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Summary 
In this paper, we present a single phase non-blocking 
coordinated checkpointing algorithm suitable for mobile 
computing environments. The distinct advantages that 
make the proposed algorithm suitable for distributed 
mobile computing systems are the following. It 
produces a consistent set of checkpoints, without the 
overhead of taking temporary checkpoints; the 
algorithm makes sure that only minimum number of 
processes are required to take checkpoints in any 
execution of the checkpointing algorithm; it uses very 
few control messages and the participating processes are 
interrupted less number of times. Performance analysis 
shows that our proposed approach outperforms some 
existing important related works.   
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Introduction 
Checkpointing/rollback-recovery strategy has been 
an attractive approach for providing fault-
tolerance to distributed applications [1]- [11]. A 
checkpoint is a snapshot of the local state of a 
process, saved on local nonvolatile storage to 
survive process failures. A global checkpoint of an 
n-process distributed system consists of n 
checkpoints (local) such that each of these n 
checkpoints corresponds uniquely to one of the n 
processes. A global checkpoint M is defined as a 
consistent global checkpoint or state (CGS) if no 
message is sent after a checkpoint of M and 
received before another checkpoint of M [1]. The 
checkpoints belonging to a consistent global 
checkpoint are called globally consistent 
checkpoints (GCCs).  

Checkpointing algorithms are classified into two 
main categories: (a) coordinated and (b) 
uncoordinated. In uncoordinated check pointing 
approach each process takes its checkpoint 
independently without the knowledge of the other 
processes. While the checkpointing approach is 
simple, yet it may suffer from the domino effect 
during recovery. In case of a failure; after recovery 
a CGS is found from the existing checkpoints and 
the system restarts from there. 

In coordinated checkpointing approach, all 
processes synchronize through control messages 
before taking checkpoints. These synchronization 
messages contribute to extra overhead but make 
the system free from domino effect. Coordinated 
check pointing algorithms are of two types: (a) 
blocking [7] and (b) non-blocking [3], [5], and [8]. 
Blocking algorithms force all relevant processes in 
the system to block their computation during 
check pointing latency and hence degrade system 
performance from the viewpoint of larger 
execution time of application programs. In non-
blocking algorithms application processes are not 
blocked when checkpoints are being taken. 

2. Related Works and Problem 
Formulation 

The work presented in this paper shows substantial 
improvement in performance over the works 
reported in [3], [4], and [8]. Therefore, we first 
give a brief and clear idea about how those 
algorithms work and what are their complexities in 
terms of the number of control messages they 
generate. 

2.1 Related works 

The research in the area of coordinated 
checkpointing concentrates mostly on non-
blocking approaches. In [3] and [4] the authors 
have proposed non-blocking coordinated 
checkpointing algorithms that require only a 
minimum number of processes to take checkpoints 
at any instant of time. In [8], it is a non-blocking 
coordinated check pointing algorithm; however 
minimality is not guaranteed. Let us now briefly 
state the working principles of these approaches 
and also the number of control messages these 
algorithms generate. In the following discussion, 
by ‘number of phases of an algorithm’ we mean 
the number of times an initiator process interacts 
with the other processes during the execution of 
the algorithm. 

In [3] the authors have introduced the concept of 
mutable checkpoints. They are neither temporary 
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nor permanent checkpoints. The basic idea about 
the algorithm is as follows: in the first phase an 
initiator process first checks its own dependency 
vector from which it finds the processes which 
have sent at least one computational message to 
the initiator. It then sends check pointing request 
messages to all such dependent processes, i.e. the 
processes from each of which the initiator process 
has received at least one message. These 
dependent processes after taking tentative 
checkpoints in turn send checkpoint requests to 
processes that are dependent on them. This goes 
on until there is no further dependency found. 
Suppose that the minimum number of processes 
which need to take checkpoints is nmin. In the 
second phase processes which have received 
checkpoint requests send reply to the initiator. The 
number of such reply messages is nmin. In the third 
phase, the initiator process sends the commit 
message to the processes asking them to convert 
their tentative checkpoints to permanent ones. 
Here the initiator selects between the minimum 
cost of broadcasting the control message to n 
processes and the cost of sending the messages to 
nmin processes. The total number of control 
messages in [3] is 2*nmin + min (nmin, nbroad) where 
nbroad is the number of control messages required 
to broadcast to all the processes in the system. 
This calculation is not exact as it does not consider 
more complicated situations. For example, if any 
process which receives a check pointing request 
and sends a computational message to another 
process after taking a checkpoint, the process 
receiving the computational message takes a 
mutable checkpoint first and computes the 
message. This mutable checkpoint is later 
converted to a permanent checkpoint if it receives 
a check pointing request; otherwise it becomes  a 
useless checkpoint.   

In [4] the authors have proposed a five phase 
algorithm. It works as follows. Let us consider a 
distributed system with (n + 1) processes, where in 
the first phase an initiator process broadcasts the 
dependency vector request. Assume that the 
number of such control messages is nbroad. In the 
second phase, the initiator receives the 
dependency vectors from all the processes. It 
needs n control messages. Then the initiator 
creates the minimum set of processes which need 
to take checkpoints. Assume that the number of 
such processes is nmin. Then in the third phase the 
initiator takes its own tentative checkpoint and 
sends checkpoint request to the processes in the 
minimum set. It needs nmin control messages. 
Processes receiving these checkpoint requests take 

tentative (temporary) checkpoints. In the fourth 
phase, the initiator receives responses to the 
checkpoint request from all the processes in the 
minimum set. In the fifth phase, the initiator 
process sends the commit or abort message to all 
processes. It needs nbroad messages. Hence the total 
number of control messages in [4] is n + 2*nmin + 
2* nbroad messages. All processes that did not send 
or receive messages will not participate in the 
check pointing algorithm. Hence at any instant of 
time only minimum number of processes takes 
checkpoints. 

In [8] the authors have proposed a non-blocking 
coordinated checkpointing algorithm where in the 
first phase an initiator sends check pointing 
request to all other processes in a system of n + 1 
processes. It needs nbroad messages. In the second 
phase, dependent processes take tentative 
checkpoints; however all n processes send their 
responses to the initiator regarding if they have 
taken tentative checkpoints or not. This needs n 
control messages and in the third phase, the 
initiator sends the commit message to all other 
processes if it gets replies from all the processes 
within a specified time interval and takes its own 
checkpoint; otherwise, it sends an abort message 
which requires nbroad messages. Hence the total 
number of control messages in [8] is n + 2* nbroad.  
This work does not guarantee that only minimum 
number of processes will take checkpoints. 

2.2 Problem formulation      

In the non-blocking checkpointing algorithms 
discussed above all processes are supposed to take 
first temporary checkpoints when they receive 
checkpoint request and then these checkpoints are 
converted to permanent checkpoints.  However, if 
a process is busy with some high priority 
procedure when a checkpointing request arrives at 
it, then it will not take a checkpoint. In such a 
situation, every process that has already taken a 
temporary checkpoint must discard it, and 
continue normal execution. Later the 
checkpointing algorithm has to be restarted again. 
It thus wastes time and delays further the 
execution of the application program. The same 
problem may also arise when a process receives a 
request to convert its temporary checkpoint to a 
permanent one while it is busy executing a high 
priority procedure. In this case also the 
checkpointing algorithm has to be abruptly 
terminated and it will restart later. Thus, such 
situations definitely affect the execution time of 
the application programs adversely. 
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The objective of the present work is to design a 
check pointing algorithm that is suitable for 
mobile computing environment. Mobile 
computing environment demands efficient use of 
the limited wireless bandwidth and the limited 
resources of mobile machines, such as battery 
power, memory etc. Observe that taking a 
temporary or a tentative checkpoint and later 
converting it to a permanent one needs more 
control messages. As a result it affects the 
bandwidth utilization negatively as well as it 
results in large number of interrupts to the mobile 
hosts; thereby wasting the mobile hosts’ limited 
battery power. Therefore in the present work we 
emphasize on eliminating the overhead of taking 
temporary (tentative) checkpoints. To summarize, 
we have proposed a non-blocking coordinated 
checkpointing algorithm in which processes take 
permanent checkpoints directly without taking 
temporary checkpoints and whenever a process is 
busy, the process takes a checkpoint after 
completing the current procedure. As will be 
shown later that the proposed algorithm in this 
paper requires much fewer control messages and 
hence, fewer number of interrupts to each 
participating process compared to the other 
coordinated checkpointing works [3], [4], and [8]. 
Besides as in [3] and [4], our proposed algorithm 
requires only minimum number of processes to 
take checkpoints. It makes our algorithm suitable 
for mobile computing environments. 

This paper is organized as follows. In Section 3 we 
state the system model considered in this work. 
We also state the date structures needed and give 
an example that shows how our idea works. It also 
contains some relevant observations. In Section 4 
we have stated the algorithm. Section 5 contains a 
detailed performance comparison with some noted 
related works. In Section 6, we have discussed the 
suitability of our proposed algorithm in the mobile 
computing environment. Finally Section 7 draws 
the conclusion. 

3. System Model and Data Structures 

3,1 System model 

The distributed system has the following 
characteristics. Processes do not share memory 
and they communicate via messages sent through 
channels. Channels can lose messages. However, 
they are made virtually lossless and order of the 
messages is preserved by some end-to-end 
transmission protocol. When a process fails, all 
other processes are notified of the failure in finite 
time. We also assume that no further processor 

(process) failures occur during the execution of the 
algorithm. In fact, the algorithm may be restarted 
if there are further failures.  

3.2 Data structures 

Consider a set of n processes, {P1, P2 ,…, Pn } 
involved in the execution of a distributed 
algorithm. Each process Pi maintains a 
dependency vector DVi of size n which is initially 
empty and an entry DVi[j] is set to 1 when Pi 
receives since its last checkpoint at least one 
message from Pj. It is reset to 0 again when 
process Pi takes a checkpoint. Each process Pi 
maintains a checkpoint sequence number csni. 
This csni actually represents the current check 
pointing interval of process Pi. The ith 

checkpointing interval of a process denotes all the 
computation performed between its ith and (i+l)th 
checkpoint, including the ith checkpoint but not the 
(i+l)th checkpoint. The csni is initially set to 1 and 
is incremented when process Pi takes a checkpoint. 
In this approach we assume that only one process 
can initiate the check pointing algorithm. This 
process is known as the initiator process.   

Fig. 1 Control message exchanges in our approach 

 

We define that a process Pk is dependent on 
another process Pr, if process Pr since its last 
checkpoint has received at least one application 
message from process Pk. In our proposed 
algorithm we assume primary and secondary 
checkpoint request exchanges between the initiator 
process and the rest n-1 processes. A primary 
checkpoint request is denoted by Ri (i = csnj) 
where i is the current checkpoint sequence number 
of process Pj that initiates the checkpointing 
algorithm. It is sent by the initiator process Pj to all 
its dependent processes asking them to take their 
respective checkpoints. A secondary checkpoint 
request denoted by Rsi is sent from a process Pm to 
a process Pn which is dependent on Pm to take a 
checkpoint. Rsi means to its receiver process that i 
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is the current checkpoint sequence number of the 
sender process. The control message exchange is 
explained with an illustration shown in Fig. 1. 
Consider a distributed system with three processes 
P1, P2, and P3. We assume that P1 initiates the 
checkpointing algorithm. To start with, P1 takes a 
checkpoint and sends a primary checkpoint request 
to P2, asking it to take a checkpoint as it is directly 
dependent on P1. P2 takes a checkpoint after it 
receives the primary checkpoint request. After 
taking its checkpoint P2  sends a secondary 
checkpoint request to P3 as P3 is dependent on P2, 
Process P3 then takes its checkpoint. 

In this work, an application message is represented 
by Mi,x , which means that it is the xth message sent 
by process Pi . The checkpoint Ci,j represents the jth 
checkpoint taken by Pi. We have assumed that the 
events of taking a checkpoint and sending a 
checkpoint request are done atomically. Also, each 
process Pi piggybacks its current checkpoint 
sequence number with only every first outgoing 
application message to another process after taking  

We now state the situations in general when a 
process Pi needs to take a checkpoint. In our 
approach a process Pi takes a checkpoint if any of 
the following events occurs: 

1. if Pi is the initiator 

2. if it receives a primary checkpoint request from 
the initiator 

3. the first time it receives a secondary checkpoint 
request and prior to that it has not received any 
primary checkpoint request or any piggybacked 
application message. 

 4. the first time it receives an application message 
piggybacked with the checkpoint sequence 
number, and prior to that it has not received any 
primary or secondary checkpoint request message. 

Before the formal statement of the algorithm, its 
working principle is illustrated with an example. 
For a clear understanding, the above four different 
possible scenarios are discussed.  

3.3 An Illustration 

The behavior of each process in our approach is 
explained with the help of the following example. 
Unless otherwise mentioned a checkpoint request 
represents either a primary request or a secondary 
request. Note that an application message with 
piggybacked checkpoint sequence number, which 
may force a checkpoint to be taken at the receiving 

process may also be viewed as a checkpoint 
request. In our work a checkpoint means a 
permanent checkpoint. 

Consider the distributed system as shown in the 
Fig. 2. Assume that process P2 initiates the check 
pointing algorithm. First process P2 takes its 
permanent checkpoint C2,1. It then checks its 
dependency vector DV2[] which is {1, 0,1,1,0,0,0}. 
This means that process P2 has received at least 
one message from processes P1, P3, and P4, and 
since P2 has already taken its checkpoint C2,1 these 
messages will become orphan if P1, P3, and P4 do 
not take checkpoints. Therefore P2 sends primary 
checkpoint request R1 (csn2 = 1) to P1, P3, and P4. 
After sending the primary checkpoint request 
process P2 increments its checkpoint sequence 
number csn2 to 2 and finishes its participation 
associated with the current execution of the 
algorithm and continues with its normal 
computation. It shows the non-blocking nature of 
our approach. 

On receiving the primary checkpoint request R1 
from P2, process P3 first takes a checkpoint C3,1 
and then it checks its own dependency vector 
DV3[] which is {0,0,0,0,1,0,0}. Therefore process 
P3 sends a secondary checkpoint request Rs1 to 
process P5. Then its checkpoint sequence number 
csn3 is incremented to 2. Similarly processes P1 
and P4 first take checkpoints C1,1 and C4,1 
respectively, then each process checks its 
dependency vector to find the dependent processes. 
Process P1 finds that its dependency vector DV1[] 
is null. Hence it increments its checkpoint 
sequence number to 2, and continues normal 
execution. Process P4 finds that it has received a 
message from process P5. Hence P4 sends a 
secondary checkpoint request Rs1 to process P5. It 
then increments its checkpoint sequence number 
csn4 to 2, and continues normal execution. 

At process P5 let us assume that the secondary 
checkpoint request Rs1 sent by process P4 reaches 
before the secondary checkpoint request sent by 
process P3. On receiving the secondary checkpoint 
request Rs1 from process P4, P5 checks its own 
checkpoint sequence number csn5 with that of the 
received checkpoint sequence number. P5 finds 
that its current checkpoint sequence number (csn5 
= 1) is not greater than the received checkpoint 
sequence number which is also equal to 1. Hence 
it decides to take a checkpoint and takes 
checkpoint C5,1. After taking the checkpoint it 
checks its dependency vector DV5[] and finds that 
process P7 has sent a message to it. Hence it sends 
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Fig. 2 An example of our checkpointing approach

a secondary checkpoint request Rs1 to P7. After 
sending the request it increments its checkpoint 
sequence number csn5 from 1 to 2. Assume that 
later process P5 receives the secondary checkpoint 
request sent by process P3. As soon as process P5 
receives the checkpoint request it compares its 
current checkpoint sequence number csn5 with the 
received checkpoint sequence number. It finds that 
its current checkpoint sequence number (csn5 = 2) 
is greater than the received checkpoint sequence 
number which is 1. Hence it discards the 
checkpoint request. The above discussion takes 
care of the first three situations about when a 
process takes a checkpoint. Below, we consider 
the fourth situation.       

Suppose that process P4 after taking the 
checkpoint continues normal execution and sends 
an application message M4,1 to process P7. Since 
the application message is the first application 
message to process P7 from P4 after taking the 
checkpoint, it is piggybacked with the current 
checkpoint sequence number (csn4) of process P4 
which is 2. Process P7 on receiving the application 
message piggybacked with the checkpoint 
sequence number compares its current checkpoint 
sequence number csn7 with the received 
checkpoint sequence number. It finds that the 
received checkpoint sequence number is equal to 2 
and is greater than its current checkpoint sequence 
number (csn7) which is equal to 1. Therefore 
process P7 decides to take a checkpoint before 
processing the application message M4,1. P7 then 
takes its checkpoint C7,1 and increments its 

checkpoint sequence number to 2 and then 
processes the application message M4,1.  

Eventually process P7 also receives the secondary 
checkpoint request sent by process P5. P7 first 
compares its current checkpoint sequence number 
with the received checkpoint sequence number 
which is 1. It finds that its current checkpoint 
sequence number is greater than the received 
checkpoint request. Hence P7 discards the 
secondary checkpoint request as it has already 
taken its checkpoint for the current execution of 
the algorithm.  

In the above example we observe that P7 sent a 
message M7,1 to P5. So even if there was no such 
piggybacked message as M4,1, process P7 would 
eventually receive the secondary checkpointing 
request Rs,1 from P5 and take its checkpoint C7,1. 

Observe that because of the non-blocking nature 
of the algorithm the following situation may arise 
as well. Consider that there was no such message 
as M7,1; that is, assume that P7 has not sent any 
application message to any process at all. However, 
assume that it receives the piggybacked message 
M4,1 from P4. In our approach P7 will take its 
checkpoint and then process the message and then 
would behave like any other process involved in 
the checkpointing approach. This helps in the 
advancement of the consistent state of process P7. 
This means that in the event of a failure occurring 
after P7 takes its checkpoint C7,1, process P7 can 
restart from this checkpoint, instead of its initial 
state C7,0 after the system recovers from the failure. 
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The above discussion leads to the following 
observation. 

Observation 1: If a process Pk has not yet 
participated in the current execution of the 
checkpointing algorithm, it takes a checkpoint at 
the first occurrence of an interrupt caused by a 
checkpoint request which is either a primary 
checkpoint request or a secondary checkpoint 
request or a piggybacked application message and 
later ignores any other checkpointing request, if 
any, associated with the current execution of the 
checkpointing algorithm. 

We now describe the avalanche effect that may 
occur in a coordinated checkpointing approach, 
because of some typical communication pattern 
among the processes.  

Avalanche Effect: Consider the following 
situation: suppose process Pi initiates the 
coordinated checkpointing scheme. It takes a 
checkpoint; checks its dependency vector and 
sends primary requests to all processes that are 
directly dependent on it. Suppose Pj receives the 
primary request from Pi since it is directly 
dependent on Pi; Pj takes a checkpoint; checks its 
own dependency vector and sends a secondary 
request to Pk. Process Pk in turn takes a 
checkpoint; checks its dependency vector and 
sends a request to Pr and it goes on in such a way 
that Pi gets a secondary request from some process 
Ps, because Pi is dependent on Ps and so it takes a 
checkpoint again, and sends a secondary request to 
another process looking at its dependency vector. 
If this continues then the checkpointing scheme 
can never terminate. This phenomenon is known 
as avalanche effect. 

Claim 1: Avalanche Effect does not occur in our 
approach. 

Proof: Assume that avalanche effect is possible in 
our approach. Without any loss of generality, let 
us assume that the message communication pattern 
is such that process Pi has taken a checkpoint after 
receiving a primary checkpointing request, and 
then has sent a secondary checkpoint request to Pk; 
process Pk takes its checkpoint and after checking 
its dependency vector DVk[] sends a secondary 
request to Pr, and Pr acts similarly and sends a 
secondary request to Pq. Following the same way 
finally some process Ps sends a secondary 

checkpoint request to Pi because in its dependency 
vector, DVs[i] = ≠ 0, and Pi in turn again sends a 
secondary request to Pk and so on. Therefore, it 
appears that the chain of requests form a loop as Pi, 
Pk, Pr, Pq,…..,Ps, Pi , Pk, … for a possible 
avalanche effect to occur.  

Consider process Ps. It has received a secondary 
request and taken a checkpoint, and then has sent a 
secondary checkpoint request to Pi  since  DVs[i] 
is not zero. Let us examine if this scenario leads to 
a possible avalanche effect.   

Since DVs[i] is not zero, therefore Ps has received 
at least one application message, say Mi from 
process Pi before Pi takes its checkpoint. Observe 
that process Pi must have sent this message (s) to 
Ps before it has initiated the checkpointing process; 
otherwise this message would have been a 
piggybacked one and then according to our 
approach Ps would have taken a checkpoint first 
when it received the piggybacked message and 
then process it. Obviously then Ps would just 
ignore the secondary request it has received, 
because by then it has finished its participation in 
the checkpointing process and as a result it would 
not send any secondary checkpointing request to Pi.  
However, this is not the case with Ps, because it 
has sent a secondary request to Pi. As pointed out 
above, since Pi sent this message (s) before taking 
its checkpoint, therefore this message can not be 
an orphan and as a result Pi does not need to take 
any checkpoint when it receives the secondary 
request from Ps. Therefore Pi will just ignore the 
request. Hence there can not exist a chain of 
requests forming the loop of processes as Pi, Pk, Pr, 
Pq,…..,Ps, Pi , Pk, … which might otherwise lead to 
a possible avalanche effect.  Hence the assumption 
that avalanche effect is possible is not valid in our 
approach.  ■ 

In the following algorithm we have considered all 
four situations mentioned in Section 3.2 about 
when a process takes a checkpoint. 

4. Algorithm Non_Blocking 

As in any conventional coordinated check pointing 
scheme at any instant of time any one process can 
initiate the check pointing algorithm. 

The responsibility of the initiator process and all 
other processes are stated below. 
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Initiator process Pi  
Step 1:      take a checkpoint, check the dependency vector DVi[]; 
Step 2:      when DVi[k] = = 1 for 1<= k<= n 
                         Send a Primary request-Rn to process Pk;                           
                                    /* checks the dependency vector and multicasts a checkpoint request */ 
Step 3:      increment the checkpoint sequence number csni; 
Step 4:      continue normal computation; 
                 if any secondary checkpoint request is received 
                          discard it and continue normal execution; 
Any Process Pj  j! = i and 1 <= j <= n 

    if    Pj receives a primary  checkpoint request from Pi  
                         take a checkpoint;  /* if Pj is busy with other high priority job, it takes a checkpoint after the  
                                                           job ends; otherwise it takes a checkpoint immediately */ 
                         if DVj[] = null; 
                              increment csnj;  
                              continue computation; 
                         else  
                              send secondary checkpoint request to each Pk such that DVj[k] = 1; 
                              increment csnj; 
                              continue computation;      
                 

    else if Pj receives a secondary checkpoint request  
                                        if Pj has already participated in the checkpointing algorithm 
                                                                   /* csnj is greater than the received checkpoint sequence number*/ 
                               ignore the checkpoint request and continue computation; 
                         else 
                               take a checkpoint;  /* if Pj is busy with other high priority job, it takes a checkpoint after  
                                                                           the job ends; otherwise it takes a checkpoint immediately */ 
                               if DVj [] = null; 
                                     increment csnj;  
                                     continue computation; 
                               else  
                                     send secondary checkpoint request to each Pk such that DVj[k] = 1; 
                                     increment csnj; 
                                     continue computation;                                                          

    else if Pj receives a piggy backed application message  
                          if Pj has already participated in the checkpointing algorithm 
                                                                 /* csnj is greater than the received checkpoint sequence number*/ 
                               process the message and continue computation; 
                          else 
                                 take a checkpoint;        /* if Pj is busy with other high priority job, it takes a checkpoint  
                                                                    after  the job ends; otherwise it takes a checkpoint immediately*/ 
                                 if DVj [] = null; 
                                     increment csnj;  
                                     process the message;  
                                     continue computation; 
                                else  
                                     send secondary checkpoint request to each Pk such that DVj[k]=1; 
                                     increment csnj; 
                                     process the message;  
                                     continue computation; 
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Theorem 1: Algorithm Non-Blocking produces a 
consistent global state of the system. 

Proof: In the first two steps of the algorithm for 
initiator process, the initiator process Pi identifies 
all the application messages received from 
different processes that might become orphan if it 
takes a checkpoint by looking at its dependency 
vector. The initiator then sends primary 
checkpoint requests to all those processes that 
have sent at least one message to it asking them to 
take their respective checkpoints. Hence any 
application message received by Pi cannot be an 
orphan. 

Consider the pseudo code for any process Pj. 
Process Pj makes sure that all processes from 
which it has received messages also take 
checkpoints so that there are no orphan messages 
that it has received. In the second else if block of 
the pseudo code, process Pj first takes its 
checkpoint if needed, then processes the received 
piggybacked application message. Hence such a 
message cannot be an orphan. Hence the algorithm 
generates a consistent global state (CGS) of the 
system.  ■ 

Claim 2:  Number of processes taking checkpoints 
is minimum. 

Proof:  According to Observation 1 a process takes 
a checkpoint if and only if it is the initiator, or it 
receives either a primary checkpoint request or a 
secondary checkpoint request or a piggybacked 
application message. This means that any process 
that is not an initiator or that does not receive any 
of the above mentioned control messages, does not 
take a checkpoint. Hence the proof follows.  ■ 

Summery of the main advantages our algorithm 
are as follows: 

1. Our algorithm follows a one phase approach 
when compared to the three phase and five 
phase approaches in [3], [8] and [4]. 

2. Our algorithm does not take any temporary 
checkpoints, and hence the overhead of 
converting temporary checkpoint to 
permanent checkpoint is eliminated, unlike in 
[4] and [8].  

3. Our algorithm does not use mutable 
checkpoints as in [3]. Hence the overhead of 
converting them to permanent ones is 
eliminated. Also our work does not allow any 
process to take useless checkpoints. 

4. The number of interrupts to processes is less 
than those in the algorithms [3], [4], and [8]. 

A detailed estimate of the number of control 
messages (hence, interrupts to the processes) 
needed by our algorithm and the related works is 
given in the next section. 

5.  Performance 

The main advantage of our algorithm over the 
algorithms [3], [4], and [8] is that the cost for 
determining a consistent state of the system is 
much less compared to the ones in [3], [4], and [8]. 
We have presented the comparison of performance 
of the above three algorithms with our algorithm 
in Table 1.  .                                    

For ease of interpretation of the performance 
parameters we consider an n+1 process distributed 
system. Let nmin represent the minimum number of 
processes that need to take a checkpoint, Cair be 
the cost of sending a message from one process to 
another, and nbroad be the cost of broadcasting a 
message to all processes in the system. 

The cost to complete the checkpoint process using 
algorithm [3] is given as 2*nmin*Cair + min 
(nmin*Cair, nbroad) in the best case. As mentioned 
earlier, in algorithm [3] first the initiator sends 
control messages to minimum number of 
processes that need to take a checkpoint each. The 
cost for this is nmin*Cair . When each process takes 
a tentative checkpoint it replies back to the 
initiator acknowledging the request to take a 
checkpoint. Hence a cost of 2*nmin*Cair is needed. 
When the initiator receives the acknowledgement 
from all the processes, it informs them to convert 
their respective tentative checkpoints into 
permanent checkpoints which contributes  further 
a cost of nmin*Cair. If the cost of broadcasting the 
message is less than sending the messages to nmin 
processes then the message can be broadcasted. In 
this way, the  algorithm in [3] generates a 
consistent set of checkpoints. The total cost for 
such a generation is 2*nmin*Cair + min (nmin*Cair, 
nbroad) in the best case (secondary and tertiary 
dependencies are not considered). 

In [4] the initiator broadcasts dependency vector 
request to all the n processes the cost of which is 
nbroad. The initiator receives the vectors from the n 
processes the cost of which is n*Cair. Initiator 
calculates the minimum dependency set from the 
dependency  vectors and sends checkpoint request 
message to the minimum number of processes that 
need to take checkpoints, the cost of which is  
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Table 1: Performance Comparison of the Checkpointing Algorithms. 

 Mutable [3] Non intrusive [4] CCUML [8] Our algorithm 

Cost (best case) 2*nmin*Cair + min(nmin*Cair, nbroad) n*Cair + 2 * nmin*Cair  + 2 * nbroad n*Cair +2*nbroad nmin*Cair 

Useless checkpoints present  nil nil nil 

Temporary checkpoints present present present no 

Non-Blocking Yes Yes Yes Yes 

Number of checkpoints nmin nmin n+1 nmin 

      

nmin*Cair. These processes reply to the initiator 
after taking temporary checkpoints, the cost of 
which is nmin*Cair. Finally the initiator broadcasts a 
commit message to all the processes, the cost of 
which is nbroad. In this way the algorithm in [4] 
generates a consistent set of checkpoints. The cost 
for such a generation is n*Cair + 2 * nmin*Cair  + 2 * 
nbroad.    

In [8] the initiator broadcasts the checkpoint 
request to all processes the cost of which is nbroad. 
The initiator receives replies from the n processes 
the cost of which is n*Cair. Finally the initiator 
broadcasts a commit message to all processes to 
convert their temporary checkpoints to permanent 
ones, the cost of which is which is nbroad. Hence 
the total cost in [8] is n*Cair + 2*nbroad. Note that it 
does not guarantee that only minimum number of 
processes will take checkpoints. 

In Fig. 3 and Fig. 4 the ordinate represents the cost 
of sending control messages to complete the check 
pointing algorithm in the best case for the four 
algorithms. In Fig. 3 we assume nbroad = n *Cair ; 
that is cost of broadcasting a message is equal to 
the cost of sending n messages.  

    
Fig. 3 Comparison of costs when nbroad = n * Cair 

In Fig. 4 we assume the cost of broadcasting is 
equal to the cost of sending a single message; that 
is nbroad = Cair. Fig. 3 clearly demonstrates the 
better performance of our approach than the ones 
in [3], [4], and [8]. In Fig. 4, the cost for sending 
control messages in our approach and the one in 

[8] are same. However, the work in [8] does not 
offer minimum number processes to take 
checkpoints. 

 
Fig. 4 Comparison of costs when nbroad = Cair 

6.  Suitability for Mobile Computing 
Environment 

Consider a distributed mobile computing 
environment. In such an environment, only limited 
wireless bandwidth is available for communication 
among the computing processes. Besides, the 
mobile hosts have limited battery power and 
limited memory. Therefore, it is required that, any 
distributed application P running in such an 
environment must make efficient use of the 
limited wireless bandwidth, and mobile hosts’ 
limited battery power and memory. Below we 
justify why the proposed algorithm will be more 
effective than the ones in [3], [4], [8], and [10] in 
mobile computing environment. 

The following advantages make our approach 
more suitable for the mobile computing 
environment: 

(1) Our algorithm is a single phase algorithm 
which clearly indicates that it terminates fast 
which is an important advantage when considering 
limited battery power of mobile hosts. None of the 
other related works [3], [4], [8], [10] is a single 
phase algorithm. 
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(2) As is seen from Table 1, the presented 
algorithm uses the minimum number of control 
messages. It definitely offers much better 
bandwidth utilization than the above mentioned 
related works.  

(3) Minimum number of control messages means 
that mobile hosts face minimum number of 
interrupts compared to the other works. It saves 
the limited battery power of the mobile machines 
significantly.  

(4) In our algorithm, processes neither take any 
useless checkpoints unlike in [3], nor they take 
any unnecessary local checkpoints unlike in [10]. 
This offers better utilization of the mobile hosts’ 
limited memory.  

7. Conclusion  

In this paper, we have presented a single phase 
non-blocking coordinated checkpointing approach 
suitable for mobile computing environment. The 
main features of the algorithm are: (1) it is free 
from the avalanche effect and minimum number of 
processes take checkpoints; (2) it does not take 
any temporary, tentative, or mutable checkpoint 
unlike in some other important related works [3], 
[4], [8]. Absence of temporary, tentative, or 
mutable checkpoints (hence some possible useless 
checkpoints) means that much fewer number of 
control messages are needed. These advantages 
make the proposed algorithm more suitable for 
mobile computing environment than the 
algorithms mentioned above. 
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