
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

28

Efficient Packet Classification using Splay Tree Models

Srinivasan.T, Nivedita.M, Mahadevan.V

Sri Venkateswara College of Engineering, India.

Summary

Packet classification forms the backbone on which a variety of
Internet applications operate, providing QoS, security,
monitoring, and multimedia capabilities. In order to classify a
packet as belonging to a particular flow or set of flows, network
nodes perform a search over a pre-defined rule-set, using
multiple fields in the packet as the search key. It is being widely
used today in high-speed packet forwarding in the Internet by
the routers. To improve the performance of the traditional
routers requires faster and more efficient lookup techniques for
packet classification and switching. In this paper, we propose an
efficient, high-speed and scalable packet classification
technique using splay tree models and employing prefix
conversion methods, called Splay Tree based Packet
Classification (ST-PC). It is aimed at overcoming some of the
performance limitations of the previously known techniques.
Theoretical analysis of the proposed technique illustrates the
high performance gains in terms of space and time complexities,
over the well-known techniques in literature and their
corresponding data structures.

Key words:
Packet Classification, Routers, Classifier, Prefix Conversion,
Splay Trees.

1. Introduction

 The process of classifying packets into “flows” in
routers, firewalls, packet filters etc., is called packet
classification. Packet classification is used in a variety of
applications such as security, monitoring, multimedia
applications etc. These applications operate on packet
flows or set of flows. Therefore these nodes must classify
packets traversing through it in order to assign a flow
identifier, called as Flow ID [1], [7], [12].
 Packet Classification starts by building a classifier of
rules or filter table, then searching that table for a
particular filter or a set of filters that match the incoming
packets. Each filter consists of a number of filed values.
The field values may be an address filed such as source,
destination addresses or a port field namely source,
destination ports or protocol type [1].
 The main research issues in the design of optimal
packet classification techniques are: to increase the packet
classification speed, to increase the update performance
speeds for new rules, to decrease the storage requirements
for caching these rules.

The rest of the paper is organized as follows. Section 2
discusses the different techniques known in literature.
Section 3 presents our proposed technique in detail.
Section 4 illustrates the theoretical analysis of the
proposed technique with respect to other well known
techniques, while Section 5 concludes.

2. Related Work

 Numerous algorithms and architectures for packet
classification have been proposed [1], [2], [3], [4], [6], [7],
[14]. A taxonomy that breaks the design space into four
regions based on the high level approach to the problem is
also discussed in the above said papers.

2.1. Hierarchical Tries

 A d-dimensional hierarchical radix trie is constructed
recursively as follows [1], [7]. If ‘d’ is greater than 1, we
construct a 1-dimensional trie, called the F1-trie. This trie
is constructed on the set of prefixes {Rj1}, belonging to
dimension F1 of all rules in the classifier C = {Rj}. For
each prefix in the F1-trie, a (d-1)-dimensional hierarchical
trie, Tp, is recursively constructed, on those rules which
specify exactly ‘p’ in dimension F1, i.e., on the set of rules
{Rj: Rj1 = p}. Prefix ‘p’ is linked to the trie Tp using a
next-trie pointer. The Table 1 below shows an example
classifier with the destination & source addresses as fields.
The hierarchical trie data structure for the classifier in
Table 1 is given in Figure 1.

Table 1: Classifier
 Rule Source Destination

R1 00* 00*
R2 0* 01*
R3 1* 0*
R4 00* 0*
R5 0* 1*
R6 * 1*

 Classification of an incoming packet (v1, v2, … , vd)
proceeds as follows. The query algorithm first traverses
the F1-trie based on the bits in v1. At each F1-trie node
encountered, the algorithm follows the next-trie pointer
(if present) and traverses the (d-1) - dimensional trie.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

29

Fig. 1 Hierarchical Tries.

2.2 Splay Trees

 Splay trees are self – balancing (or) self – adjusting
binary search trees [2]. It has special update and access
rules. Every time we access a node of the tree, whether for
retrieval or insertion or deletion, we perform radical
surgery on the tree, resulting in the newly accessed node
becoming the root of the modified tree. This surgery will
ensure that nodes that are frequently accessed will never
drift too far away from the root whereas inactive nodes
will get pushed away farther from the root.
 When we access a node, we apply either a single
rotation or a series of rotations to move the node to the
root. The biggest advantage of using Splay trees is that it
does not require height or balance factors as in AVL trees
and colors as in Red-Black trees. Informally, one can think
of the splay trees as implementing a sort of LRU policy on
tree accesses i.e. the most recently accessed elements are
pulled closer to the root; and indeed, one can show that the
tree structure adapts dynamically to the elements accessed,
so that the least frequently used elements will be those
furthest from the root. But remarkably, although no
explicit balance conditions are imposed on the tree, each
of these operations can be shown to use time O(log n) on
an n-element tree, in an amortized sense [2].

There are six rotations possible in a splay tree. They are:

1. Zig Rotation 2. Zag Rotation
3. Zig-Zig Rotation 4. Zag-Zag Rotation
5. Zig-Zag Rotation 6. Zag-Zig Rotation

Figure 2 depicts the cases under which these rotations will
be applied. In this Figure, the node ‘x’ is the node with
respect to which the splaying is done. Node ‘p’ is the
parent node of node ‘x’. Node ‘g’ is the grandparent node
of node ‘x’, which is the parent node of node ‘p’. Figure 3
shows an example of splaying which employs a Zig
rotation.

Fig. 2 Rotations in a splay tree.

 Consider an example of splaying as shown in
Figure 3. Here, when we access node 16, it has to become
the root of the tree by the property of a splay tree. The tree
will reorder it self such that node 16 becomes the root of
the tree, node 0 becomes its left child and node 63
becomes its right child. Also, node 32 will no longer be
the right child of node 16, but becomes the left child of
node 63.

Fig. 3 Example of splaying.

3. ST-PC Technique

 In this paper, we propose a novel representation of the
input set and build a tree from this input set. The basic idea
is to convert the set of prefixes into integers. Firstly, we
find out the lower and upper bounds for each prefix in the
source address. Then we convert these values to integers
and store them in a database. The same procedure is
carried out for each of the prefixes of the destination and
stored in the database. While classifying incoming packets,
we reject packets if they do not match the constraints.
Finally we find out the best matching filter (rule) among
the various filters for the valid packets.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

30

3.1. Design Methodology

 The proposed work is a basic extension of the
Hierarchical Tries. Here, we convert each of the source
and destination prefixes into integer ranges. Then the
corresponding tree is constructed. The greatest advantage
of this approach is that the prefix specification can be
extended to any number of bits.

Table 2: Source Prefix Conversion

Fig. 4 Source splay tree.

 We first compute the lower and upper bounds for each
of the prefixes in the source address as shown in Table 2.
Then a source splay tree is constructed with the bounds
converted to integers, which is shown in Figure 4.
Similarly, using the destination addresses, a destination
splay tree is constructed as shown in Table 3 and Figure 5.

 Now the source and destination splay trees are to be
linked. For this, we connect each leaf of the source splay
tree to the root of the destination splay tree. This
connection pointer is similar to a Next-Trie pointer used in
a hierarchical trie data structure [1], [7], [12].

Table 3: Destination Prefix Conversion

Fig. 5 Destination splay tree.

 In order to find out the best matching filter, we
convert the source and destination prefixes of the search
packet to integer values and then begin searching. We first
see the integer source value of the packet and find out the
filters whose lower bound is less than the packet’s source
integer value and whose upper bound is greater than the
packet’s destination integer value. In other words, we pick
out all those filters within whose range the search packet’s
value lies. Similarly, we find out the matching filters for
the destination’s integer value of the search packet. Then,
we perform a simple comparison between the filters that
have matched the source and destination of the packet
separately.
 To construct a source search table and a destination
search table, we get the set of distinct integer values in
both the source and destination trees and arrange them in
the ascending order. We now find the set of filters that
match all points between the first and second integer
values, between the second and third value and so on until
the entire table is constructed as shown in Tables 4 and 5.
 An example search packet is also shown below these
tables. We firstly convert the prefixes of the search packet

Filter Source
Prefix

Lower
Bound

Upper
Bound

Start Finish

F1 01* 010000 011111 16 31
F2 1* 100000 111111 32 63
F3 10* 100000 101111 32 47

F4 01* 010000 011111 16 31
F5 00* 000000 001111 0 15
F6 * 000000 111111 0 63

Filter Source
Prefix

Lower
Bound

Upper
Bound

Start Finish

F1 01* 010000 011111 16 31

F2 01* 010000 011111 16 31

F3 0* 000000 011111 0 31

F4 00* 000000 001111 0 15

F5 1* 100000 111111 32 63

F6 1* 100000 111111 32 63

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

31

to integers and then find the separate source and
destination matching filters and finally find the final set of
matching filters for that particular search packet.

Search

Table 4: Source Search Table

Table 5: Destination Search Table
Dest Point. Filter > than point

0 F3 , F4
15 F3
16 F1 , F2 , F3
31 --
32 F5 , F6

Example Search

 (000110, 101100) => (06 , 44)
 => { (F5 , F6) ; (F5 , F6) }
 => { F5 , F6 }

3.2 ST-PC Evaluation Architecture

 Figure 6 shows the various stages through which our
proposed prototype will go by. We shall describe each
prototype briefly now.

Prefix Conversion: All the existing algorithms so far have
been constructing the trie for the input filter set using
prefixes of the form 00*, 01*, 1* and so on. That is, they
used a basic binary trie. A trie is a data structure where
there can be only 2 inputs, namely a ‘ 0 ’ or a ‘ 1 ’. All the
‘ 0 ’ transitions from a node are to the left of the node
whereas all the ‘ 1 ’ transitions from a node are to the right
of the node. The major disadvantage of this method is that
the amount of space required for the trie is tremendous.
Moreover, it grows exponentially as the number of bits in
the prefix increases. Our new method just stores them as
ranges (integers).

Rule Storage: The input filter set must be formed in
conformance to the earlier decided parameters. After this
is done with, we need to store this input filter set into the

router’s database. Now, we are ready to move onto the
next step in our architecture.

Packet Conversion: We check whether the incoming
filter’s parameters match the ones which are present in the
router’s database. If they are as per the specifications, then
we go on and check whether the parameters are valid.

Matching Filter(s) Search: The main objective at this
stage is to select the set of matching filter(s) for the
incoming packet. The best matching filter can be found
out by performing a simple search through the database.
Based on the matching filter, we route the packet through
that particular route / routes (line connecting the source to
the destination).

There are several constraints on the values of the
parameters such as follows:

i. The prefixes entered must be in the binary form,
i.e in the form of strings of 0’s and 1’s for certain
algorithms.

ii. The dimensions must be of the specified number
of bits, i.e as per what we had decided previously.

If the incoming packet matches and satisfies all these
conditions, then the packet is passed on, i.e we carry on to
the next stage of our architecture, else we reject the packet
with the appropriate error message.

Fig. 6 ST-PC evaluation architecture.

4. Complexity Analysis

 We analyze the proposed packet classification
technique here, while also comparing space-time
requirements with other well known techniques.

For our entire complexity analysis, we use a few notations
as follows:
r = Number of rules,
n = Number of nodes in the tree,
k = Number of bits to represent the prefix,
t = Number of times a prefix is repeated,
β = Depth of a certain node in the tree,
m = Number of prefix lookups.

Src Point. Filter > than point
0 F5 , F6
15 F6
16 F1 , F4 , F6
31 F6
32 F2 , F3 , F6
47 F2 , F6

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

32

4.1 Space complexity

4.1.1 Best Case

 For the best case analysis, for any source or
destination prefix, assume that none of the ‘k’ bits are
fixed. That is, all the bits can be arbitrarily either 0 or 1. In
other words, the prefix is denoted by a (*). So, the best
case number of nodes in a binary trie is equivalent to 1.
For any source or destination prefix, assume that all the ‘k’
bits are fixed. That is, all the bits are either 0 or 1. In other
words, the prefix will have a length of 6. Trivially, number
of unique rules is 1. The Best Case number of nodes in a
Splay Tree is equivalent to 1. Nodes in Binary Trie =
Nodes in Splay Tree.

4.1.2 Worst Case

 In the worst case, for any source or destination prefix,
assume that all the prefixes are distinct. In this case, the
number of nodes will be 2k+1 – 1. Assume that all ‘k’ bits
of each of the ‘r’ rules are distinct. The number of nodes in
this case will be (k * r) + 1. So, the actual number of
nodes in a binary trie in the worst case will be a minimum
of these 2 values i.e. MINIMUM (2k+1 – 1, (k * r) + 1).

 For any source or destination prefix, assume that all
the prefixes, and hence the bounds (integers) are distinct.
In this case, the entire range of values is possible for
various combinations of prefixes, and hence the number of
nodes will be 2k. Next, assume that only a few prefixes
occur in the rules. Since we convert these prefixes to
integer values, the number of distinct values will be at
most 2*r. Hence the number of nodes in this case will be
2*r. So, the actual number of nodes in a splay tree in the
worst case will be a minimum of these 2 values i.e.
MINIMUM (2k, 2 * r). Nodes in Splay Tree < Nodes in
Binary Trie.

4.1.3 Graphical representation

Case 1:

 Figure 7 compares the number of bits in the prefix (k)
with the number of nodes (n) required for both the Binary
trie and Splay tree. Here, the number of rules remains a
constant which we assume to be 6.
 As it can be seen from the graph, the number of nodes
is the same for a value of k = 0. For values greater than 0
and less than 4, there is a small variation in the number of
nodes. But beyond k = 4, ‘n’ increases linearly for a
Binary Trie; whereas it remains at a constant value of n =
12. Thus, this clearly shows that the number of nodes
required significantly reduces for a Splay tree when
number of rules is a constant.

Nodes in Data Structure (Worst Case)

0

25

50

75

100

125

150

175

200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Bits in the Prefix (k)

N
um

be
r

of
 N

od
es

 (n
) Binary Trie

Splay Tree

Fig. 7 Number of bits vs. Number of nodes

Case 2:

 Comparing, the number of rules (r) with the number
of nodes (n) as in Figure 8, the number of nodes is the
same for a value of k = 0. For values greater than 0 and
less than 21, the number of nodes required increases
linearly, after which it remains at a constant value of 127
for a Binary trie. But the number of nodes required for a
Splay tree is much lower for all values when compared to
the Binary trie.

Nodes in Data Structure (Worst Case)

0

25

50

75

100

125

150

175

200

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Number of Rules (r)

N
um

be
r

of
 N

od
es

 (n
) Binary Trie

Splay Tree

Fig. 8 Number of rules vs. Number of nodes

4.2 Time complexity

Case 1:

 Assume that there are ‘m’ unique accesses, i.e. all the
prefix searches are unique. The search time of a node for a
binary trie is log (2n) and the search time of a node for a
splay tree is log (n). This is true as the number of nodes in
the binary trie is twice that of a normal binary search tree,
as the nodes of interest occur only at the leaves of the trie.
For ‘m’ accesses, the search times for a binary trie and a
splay tree will be m * log (2n) and m * log (n)
respectively. Time of Splay Tree < Time of Binary Trie.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

33

Case 2:

 Assume that there are (m – t) unique accesses. That is,
(m – t) searches are unique. Hence, search time for a
binary trie in this case is m log (2n) as before. Consider
the case of a Splay Tree. Here, (m – t) unique operations
will take a time of (m – t) log (n). For the remaining ‘t’
accesses, the time required will be t * log β, where log β
<= log n. Hence, the total time required for the splay tree
is [((m – t) log n) + (t * log β)]. Time of Splay Tree <
Time of Binary Trie.

4.2.1 Frequency distribution (t)

This is governed by the number of times the prefixes are
repeated. Consider the following example.

Let (a , b , c , d , e) be a sequence of 5 accesses of
prefixes.

Let (a , a , a , b , b) be another sequence of 5 accesses of
prefixes.

For the first case, t = 0 since no prefixes are repeated. But
for the second case, t = 2 + 1 = 3 since ‘a’ is repeated
twice and ‘b’ is repeated once. Thus, the time complexity
for Splay Trees reduces if there are repetitions in prefixes.

4.2.2 Temporal distribution (β)

This is governed by the compactness of the occurrence of
the prefixes. Consider the following example.

Let (a , b , a , b , a , b) be one sequence of accesses in
which prefixes occur.

Let (a , a , a , b , b , b) be another sequence of accesses in
which prefixes occur.

In the first case, the value of β is greater than 1, for all
accesses; since for each access the nodes may be at
random depths within the tree. But, in the second case, the
value of β is 1 for all repetitive accesses; since the nodes
move closer to the root after each access due to splaying.

4.2.3 Graphical representation

 Figure 9 compares the number of nodes (n) with the
corresponding access time (t) required for both the Binary
trie and Splay tree for a unique sequence of accesses when
the number of prefix lookups remains a constant which we
assume to be 25.

Unique Sequence - Access Time
(Worst Case)

0

10

20

30

40

50

60

70

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Number of Nodes (n)

A
cc

es
s

T
im

e

Binary Trie

Splay Tree

Fig. 9 Access time in a unique sequence

 Figure 10 compares the number of nodes (n) with the
access time (t) required for both the Binary trie and Splay
tree for a repeating sequence of accesses when the number
of times a prefix is repeated remains at a constant value of
t = 10 and depth of a node in the tree also remains at a
constant value of β = 5. The number of prefix lookups also
remains a constant value of m = 25. Here again, the
performance of splay trees is better than that of binary tries.

Repeating Sequence - Access Time
(Worst Case)

0

10

20

30

40

50

60

70

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Number of Nodes (n)

A
cc

es
s

T
im

e

Binary Trie

Splay Tree

Fig. 10 Access time in a repeating sequence

4.2.4 Comparison

 Table 6 gives a brief overview of the complexities of
both the binary tries and splay trees. As it can be seen from
the table, the space complexity is the same for both the
data structures in the best case. In the worst case, the
complexity of the splay trees outperforms that of the
binary tries. Similarly, the time complexity of the splay
trees is much less than that of the binary tries in both the
best case and the worst case.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

34

Table 6: Complexity Comparison

Best Case

Worst Case

Complexity

Binary Trie

Splay Tree

Binary Trie

Splay Tree

Nodes

1

1

Min [(2k+1 - 1) , k*r + 1]

Min [2k , 2*r]

Space

Edges

0

0

Min [(2k+1 - 2) , k*r]

Min [(2k – 1) , (2*r) – 1]

Time

m * log(2n)

m * log(n)

m * log(2n)

m * log(n)

5. Concluding Remarks

 Fast and efficient packet classification techniques are
essential for the design of high-speed routers, and various
other applications. In this paper, we propose a novel
packet classification technique called Splay Tree based
Packet Classification (ST-PC). We use simple primitives
in our design, namely splay tree models and prefix
conversion methods. The theoretical analysis of the space-
time complexity of the proposed work shows significant
performance gains over the well known techniques in
literature. Future work would focus on optimizing the tree
reordering time, inherent to the splaying operation of the
proposed data structure.

References

[1] Srinivasan.T, Prasad.S, Prakash.B, “Dynamic Packet
Classification Algorithm using Multi - Level Trie”, Proc of
IJIT International Conference on IT- IT 2004, Turkey, Dec
2004.

[2] Srinivasan.T, Nivedita.M, Azeezunnisa.A.A, “Scalable and

Parallel Aggregated Bit Vector Packet Classification using
Prefix Computation Model”, Conference on Business and
Internet, Honolulu, Hawaii, Mar 2006.

[3] Gupta.P, Mckeown.N, “Packet Classification on multiple

fields”, ACM Sigcomm, Aug 1999.

[4] Sartaj Sahni, Wencheng Lu, “Packet Classification Using

Two-Dimensional Multibit Tries”, ISCC: 849-854, 2005.

[5] Varghese.G, Srinivasan.V, Suri.S, “Packet Classification

using tuple space search”, SIGCOMM, Pages 135-146,
1999.

[6] David E.Taylor, Jonathan S.Turner, “Scalable Packet

Classification using distributed crossproducting of field
labels”, WUCSE-38, Washington University, Saint Louis.

[7] Rajaraman.V, Murthy.C.R, “Parallel Computers –

Architecture and Programming”, Prentice-Hall of India,
New Delhi, 2003.

[8] Taylor.D, Spitznagel.E, Turner.J, “Packet Classification

using extended tcams”, IEEE Conference on Network
Protocols (ICNP), 2003.

[9] Varghese.G, Singh.S, Baboescu.F, “Packet classification for

core routers”, Is there an alternative to cams? IEEE Infocom,
2003.

[10] Stidialis.D, Lakshmanan.T, “High speed policy – based

packet forwarding using efficient multi - dimensional range
matching”, ACM Sigcomm, Sep 1999.

[11] Tsuchiya.P, “A Search Algorithm for table entries with non-

contiguous wildcarding”, Bellcore.

[12] Varghese.G, Srinivasan.V, Suri.S, Waldvogel.M, “Fast

Scalable Level Four switching”, Proc. of Sigcomm, 1998.

[13] Turner.J, Plattner.B, Varghese.G, Waldvogel.M “Scalable

High Speed IP Routing Lookups”, Proc. of Sigcomm, 1997.

[14] Baboescu.F, Varghese.G, “Scalable packet classification”,

ACM Sigcomm, Aug 1997.

[15] Podaima.J, Gibson.G, Shafai.F, “Content addressable

memory storage device”, United States patent 6,044,005.
Sibercore Technologies, Inc, Aug 1999.

 Srinivasan T is an Assistant Professor
in the department of Computer Science
and Engineering at Sri Venkateswara
College of Engineering. He holds a
Master of Engineering degree in
Computer Science. He is a member of
the ISTE chapter, India and a member
of the Internet Society, USA. His
current research interests relate to
Parallel and Distributed Systems,
Network Protocols and Security,
Mobile and Sensor Networks.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

35

Nivedita M received the B.E.
degree in Computer Science and
Engineering from Sri Venkateswara
College of Engineering, Chennai,
India. She is a member of the IEEE
society. Her research topics include
Computer Networks, Mobile
Networks, Network Security and IPv6.
She is now with Cognizant
Technology Solutions, India.

Mahadevan V received the
B.E. degree in Computer Science
and Engineering from Sri
Venkateswara College of
Engineering, Chennai, India. His
research topics include Wireless
Ad-Hoc Networks, Sensory
Networks, Computer Networks and
Network Security. He is now with
Cognizant Technology Solutions,
India.

