlook [8], Mail.app
[3]) on a user's personal computer. The other way is by
using a web mail system (e.g., MSN Hotmail [9], Yahoo!
Mail [12]) on a web server. Using a web mail system is
better for users because they can check and read e-mails by
using any person's computer with no configuration.
However, a web mail system has a problem. A web mail
system is low immediacy. Users have to look at a web page
of a web mail system again and again to check and read new
e-mails.

Fig. 1 A notification of new e-mail

To solve this problem, we implemented a web mail
system WisdomMail. WisdomMail is a web application
based on a web agent. WisdomMail has a function that
shows a notification of new e-mails without special
plug-ins in a web browser. The notification of a new e-mail
is displayed on a web page, when a new e-mail arrived at a
mail server. Figure 1 shows the snapshot of a notification of
a new e-mail. The notification is displayed on a web page.
The web page is formed from three frames. Users can
configure the position that the notification displays. (a) The
notification is displayed on the largest frame of the web
page. In this snapshot, the notification displays at the fixing
position (top, left) = (10px, 10px) .The notification contains
a subject, a sender, a receiver, and a part of the content of
the e-mail. And the notification contains an entry field.
Users can easily reply to the new e-mail by inputting the
entry field.

The notification system has five features as follow:

1. The notification system shows a notification of a new
e-mail on any web pages without a reload operation.
The notification system does not show a notification on

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

10

a status bar of a web browser or a user's desktop, as
existing systems. The notification system displays a
notification on web pages, and a notification provides
more information than existing systems.

2. Users can reply to a new e-mail by using an entry field
of a notification easily.

3. The notification system automatically adjusts a
notification area. For example, a notification is
displayed on the empty area of a web page.

4. The notification system automatically adjusts
notification timing. For example, the notification
system does not show a notification while user scrolls of
a web page, and inputs text to the entry field.

5. The new e-mail notification method operates without
special plug-ins.

Users usually need to reload a web browser by using a
reload button or a hot key to update information on a web
browser. Recently, a service with an interface that updates
information on a web page without a reload operation by
using JavaScript has attracted creators of a web service.
The implementation method of such a service is called Ajax
[2]. Ajax uses an HTTP connection of JavaScript. This
HTTP connection method enables a web service to
exchange data between a web page on a web browser and a
server without a reload operation of the web browser. By
using Ajax, developers can create an interactive web
service without a reload operation. Concretely, the Ajax
method uses DHTML (HTML, JavaScript, and CSS) and a
Java Script Object called XMLHttpRequest. However, by
using the Ajax method, a developer needs to modify
existing HTML files. It is difficult to implement feature 1:
"The system displays a notification of a new e-mail on any

web pages being viewed." We need a framework to
implement a new e-mail notification system that is not
independent of existing HTML files.

The notification system is implemented by using a web
agent framework MiSpider [4] MiSpider enables
developers to implement services without a reload
operation on a web browser. Developers doesn't need
change existing HTML files. MiSpider implements a
persistent agent that has a message passing function on web
pages. Information of MiSpider is never initialized by
moving web pages. MiSpider is realized by using
JavaScript.

We implemented a new e-mail notification method by
using a communication method between a mail agent on a
mail server and a MiSpider agent on a user's web browser.
A mail agent conveys information of a new e-mail to a
MiSpider agent when a new e-mail arrives at the mail server.
A mail agent and a MiSpider agent communicate to adjust
timing and an area that a notification displays. Thus, this
new e-mail notification method doesn't obstruct user's web
browsing.

This paper consists of seven sections. Section 2 shows
the outline of MiSpider. Section 3 shows the outline of a
web mail system called WisdomMail. In section 4, we
describe the agent on the web browser and show an
implementation method of the new e-mail notification. In
section 5, we show experimental result of the system.
Finally, we discuss features of the system in section 6 and
show a conclusion in section 7.

Fig. 2 A snapshot of a notification of a new e-mail on a web page.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

11

2. A Web agent framework: MiSpider

2.1 An outline of MiSpider

MiSpider is the web agent framework that enables
developers to implement a web agent having a persistent
function, a message passing function, and a graphical user
interface. Developers can implement web services based on
agents by using the provided APIs.

The MiSpider service can login with the name of an
agent that provides a service, a password, and a URL of a
web page. By operating the above method, a user can use a
provided service in web browsing.

To describe MiSpider's processes, developers use
JavaScript. JavaScript enables developers to implement a
process that responds to the operations of users. For
example, MiSpider can handle mouse click event, scrolling
event, and inputting event. MiSpider can process according
to in these cases of the event. And MiSpider can show
windows, images, and texts on the web page. Thus,
JavaScript is suitable for agent implementation on a web
browser.

Fig. 3 MiSpider Architecture

Figure 3 shows an outline of MiSpider. MiSpider is
comprised of a MiSpider Base Agent and a MiSpider Page
Agent. A MiSpider Page Agent is an agent operating on a
user's web browser. A MiSpider Base Agent is an agent
operating on a web server. A MiSpider Base Agent
communicates with a MiSpider Page Agent by using an
HTTP connection by using an XMLHttpRequest object. A

MiSpider Base Agent enables a MiSpider Page Agent to
pass messages etc, by communicating between these two
agents.

Users access a web page via a web proxy of MiSpider
(implemented as CGI program) by using a web browser. A
MiSpider Base Agent on a web proxy adds a MiSpider Page
Agent to the web pages when these web pages pass the web
proxy. A MiSpider Page Agent is implemented by using
JavaScript. A MiSpider base agent adds a MiSpider Page
Agent to web pages as an external JavaScript program.

Developers can specify that a service uses multiple
MiSpider Page Agents to one MiSpider Base Agent.
Developers can reduce CPU time, required memory
capacity, and needed disk space when developers specify
multiple MiSpider Page Agents to one MiSpider Base
Agent. However, the response time of the MiSpider service
is deteriorated by specifying multiple MiSpider Page Agent
to one MiSpider Base Agent.

2.2 Implementation of MiSpider

Figure 4 shows the implementation of MiSpider
framework. MiSpider framework consists of a JavaScript
script file and a CGI program.

Fig. 4 Implementation of MiSpider

Users access web pages via a web proxy implemented
as CGI. This web proxy adds a MiSpider JavaScript script
file to HTML file. The web proxy rewrites link addresses of
the web pages to link addresses attached an address of this
web proxy. The web proxy also rewrites the HTML tag, for
example, it rewrites <FRAME> to <IFRAME>. The added
JavaScript contains three descriptions of processes as
follow:

1. A description of a process when the user's web browser

loads the web page.

2. A description of a process when the user moves to
another web page.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

12

3. A description of a process executed by a MiSpider Page
Agent.

In the description 1., a MiSpider Page Agent (for
example, agent name: sampleAgent) consults agent
information by consulting a corresponding XML file
(sampleAgent.xml). A MiSpider Page Agent converts the
XML source to an object of the JavaScript file. In the
description 3., a MiSpider Page Agent processes described
action. In the description 2., a MiSpider Page Agent convert
the current agent information to an XML source and sends a
query to the CGI program to save the agent information on
the XML file. This CGI program writes a received XML
source to the XML file (Agent.xml). The persistence
mechanism of a MiSpider Page Agent is implemented
based on 1. and 2..

2.3 Message passing

A MiSpider Page Agents enrich web services by using
message passing among agents on the World Wide Web. A
MiSpider Page Agent can connect to any agent on the
World Wide Web.

There is one problem when implementing message
passing. In usual web services, a JavaScript program on a
web browser needs a reload operation to connect to a server.
A reload operation initializes an execution status of a
JavaScript program. To solve this problem, a MiSpider
Page Agent uses XMLHttpRequest object for a connection
method without reload operation.

Fig. 5 Message passing method on MiSpider

Figure 5 shows the implementation method of message
passing. When agentA sends a message to agentB, agentA
sends the name of agentB and the message content to the
CGI program. This CGI program saves the message content
to XML file of agentB (agent-B.xml). Each agent accesses
corresponding XML file periodically and renews agent

information. AgentB gets the message from agentA by
accessing the corresponding XML file(agent-B.xml).

2.4 Persistence

To make agents to process continuously via moving web
pages, the MiSpider Page Agent saves agent information
when unloading web pages and gets agent information
when loading new web pages.

Fig. 6 Example of JavaScript object data description on MiSpider XML

The concrete technique is shown below. The MiSpider
Page Agent accesses the corresponding XML file when a
web browser loads a web page. The MiSpider Page Agent
parses the XML source and converts the XML source to a
JavaScript object "kbase." The MiSpider Page Agent
converts the kbase to an XML source and sends the XML
source to CGI. By using XML, developers can express
JavaScript objects with a tree structure of XML.XML
nodes, expressed as a singular tag name, expresses a
JavaScript array objects. XML nodes, expressed as a plural
tag name, express JavaScript objects. A leaf of the XML
tree is treated as a string value. Figure 6 shows an example
of correspondence between a JavaScript object and XML
element. This example expresses the first and second
elements of the JavaScript object "kbase.hoge_site".

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

13

Concretely, the enclosed XML element (1) rectangle
corresponds with enclosed JavaScript object (1). Enclosed
XML element (2) rectangle corresponds with enclosed
JavaScript object (2).

Fig. 7 Snapshot of web e-mail system WisdomMail

3. Web mail system: Wisdom Mail

Figure 7 shows a snapshot of a web mail system called
WisdomMail. Users can read a list of e-mail, and contents
of e-mail by using this e-mail list page. WisdomMail
provides function that sends e-mail, classifies e-mails by
using rules, and generates rules for classification
automatically.

This system automatically renews an e-mail list
without a reload operation, when a user receives new
e-mails by using Ajax.

This system uses web proxy with a user ID and a
password. To browse a web page, users connect to the web
proxy. The proxy provides a web page with a MiSpider
Page Agent named wisdomMail. Users can access the agent
wisdomMail from any web page. Users can move to the
web page of this web mail system by clicking on the agent
wisdomMail on the web page.

Also, the wisdomMail agent provides a new e-mail
notification function while users are browsing the web.
Figure 2 shows a snapshot of this new e-mail notification.
The notification is displayed at a fixing position (top, left) =
(10px, 10px) on a consulted a web page. This notification
contains a subject, a sender, a receiver, and a part of a
content of the e-mail, and an entry field to reply.

3. E-mail processing agent

3.1 Architecture of e-mail processing agent

Figure 8 shows the architecture of e-mail processing agents
on the new e-mail notification system. An e-mail
processing agent is comprised of a mail agent on a mail
server and a MiSpider Page Agent on a user's web browser.
A mail agent communicates with a MiSpider Page Agent to
show a notification. Each agent has different features on
ability and event handling.
Features of a mail agent: Since a mail agent processes on a
mail server, the mail agent can process with a fast processor
and much memory. The mail agent also handles an event
when a new e-mail arrives at the mail server. However, the
mail agent needs to connect to the MiSpider Page Agent to
get information on the user's web browser, such as position
of an image.
Features of a MiSpider Page Agent: A MiSpider Page
Agent processes on a user's web browser. Thus, the
MiSpider Page Agent cannot process with a fast processor
and much memory. On the other hand, the MiSpider Page
Agent can handle information on the web browser in real
time, such as mouse clicks, input strings on forms, web
page scrolls, position of all object (images, strings forms,
movies, etc.), and so on. Thus, the MiSpider Page Agent
can get empty space on a web page by using position
information. Also, the notification system is implemented
as a function of a MiSpider Page Agent, so the MiSpider
Page Agent can decide notification timing.

Fig. 8 Architecture of e-mail processing agent on the notification system

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

14

3.2 A new e-mail notification based on collaboration

The purpose of the e-mail notification system is to
display many parts of an e-mail without blocking web
browsing. To implement the notification system with such
conflicting purposes, we set different utility functions to
mail agent and a MiSpider Page Agent.

We considered the features of each agent to set utility
functions. A mail agent's utility function has more utility
value by using a larger area and a faster notification. A
MiSpider agent's utility function has more utility value,
without jamming to user browsing.

We show the utility function of a mail agent as
follows:

fmailagent = quantity + timespan

0 ≤ quantity ≤1
0 ≤ timespan ≤1

 (1)

Value timespan is a linear monotone function decreases by
the time from receiving a new e-mail to a notification. Also,
value quantity is a linear monotone function increases by
area (pt2) of a notification.

We show the utility function of a MiSpider Page
Agent as follow:

fmispider = event + invisible

event = {0,1}
0 ≤ invisible ≤1

 (2)

Value event is a function determined by a user's event. In
user inputting to form, scrolling web pages, and dragging a
mouse, event is 0. In other cases, event is 1. Value invisible
is a linear monotone function that decreases by the number
of hidden objects by a notification.

Next, we describe the flow of notification decisions of
new e-mail.

1. A mail agent receives a new e-mail when the new e-mail

arrived at a mail server.

2. A mail agent generates an e-mail summary (summary
rate is over 0% and below 90% at 10% intervals). And, a
mail agent calculates the necessary size to display each
summary.

3. The mail agent sends necessity size and utility function
for each summary to a MiSpider Page Agent. Figure 9
shows part of an example of XML message sent by a
mail agent. This example describes the following of a
new e-mail (1) ID, (2) subject, (3) sender, (4) receiver.
Also, summary information is described by a format
rounded by enclosed by rectangles (5) and (6).
Rectangle (5) describes that the summary of content

needs 20000 pt2 area to display. Element "quantity"
describes the quantity value of the utility value of the
mail agent. Also, an element "timespan_gradient"
describes the coefficient of the timespan function of the
utility value.

4. MiSpider Page Agent keeps display area. To keep larger
area, a MiSpider Page Agent search for the empty areas
of a web page. To search for the empty areas of a web
page, a MiSpider Page Agent gets positions and sizes of
all elements on the web pages by using JavaScript.

5. The MiSpider Page Agent changes a notification area.
MiSpider Page Agent shows a notification at a decided
area and timing based on the sum of the utility values of
the mail agent and utility value of MiSpider Page Agent,
except in the case of event value of Eq. 2.

Fig. 9 Part of an example message that a mail agent send to
a MiSpider Page Agent

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

15

Figure 10 shows a snapshot of a notification on a web
using the above method. The web page has empty area in
the right part of the in the right bottom frame. The
notification is displayed on this empty area.

Fig. 10 Snapshot of adjusted a notification of an e-mail on a web page

5. Scalability experiments

We experimented with this system's scalability. Purpose of
this experimentation is inspecting whether or not this
system can offer service to many users. Concretely, we
measured the span from when a mail server receives a new
e-mail to the time when a notification is displayed while
number of users increases.

In this experimentation, we didn't consider time to
summarization process. Thus, we didn't use summarization
module in this experimentation. We used this method with
two MiSpider Base Agent. Half of users use the one
MiSpider Base Agent and the other half of users uses the
other MiSpider Base Agent. We used Safari2.0. In this
experimentation, all users consulted Google web pages, and
all users received a new e-mail at the same time. We
measured the average time to display a notification of a
notification of a new e-mail.

Figure 11 shows the experimental results. The vertical
axis shows the number of users. The horizontal axis shows
the measured average time. This system can displays a
notification in about six seconds for 40 users. Thus, this
system can easily display a notification in a community of
40 users.

Also, we did experimentation with 50 users. By using
one MiSpider Base Agent, this system did not show a

notification to 50 users. We solve this problem by
additional MiSpider Base Agent. Two MiSpider Base
Agent showed a notification to 50 users. Also, we plan the
implementation of new checking algorithm. With present
implementation, MiSpider Page Agent downloads the
XML file at fixed interval to check new e-mails. We plan
the implementation that the MiSpider Page Agent read the
1byte text file that changes by changing of XML file. With
this implementation, the entire transfer quantity decreases,
thus scalability of our systems improves.

Fig. 11 Scalability experimental results

6. Discussion

We describe features of the notification system and
future views as follows. The notification system is
implemented by separating MiSpider Page Agent that
displays a notification from a mail agent that generates
contents to display. Thus, developers do not need to
consider timing and an area of notification. Developers can
implement a notification system for other purposes by
changing agents that generate contents. For example, a
notification system can inform an RSS feed on the web
pages.

An e-mail has a priority value in this header. In the
present implementation, we did not consider the important
value of an e-mail. We will add such an importance value to
the utility function of a mail agent. Then the notification
system will notify an important e-mail by priority.

Table 1: Comparison among web mail systems

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

16

Function to compare MSN Hotmail GMail Proposed system
1. A notification of a new
e-mail

MSN Hotmail shows a
notification by using MSN
Messenger that needs
installation.

GMail shows a notification
by using an RRS feed. Users
have to register address of
RSS feed of GMail.

Proposed system shows a
notification by using
MiSpider. This system
doesn't need special web
browser plug-ins.

2. Content of a notification
of a new e-mail

A notification contains
number of new e-mails and
information about a sender.

A notification contains
number of new e-mails and
part of content of a new
e-mail.

A notification contains
number of new e-mails and
meta information of e-mails.

3. Area of a notification of a
new e-mail

MSN Hotmail shows a
notification by using a pop
up window on user's
desktop.

GMail shows a notification
by using status bar of a web
browser, when user using
Safari.

Proposed system shows a
notification on a web page
user browsing.

A key aspect of next generation e-mail systems is to

notify a user only when the incoming e-mails are relevant to
the task at hand [10]. We plan that we implement the
notification system that color of a notification changes
based on the e-mail content. Then users can understand the
kind of e-mails by color.

As follows, we describe related researches. Semantic
Email [7] is a research to approve the interface of a web
mail system. Semantic Email proposes a framework that
has a flexible interface and is service based on a metadata
attached to a sender. For example, Semantic Email can
provide a service that displays event information from an
event metadata of e-mail. The notification system, different
from existing web mail systems, provides a new e-mail
interface that displays a notification of a new e-mail on web
pages being browsed. Many developers have proposed
frameworks that provide interactive web services by using
PUSH technology [6]. ActiveDesktop [1] shows a web
browser by using push technology on a user's desktop.
These systems need a special web browser, or plug-ins. The
notification system, different from existing frameworks,
doesn't need a special web browser, or a plug-in.

Also, Table 1 compares the notification system, MSN
Hotmail, and GMail [5]. Our system does not need
installation of special application software and web
browser plug-ins. MSN Hotmail uses MSN Messenger to
show a notification of new e-mails. Users have to install
MSN Messenger on their computers. GMail uses RSS feed
to show a notification of new e-mails. After registration,
Users can monitor new e-mails by using a web browser
with an RSS reader function. Users can use the notification
system in limited computer environments such as schools,
or Internet cafes. Next, we describe a content of a
notification. An MSN Hotmail displays the number of new
e-mails and names of senders. By using GMail RSS feed, a
notification is displayed on a status bar of the web browser.
Also, by using RSS reader function, users can read the
contents of new e-mails. Our system displays a notification
on a web page being browsed, thus the notification uses a

vast area. Our system shows a notification with a subject, a
sender, a carbon copy (cc), and contents of new e-mails
with no moving web pages.

Conclusions

In this paper, we proposed a web mail system WisdomMail,
and a notification of a new e-mails on a web page. We
proposed a collaboration method among agents to adjust
timing and an area of a notification of a new e-mail.

The notification system has the following five
features:

1. The notification system displays a notification of a new

e-mail on any web page being consulted. The
notification system does not show a notification on a
part of a web browser, as existing notification systems.
The notification system displays a notification on the
web browser, and so a notification has more
information than existing systems.

2. Users can reply to a new e-mail by using an entry field
of a notification.

3. The notification system automatically adjusts an area of
notification.

4. The notification system automatically adjusts
notification timing.

5. The notification system operates without plug-ins in a
web browser.

The notification system collaboratively uses a mail
agent on a mail server and a MiSpider agent on a user's web
browser. The notification system reduces the disturbance of
web browsing by collaboration between mail agent and a
MiSpider agent.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

17

Finally, we showed experimental results. The
notification system shows a notification of a new e-mail to
40 users in about six seconds.

References

[1] Active desktop: http://www.microsoft.com/windows/ie/

previous/gallery/default.mspx.
[2] Ajax:

http://www.adaptivepath.com/publications/essays/archives/
000385.php.

[3] Apple mail: http://www.apple.com/macosx/features/mail/.
[4] Y. Fukagaya, T. Ozono, T. Ito, and T. Shintani.: Mispider: A

continuous agent on web pages. In Proceedings of the 14th
International World Wide Web Conference, pages
1008-1009, May 2005.

[5] Gmail: http://mail.google.com/.
[6] T. Kapyla, I. Niemi, and A. Lehtola.: Towardds an accessible

web by applying push technology, In the 4th ERCIM
Workshop, User Interface for All number, 15 in Position
Papers: Information Filtering and Presentation, 1998.

[7] L. McDowell, O. Etzioni, A. Halevy, and H. Levy: Semantic
email. In Proceedings of the 13th International World Wide
Conference, pages 244-254, 2004.

[8] Microsoft outlook: http://office.microsoft.com/ja-jp/fx01085
7931041. aspx.

[9] MSN hotmail: http://www.hotmail.co.jp/.
[10] C. Roecher, V. Bayon, M. Memisoglu, and N. Streitz.,

Context-dependent email notification using ambient displays
and mobile devices., In Proceedings of the 2005
International Conference on Active Media Technology,
pages 137-138, 2005.

[11] S. Whittaker and C. Sidner., Email overload: exploring
personal information management of email., In Human
factors in computing systems}, 1996.

[12] Yahoo! mail: http://mail.yahoo.com/.

 Tadachika Ozono received his bachelor
degree in engineering from Nagoya Institute
of Technology, his master degree in
engineering from Nagoya Institute of
Technology, and his Ph.D in engineering
from Nagoya Institute of Technology. He is
a research associate of the Graduate School of
Computer Science and Engineering at

Nagoya Institute of Technology. His research topic is a web
intelligence using multiagent and machine learning technologies.

