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Summary 
 
Packet classification forms the backbone on which a variety of 
Internet applications operate, providing QoS, security, 
monitoring, and multimedia capabilities. In order to classify a 
packet as belonging to a particular flow or set of flows, network 
nodes perform a search over a pre-defined rule-set, using 
multiple fields in the packet as the search key. It is being widely 
used today in high-speed packet forwarding in the Internet by 
the routers. To improve the performance of the traditional 
routers requires faster and more efficient lookup techniques for 
packet classification and switching. In this paper, we propose an 
efficient, high-speed and scalable packet classification 
technique using splay tree models and employing prefix 
conversion methods, called Splay Tree based Packet 
Classification (ST-PC). It is aimed at overcoming some of the 
performance limitations of the previously known techniques. 
Theoretical analysis of the proposed technique illustrates the 
high performance gains in terms of space and time complexities, 
over the well-known techniques in literature and their 
corresponding data structures. 
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1. Introduction 

 The process of classifying packets into “flows” in 
routers, firewalls, packet filters etc., is called packet 
classification. Packet classification is used in a variety of 
applications such as security, monitoring, multimedia 
applications etc. These applications operate on packet 
flows or set of flows. Therefore these nodes must classify 
packets traversing through it in order to assign a flow 
identifier, called as Flow ID [1], [7], [12]. 
 Packet Classification starts by building a classifier of 
rules or filter table, then searching that table for a 
particular filter or a set of filters that match the incoming 
packets. Each filter consists of a number of filed values. 
The field values may be an address filed such as source, 
destination addresses or a port field namely source, 
destination ports or protocol type [1]. 
  The main research issues in the design of optimal 
packet classification techniques are: to increase the packet 
classification speed, to increase the update performance 
speeds for new rules, to decrease the storage requirements 
for caching these rules.  

  
  
The rest of the paper is organized as follows.    Section 2 
discusses the different techniques known in literature. 
Section 3 presents our proposed technique in detail. 
Section 4 illustrates the theoretical analysis of the 
proposed technique with respect to other well known 
techniques, while Section 5 concludes. 
 
2. Related Work 
 
  Numerous algorithms and architectures for packet 
classification have been proposed [1], [2], [3], [4], [6], [7], 
[14]. A taxonomy that breaks the design space into four 
regions based on the high level approach to the problem is 
also discussed in the above said papers. 
 
2.1. Hierarchical Tries 
 
 A d-dimensional hierarchical radix trie is constructed 
recursively as follows [1], [7]. If ‘d’ is greater than 1, we 
construct a 1-dimensional trie, called the F1-trie. This trie 
is constructed on the set of prefixes {Rj1}, belonging to 
dimension F1 of all rules in the classifier C = {Rj}. For 
each prefix in the F1-trie, a (d-1)-dimensional hierarchical 
trie, Tp, is recursively constructed, on those rules which 
specify exactly ‘p’ in dimension F1, i.e., on the set of rules 
{Rj: Rj1 = p}. Prefix ‘p’ is linked to the trie Tp using a 
next-trie pointer. The Table 1 below shows an example 
classifier with the destination & source addresses as fields. 
The hierarchical trie data structure for the classifier in 
Table 1 is given in Figure 1. 

Table 1: Classifier 
 Rule Source Destination 

R1 00* 00* 
R2 0* 01* 
R3 1* 0* 
R4 00* 0* 
R5 0* 1* 
R6 * 1* 

 
   Classification of an incoming packet ( v1, v2, … , vd) 
proceeds as follows. The query algorithm first traverses 
the F1-trie based on the bits in v1. At each F1-trie node 
encountered, the algorithm follows the next-trie pointer   
(if present) and traverses the (d-1) - dimensional trie. 
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Fig. 1  Hierarchical Tries. 

2.2 Splay Trees 
 
 Splay trees are self – balancing (or) self – adjusting 
binary search trees [2]. It has special update and access 
rules. Every time we access a node of the tree, whether for 
retrieval or insertion or deletion, we perform radical 
surgery on the tree, resulting in the newly accessed node 
becoming the root of the modified tree. This surgery will 
ensure that nodes that are frequently accessed will never 
drift too far away from the root whereas inactive nodes 
will get pushed away farther from the root.  
 When we access a node, we apply either a single 
rotation or a series of rotations to move the node to the 
root. The biggest advantage of using Splay trees is that it 
does not require height or balance factors as in AVL trees 
and colors as in Red-Black trees. Informally, one can think 
of the splay trees as implementing a sort of LRU policy on 
tree accesses i.e. the most recently accessed elements are 
pulled closer to the root; and indeed, one can show that the 
tree structure adapts dynamically to the elements accessed, 
so that the least frequently used elements will be those 
furthest from the root. But remarkably, although no 
explicit balance conditions are imposed on the tree, each 
of these operations can be shown to use time O(log n) on 
an n-element tree, in an amortized sense [2].  
 
There are six rotations possible in a splay tree. They are: 
  
1. Zig Rotation   2. Zag Rotation 
3. Zig-Zig Rotation 4. Zag-Zag Rotation 
5. Zig-Zag Rotation 6. Zag-Zig Rotation 
 
Figure 2 depicts the cases under which these rotations will 
be applied. In this Figure, the node ‘x’ is the node with 
respect to which the splaying is done. Node ‘p’ is the 
parent node of node ‘x’. Node ‘g’ is the grandparent node 
of node ‘x’, which is the parent node of node ‘p’. Figure 3 
shows an example of splaying which employs a Zig 
rotation.  

 

Fig. 2  Rotations in a splay tree. 

 Consider an example of splaying as shown in     
Figure 3. Here, when we access node 16, it has to become 
the root of the tree by the property of a splay tree. The tree 
will reorder it self such that node 16 becomes the root of 
the tree, node 0 becomes its left child and node 63 
becomes its right child. Also, node 32 will no longer be 
the right child of node 16, but becomes the left child of 
node 63. 
 

 

Fig. 3  Example of splaying. 

3. ST-PC Technique 
 
 In this paper, we propose a novel representation of the 
input set and build a tree from this input set. The basic idea 
is to convert the set of prefixes into integers. Firstly, we 
find out the lower and upper bounds for each prefix in the 
source address. Then we convert these values to integers 
and store them in a database. The same procedure is 
carried out for each of the prefixes of the destination and 
stored in the database. While classifying incoming packets, 
we reject packets if they do not match the constraints. 
Finally we find out the best matching filter (rule) among 
the various filters for the valid packets. 
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3.1. Design Methodology 
 
 The proposed work is a basic extension of the 
Hierarchical Tries. Here, we convert each of the source 
and destination prefixes into integer ranges. Then the 
corresponding tree is constructed. The greatest advantage 
of this approach is that the prefix specification can be 
extended to any number of bits. 
 

Table 2: Source Prefix Conversion 

 
 

 

Fig. 4  Source splay tree. 

 We first compute the lower and upper bounds for each 
of the prefixes in the source address as shown in Table 2. 
Then a source splay tree is constructed with the bounds 
converted to integers, which is shown in    Figure 4. 
Similarly, using the destination addresses, a destination 
splay tree is constructed as shown in Table 3 and Figure 5. 
 
 Now the source and destination splay trees are to be 
linked. For this, we connect each leaf of the source splay 
tree to the root of the destination splay tree. This 
connection pointer is similar to a Next-Trie pointer used in 
a hierarchical trie data structure [1], [7], [12]. 

Table 3: Destination Prefix Conversion 
 

 

 

Fig. 5  Destination splay tree. 

 In order to find out the best matching filter, we 
convert the source and destination prefixes of the search 
packet to integer values and then begin searching. We first 
see the integer source value of the packet and find out the 
filters whose lower bound is less than the packet’s source 
integer value and whose upper bound is greater than the 
packet’s destination integer value. In other words, we pick 
out all those filters within whose range the search packet’s 
value lies. Similarly, we find out the matching filters for 
the destination’s integer value of the search packet. Then, 
we perform a simple comparison between the filters that 
have matched the source and destination of the packet 
separately. 
 To construct a source search table and a destination 
search table, we get the set of distinct integer values in 
both the source and destination trees and arrange them in 
the ascending order. We now find the set of filters that 
match all points between the first and second integer 
values, between the second and third value and so on until 
the entire table is constructed as shown in Tables 4 and 5. 
 An example search packet is also shown below these 
tables. We firstly convert the prefixes of the search packet 

Filter Source 
Prefix 

Lower 
Bound 

Upper 
Bound 

Start Finish 

F1 01* 010000 011111 16 31 
F2 1* 100000 111111 32 63 
F3 10* 100000 101111 32 47 

F4 01* 010000 011111 16 31 
F5 00* 000000 001111 0 15 
F6 * 000000 111111 0 63 

Filter Source 
Prefix 

Lower 
Bound 

Upper 
Bound 

Start Finish 

F1 01* 010000 011111 16 31 

F2 01* 010000 011111 16 31 

F3 0* 000000 011111 0 31 

F4 00* 000000 001111 0 15 

F5 1* 100000 111111 32 63 

F6 1* 100000 111111 32 63 
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to integers and then find the separate source and 
destination matching filters and finally find the final set of 
matching filters for that particular search packet.  
 

Search 
 

Table 4: Source Search Table 
 
 
 
 
 
 
 
 
 

Table 5: Destination Search Table 
Dest Point. Filter > than  point 

0              F3 , F4 
15              F3 
16              F1 , F2 , F3 
31              -- 
32              F5 , F6 

 
Example Search 

 
        (000110, 101100) => ( 06 , 44 ) 
                                      => { ( F5 , F6 ) ; (F5 , F6 ) }  
                                      => { F5 , F6 }      
 
3.2 ST-PC Evaluation Architecture 
 
 Figure 6 shows the various stages through which our 
proposed prototype will go by. We shall describe each 
prototype briefly now. 
 
Prefix Conversion: All the existing algorithms so far have 
been constructing the trie for the input filter set using 
prefixes of the form 00*, 01*, 1* and so on. That is, they 
used a basic binary trie. A trie is a data structure where 
there can be only 2 inputs, namely a ‘ 0 ’ or a ‘ 1 ’. All the 
‘ 0 ’  transitions from a node are to the left of the node 
whereas all the ‘ 1 ’ transitions from a node are to the right 
of the node. The major disadvantage of this method is that 
the amount of space required for the trie is tremendous. 
Moreover, it grows exponentially as the number of bits in 
the prefix increases. Our new method just stores them as 
ranges ( integers ). 
 
Rule Storage: The input filter set must be formed in 
conformance to the earlier decided parameters. After this 
is done with, we need to store this input filter set into the 

router’s database. Now, we are ready to move onto the 
next step in our architecture. 
 
Packet Conversion: We check whether the incoming 
filter’s parameters match the ones which are present in the 
router’s database. If they are as per the specifications, then 
we go on and check whether the parameters are valid.  
 
Matching Filter(s) Search: The main objective at this 
stage is to select the set of matching filter(s) for the 
incoming packet. The best matching filter can be found 
out by performing a simple search through the database. 
Based on the matching filter, we route the packet through 
that particular route / routes  ( line connecting the source to 
the destination ).  
 
There are several constraints on the values of the 
parameters such as follows: 
 

i. The prefixes entered must be in the binary form, 
i.e in the form of strings of 0’s and 1’s for certain 
algorithms. 

ii. The dimensions must be of the specified number 
of bits, i.e as per what we had decided previously. 
 

If the incoming packet matches and satisfies all these 
conditions, then the packet is passed on, i.e we carry on to 
the next stage of our architecture, else we reject the packet 
with the appropriate error message.  
 

 

Fig. 6  ST-PC evaluation architecture. 

4. Complexity Analysis 
 
 We analyze the proposed packet classification 
technique here, while also comparing space-time 
requirements with other well known techniques. 
 
For our entire complexity analysis, we use a few notations 
as follows: 
r = Number of rules,  
n = Number of nodes in the tree, 
k = Number of bits to represent the prefix,  
t = Number of times a prefix is repeated, 
β = Depth of a certain node in the tree, 
m = Number of prefix lookups. 

Src Point. Filter > than  point 
0              F5 , F6 
15              F6 
16              F1 , F4 , F6 
31              F6 
32              F2 , F3 , F6 
47              F2 , F6 
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4.1 Space complexity 
 
4.1.1 Best Case 
 
 For the best case analysis, for any source or 
destination prefix, assume that none of the ‘k’ bits are 
fixed. That is, all the bits can be arbitrarily either 0 or 1. In 
other words, the prefix is denoted by a (*). So, the best 
case number of nodes in a binary trie is equivalent to 1. 
For any source or destination prefix, assume that all the ‘k’ 
bits are fixed. That is, all the bits are either 0 or 1. In other 
words, the prefix will have a length of 6. Trivially, number 
of unique rules is 1. The Best Case number of nodes in a 
Splay Tree is equivalent to 1. Nodes in Binary Trie = 
Nodes in Splay Tree. 
 
4.1.2 Worst Case 
 
 In the worst case, for any source or destination prefix, 
assume that all the prefixes are distinct. In this case, the 
number of nodes will be 2k+1 – 1. Assume that all ‘k’ bits 
of each of the ‘r’ rules are distinct. The number of nodes in 
this case will be (k * r) + 1.  So, the actual number of 
nodes in a binary trie in the worst case will be a minimum 
of these 2 values i.e. MINIMUM (2k+1 – 1, (k * r) + 1).  
  
 For any source or destination prefix, assume that all 
the prefixes, and hence the bounds (integers) are distinct. 
In this case, the entire range of values is possible for 
various combinations of prefixes, and hence the number of 
nodes will be 2k. Next, assume that only a few prefixes 
occur in the rules. Since we convert these prefixes to 
integer values, the number of distinct values will be at 
most 2*r. Hence the number of nodes in this case will be 
2*r. So, the actual number of nodes in a splay tree in the 
worst case will be a minimum of these 2 values i.e. 
MINIMUM (2k, 2 * r). Nodes in Splay Tree  < Nodes in 
Binary Trie. 
 
4.1.3 Graphical representation 
 
Case 1: 
 
 Figure 7 compares the number of bits in the prefix (k) 
with the number of nodes (n) required for both the Binary 
trie and Splay tree. Here, the number of rules remains a 
constant which we assume to be 6. 
 As it can be seen from the graph, the number of nodes 
is the same for a value of k = 0. For values greater than 0 
and less than 4, there is a small variation in the number of 
nodes. But beyond k = 4, ‘n’ increases linearly for a 
Binary Trie; whereas it remains at a constant value of n = 
12. Thus, this clearly shows that the number of nodes 
required significantly reduces for a Splay tree when 
number of rules is a constant. 
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Fig. 7  Number of  bits vs. Number of nodes 

Case 2: 
 
 Comparing, the number of rules (r) with the number 
of nodes (n) as in Figure 8, the number of nodes is the 
same for a value of k = 0. For values greater than 0 and 
less than 21, the number of nodes required increases 
linearly, after which it remains at a constant value of 127 
for a Binary trie. But the number of nodes required for a 
Splay tree is much lower for all values when compared to 
the Binary trie.  
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Fig. 8  Number of  rules vs. Number of nodes 

4.2 Time complexity 
 

Case 1:  
 
 Assume that there are ‘m’ unique accesses, i.e. all the 
prefix searches are unique. The search time of a node for a 
binary trie is log (2n) and the search time of a node for a 
splay tree is log (n). This is true as the number of nodes in 
the binary trie is twice that of a normal binary search tree, 
as the nodes of interest occur only at the leaves of the trie. 
For ‘m’ accesses, the search times for a binary trie and a 
splay tree will be m * log (2n) and   m * log (n) 
respectively. Time of Splay Tree < Time of Binary Trie. 
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Case  2: 
 
 Assume that there are (m – t) unique accesses. That is, 
(m – t) searches are unique. Hence, search time for a 
binary trie in this case is m log ( 2n ) as before. Consider 
the case of a Splay Tree. Here, (m – t) unique operations 
will take a time of  ( m – t ) log ( n ). For the remaining ‘t’ 
accesses, the time required will be t * log β, where log β 
<= log n. Hence, the total time required for the splay tree 
is [ ((m – t) log n) + (t * log β) ]. Time of Splay Tree < 
Time of Binary Trie. 
 
4.2.1 Frequency distribution (t) 

 
This is governed by the number of times the prefixes are 
repeated. Consider the following example. 
 
Let ( a , b , c , d , e ) be a sequence of 5 accesses of 
prefixes. 
 
Let ( a , a , a , b , b ) be another sequence of 5 accesses of 
prefixes. 
 
For the first case, t = 0 since no prefixes are repeated. But 
for the second case, t = 2 + 1 = 3 since ‘a’ is repeated 
twice and ‘b’ is repeated once. Thus, the time complexity 
for Splay Trees reduces if there are repetitions in prefixes.  
 
4.2.2 Temporal distribution (β) 
 
This is governed by the compactness of the occurrence of 
the prefixes. Consider the following example. 
 
Let ( a , b , a , b , a , b ) be one sequence of accesses in 
which prefixes occur. 
 
Let ( a , a , a , b , b , b ) be another sequence of accesses in 
which prefixes occur. 
 
In the first case, the value of β is greater than 1, for all 
accesses; since for each access the nodes may be at 
random depths within the tree. But, in the second case, the 
value of β is 1 for all repetitive accesses; since the nodes 
move closer to the root after each access due to splaying.  
 
4.2.3 Graphical representation 
 
 Figure 9 compares the number of nodes (n) with the 
corresponding access time (t) required for both the Binary 
trie and Splay tree for a unique sequence of accesses when 
the number of prefix lookups remains a constant which we 
assume to be 25. 
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Fig. 9  Access time in a unique sequence 

 Figure 10 compares the number of nodes (n) with the 
access time (t) required for both the Binary trie and Splay 
tree for a repeating sequence of accesses when the number 
of times a prefix is repeated remains at a constant value of 
t = 10 and depth of a node in the tree also remains at a 
constant value of β = 5. The number of prefix lookups also 
remains a constant value of m = 25. Here again, the 
performance of splay trees is better than that of binary tries. 
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Fig. 10  Access time in a repeating sequence 

4.2.4 Comparison 
 
 Table 6 gives a brief overview of the complexities of 
both the binary tries and splay trees. As it can be seen from 
the table, the space complexity is the same for both the 
data structures in the best case. In the worst case, the 
complexity of the splay trees outperforms that of the 
binary tries. Similarly, the time complexity of the splay 
trees is much less than that of the binary tries in both the 
best case and the worst case. 
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Table 6: Complexity Comparison
 

 

Best Case 
 

 

Worst Case 
 

 
Complexity  

Binary Trie 
 

 

Splay Tree 
 

Binary Trie 
 

Splay Tree 
 

Nodes 
 

 

1 
 

1 
 

Min [ (2k+1 - 1) , k*r + 1 ] 
 

Min [ 2k , 2*r ] 
 

 
Space  

Edges 
 

 

0 
 

0 
 

Min [ (2k+1 - 2) , k*r ] 
 

Min [ (2k – 1) , (2*r) – 1 ] 
 

Time 
 

 

m * log(2n) 
 

m * log(n) 
 

m * log(2n) 
 

m * log(n) 
 
 

5. Concluding Remarks 
 
 Fast and efficient packet classification techniques are 
essential for the design of high-speed routers, and various 
other applications. In this paper, we propose a novel 
packet classification technique called Splay Tree based 
Packet Classification (ST-PC). We use simple primitives 
in our design, namely splay tree models and prefix 
conversion methods. The theoretical analysis of the space-
time complexity of the proposed work shows significant 
performance gains over the well known techniques in 
literature. Future work would focus on optimizing the tree 
reordering time, inherent to the splaying operation of the 
proposed data structure. 
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