
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

95

A New High Performance Checkpointing Approach for
Mobile Computing Systems

Bidyut Gupta†, Shahram Rahimi,† and Ziping Liu††,

†Southern Illinois University Carbondale, IL, USA, ††Southeast Missouri State University, MI, USA

Summary
In this paper, we present a single phase non-blocking
coordinated checkpointing algorithm suitable for mobile
computing environments. The distinct advantages that
make the proposed algorithm suitable for distributed
mobile computing systems are the following. It
produces a consistent set of checkpoints, without the
overhead of taking temporary checkpoints; the
algorithm makes sure that only minimum number of
processes are required to take checkpoints in any
execution of the checkpointing algorithm; it uses very
few control messages and the participating processes are
interrupted less number of times. Performance analysis
shows that our proposed approach outperforms some
existing important related works.
Keywords:
Coordinated Checkpointing, Non-blocking approach,
Mobile Computing Systems

Introduction
Checkpointing/rollback-recovery strategy has been
an attractive approach for providing fault-
tolerance to distributed applications [1]- [11]. A
checkpoint is a snapshot of the local state of a
process, saved on local nonvolatile storage to
survive process failures. A global checkpoint of an
n-process distributed system consists of n
checkpoints (local) such that each of these n
checkpoints corresponds uniquely to one of the n
processes. A global checkpoint M is defined as a
consistent global checkpoint or state (CGS) if no
message is sent after a checkpoint of M and
received before another checkpoint of M [1]. The
checkpoints belonging to a consistent global
checkpoint are called globally consistent
checkpoints (GCCs).

Checkpointing algorithms are classified into two
main categories: (a) coordinated and (b)
uncoordinated. In uncoordinated check pointing
approach each process takes its checkpoint
independently without the knowledge of the other
processes. While the checkpointing approach is
simple, yet it may suffer from the domino effect
during recovery. In case of a failure; after recovery
a CGS is found from the existing checkpoints and
the system restarts from there.

In coordinated checkpointing approach, all
processes synchronize through control messages
before taking checkpoints. These synchronization
messages contribute to extra overhead but make
the system free from domino effect. Coordinated
check pointing algorithms are of two types: (a)
blocking [7] and (b) non-blocking [3], [5], and [8].
Blocking algorithms force all relevant processes in
the system to block their computation during
check pointing latency and hence degrade system
performance from the viewpoint of larger
execution time of application programs. In non-
blocking algorithms application processes are not
blocked when checkpoints are being taken.

2. Related Works and Problem
Formulation

The work presented in this paper shows substantial
improvement in performance over the works
reported in [3], [4], and [8]. Therefore, we first
give a brief and clear idea about how those
algorithms work and what are their complexities in
terms of the number of control messages they
generate.

2.1 Related works

The research in the area of coordinated
checkpointing concentrates mostly on non-
blocking approaches. In [3] and [4] the authors
have proposed non-blocking coordinated
checkpointing algorithms that require only a
minimum number of processes to take checkpoints
at any instant of time. In [8], it is a non-blocking
coordinated check pointing algorithm; however
minimality is not guaranteed. Let us now briefly
state the working principles of these approaches
and also the number of control messages these
algorithms generate. In the following discussion,
by ‘number of phases of an algorithm’ we mean
the number of times an initiator process interacts
with the other processes during the execution of
the algorithm.

In [3] the authors have introduced the concept of
mutable checkpoints. They are neither temporary

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

96

nor permanent checkpoints. The basic idea about
the algorithm is as follows: in the first phase an
initiator process first checks its own dependency
vector from which it finds the processes which
have sent at least one computational message to
the initiator. It then sends check pointing request
messages to all such dependent processes, i.e. the
processes from each of which the initiator process
has received at least one message. These
dependent processes after taking tentative
checkpoints in turn send checkpoint requests to
processes that are dependent on them. This goes
on until there is no further dependency found.
Suppose that the minimum number of processes
which need to take checkpoints is nmin. In the
second phase processes which have received
checkpoint requests send reply to the initiator. The
number of such reply messages is nmin. In the third
phase, the initiator process sends the commit
message to the processes asking them to convert
their tentative checkpoints to permanent ones.
Here the initiator selects between the minimum
cost of broadcasting the control message to n
processes and the cost of sending the messages to
nmin processes. The total number of control
messages in [3] is 2*nmin + min (nmin, nbroad) where
nbroad is the number of control messages required
to broadcast to all the processes in the system.
This calculation is not exact as it does not consider
more complicated situations. For example, if any
process which receives a check pointing request
and sends a computational message to another
process after taking a checkpoint, the process
receiving the computational message takes a
mutable checkpoint first and computes the
message. This mutable checkpoint is later
converted to a permanent checkpoint if it receives
a check pointing request; otherwise it becomes a
useless checkpoint.

In [4] the authors have proposed a five phase
algorithm. It works as follows. Let us consider a
distributed system with (n + 1) processes, where in
the first phase an initiator process broadcasts the
dependency vector request. Assume that the
number of such control messages is nbroad. In the
second phase, the initiator receives the
dependency vectors from all the processes. It
needs n control messages. Then the initiator
creates the minimum set of processes which need
to take checkpoints. Assume that the number of
such processes is nmin. Then in the third phase the
initiator takes its own tentative checkpoint and
sends checkpoint request to the processes in the
minimum set. It needs nmin control messages.
Processes receiving these checkpoint requests take

tentative (temporary) checkpoints. In the fourth
phase, the initiator receives responses to the
checkpoint request from all the processes in the
minimum set. In the fifth phase, the initiator
process sends the commit or abort message to all
processes. It needs nbroad messages. Hence the total
number of control messages in [4] is n + 2*nmin +
2* nbroad messages. All processes that did not send
or receive messages will not participate in the
check pointing algorithm. Hence at any instant of
time only minimum number of processes takes
checkpoints.

In [8] the authors have proposed a non-blocking
coordinated checkpointing algorithm where in the
first phase an initiator sends check pointing
request to all other processes in a system of n + 1
processes. It needs nbroad messages. In the second
phase, dependent processes take tentative
checkpoints; however all n processes send their
responses to the initiator regarding if they have
taken tentative checkpoints or not. This needs n
control messages and in the third phase, the
initiator sends the commit message to all other
processes if it gets replies from all the processes
within a specified time interval and takes its own
checkpoint; otherwise, it sends an abort message
which requires nbroad messages. Hence the total
number of control messages in [8] is n + 2* nbroad.
This work does not guarantee that only minimum
number of processes will take checkpoints.

2.2 Problem formulation

In the non-blocking checkpointing algorithms
discussed above all processes are supposed to take
first temporary checkpoints when they receive
checkpoint request and then these checkpoints are
converted to permanent checkpoints. However, if
a process is busy with some high priority
procedure when a checkpointing request arrives at
it, then it will not take a checkpoint. In such a
situation, every process that has already taken a
temporary checkpoint must discard it, and
continue normal execution. Later the
checkpointing algorithm has to be restarted again.
It thus wastes time and delays further the
execution of the application program. The same
problem may also arise when a process receives a
request to convert its temporary checkpoint to a
permanent one while it is busy executing a high
priority procedure. In this case also the
checkpointing algorithm has to be abruptly
terminated and it will restart later. Thus, such
situations definitely affect the execution time of
the application programs adversely.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

97

Secondary Checkpoint request

P1

P2

P3

Primary Checkpoint request
Application messages

The objective of the present work is to design a
check pointing algorithm that is suitable for
mobile computing environment. Mobile
computing environment demands efficient use of
the limited wireless bandwidth and the limited
resources of mobile machines, such as battery
power, memory etc. Observe that taking a
temporary or a tentative checkpoint and later
converting it to a permanent one needs more
control messages. As a result it affects the
bandwidth utilization negatively as well as it
results in large number of interrupts to the mobile
hosts; thereby wasting the mobile hosts’ limited
battery power. Therefore in the present work we
emphasize on eliminating the overhead of taking
temporary (tentative) checkpoints. To summarize,
we have proposed a non-blocking coordinated
checkpointing algorithm in which processes take
permanent checkpoints directly without taking
temporary checkpoints and whenever a process is
busy, the process takes a checkpoint after
completing the current procedure. As will be
shown later that the proposed algorithm in this
paper requires much fewer control messages and
hence, fewer number of interrupts to each
participating process compared to the other
coordinated checkpointing works [3], [4], and [8].
Besides as in [3] and [4], our proposed algorithm
requires only minimum number of processes to
take checkpoints. It makes our algorithm suitable
for mobile computing environments.

This paper is organized as follows. In Section 3 we
state the system model considered in this work.
We also state the date structures needed and give
an example that shows how our idea works. It also
contains some relevant observations. In Section 4
we have stated the algorithm. Section 5 contains a
detailed performance comparison with some noted
related works. In Section 6, we have discussed the
suitability of our proposed algorithm in the mobile
computing environment. Finally Section 7 draws
the conclusion.

3. System Model and Data Structures

3,1 System model

The distributed system has the following
characteristics. Processes do not share memory
and they communicate via messages sent through
channels. Channels can lose messages. However,
they are made virtually lossless and order of the
messages is preserved by some end-to-end
transmission protocol. When a process fails, all
other processes are notified of the failure in finite
time. We also assume that no further processor

(process) failures occur during the execution of the
algorithm. In fact, the algorithm may be restarted
if there are further failures.

3.2 Data structures

Consider a set of n processes, {P1, P2 ,…, Pn }
involved in the execution of a distributed
algorithm. Each process Pi maintains a
dependency vector DVi of size n which is initially
empty and an entry DVi[j] is set to 1 when Pi
receives since its last checkpoint at least one
message from Pj. It is reset to 0 again when
process Pi takes a checkpoint. Each process Pi
maintains a checkpoint sequence number csni.
This csni actually represents the current check
pointing interval of process Pi. The ith

checkpointing interval of a process denotes all the
computation performed between its ith and (i+l)th
checkpoint, including the ith checkpoint but not the
(i+l)th checkpoint. The csni is initially set to 1 and
is incremented when process Pi takes a checkpoint.
In this approach we assume that only one process
can initiate the check pointing algorithm. This
process is known as the initiator process.

Fig. 1 Control message exchanges in our approach

We define that a process Pk is dependent on
another process Pr, if process Pr since its last
checkpoint has received at least one application
message from process Pk. In our proposed
algorithm we assume primary and secondary
checkpoint request exchanges between the initiator
process and the rest n-1 processes. A primary
checkpoint request is denoted by Ri (i = csnj)
where i is the current checkpoint sequence number
of process Pj that initiates the checkpointing
algorithm. It is sent by the initiator process Pj to all
its dependent processes asking them to take their
respective checkpoints. A secondary checkpoint
request denoted by Rsi is sent from a process Pm to
a process Pn which is dependent on Pm to take a
checkpoint. Rsi means to its receiver process that i

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

98

is the current checkpoint sequence number of the
sender process. The control message exchange is
explained with an illustration shown in Fig. 1.
Consider a distributed system with three processes
P1, P2, and P3. We assume that P1 initiates the
checkpointing algorithm. To start with, P1 takes a
checkpoint and sends a primary checkpoint request
to P2, asking it to take a checkpoint as it is directly
dependent on P1. P2 takes a checkpoint after it
receives the primary checkpoint request. After
taking its checkpoint P2 sends a secondary
checkpoint request to P3 as P3 is dependent on P2,
Process P3 then takes its checkpoint.

In this work, an application message is represented
by Mi,x , which means that it is the xth message sent
by process Pi . The checkpoint Ci,j represents the jth
checkpoint taken by Pi. We have assumed that the
events of taking a checkpoint and sending a
checkpoint request are done atomically. Also, each
process Pi piggybacks its current checkpoint
sequence number with only every first outgoing
application message to another process after taking

We now state the situations in general when a
process Pi needs to take a checkpoint. In our
approach a process Pi takes a checkpoint if any of
the following events occurs:

1. if Pi is the initiator

2. if it receives a primary checkpoint request from
the initiator

3. the first time it receives a secondary checkpoint
request and prior to that it has not received any
primary checkpoint request or any piggybacked
application message.

 4. the first time it receives an application message
piggybacked with the checkpoint sequence
number, and prior to that it has not received any
primary or secondary checkpoint request message.

Before the formal statement of the algorithm, its
working principle is illustrated with an example.
For a clear understanding, the above four different
possible scenarios are discussed.

3.3 An Illustration

The behavior of each process in our approach is
explained with the help of the following example.
Unless otherwise mentioned a checkpoint request
represents either a primary request or a secondary
request. Note that an application message with
piggybacked checkpoint sequence number, which
may force a checkpoint to be taken at the receiving

process may also be viewed as a checkpoint
request. In our work a checkpoint means a
permanent checkpoint.

Consider the distributed system as shown in the
Fig. 2. Assume that process P2 initiates the check
pointing algorithm. First process P2 takes its
permanent checkpoint C2,1. It then checks its
dependency vector DV2[] which is {1, 0,1,1,0,0,0}.
This means that process P2 has received at least
one message from processes P1, P3, and P4, and
since P2 has already taken its checkpoint C2,1 these
messages will become orphan if P1, P3, and P4 do
not take checkpoints. Therefore P2 sends primary
checkpoint request R1 (csn2 = 1) to P1, P3, and P4.
After sending the primary checkpoint request
process P2 increments its checkpoint sequence
number csn2 to 2 and finishes its participation
associated with the current execution of the
algorithm and continues with its normal
computation. It shows the non-blocking nature of
our approach.

On receiving the primary checkpoint request R1
from P2, process P3 first takes a checkpoint C3,1
and then it checks its own dependency vector
DV3[] which is {0,0,0,0,1,0,0}. Therefore process
P3 sends a secondary checkpoint request Rs1 to
process P5. Then its checkpoint sequence number
csn3 is incremented to 2. Similarly processes P1
and P4 first take checkpoints C1,1 and C4,1
respectively, then each process checks its
dependency vector to find the dependent processes.
Process P1 finds that its dependency vector DV1[]
is null. Hence it increments its checkpoint
sequence number to 2, and continues normal
execution. Process P4 finds that it has received a
message from process P5. Hence P4 sends a
secondary checkpoint request Rs1 to process P5. It
then increments its checkpoint sequence number
csn4 to 2, and continues normal execution.

At process P5 let us assume that the secondary
checkpoint request Rs1 sent by process P4 reaches
before the secondary checkpoint request sent by
process P3. On receiving the secondary checkpoint
request Rs1 from process P4, P5 checks its own
checkpoint sequence number csn5 with that of the
received checkpoint sequence number. P5 finds
that its current checkpoint sequence number (csn5
= 1) is not greater than the received checkpoint
sequence number which is also equal to 1. Hence
it decides to take a checkpoint and takes
checkpoint C5,1. After taking the checkpoint it
checks its dependency vector DV5[] and finds that
process P7 has sent a message to it. Hence it sends

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

99

Fig. 2 An example of our checkpointing approach

a secondary checkpoint request Rs1 to P7. After
sending the request it increments its checkpoint
sequence number csn5 from 1 to 2. Assume that
later process P5 receives the secondary checkpoint
request sent by process P3. As soon as process P5
receives the checkpoint request it compares its
current checkpoint sequence number csn5 with the
received checkpoint sequence number. It finds that
its current checkpoint sequence number (csn5 = 2)
is greater than the received checkpoint sequence
number which is 1. Hence it discards the
checkpoint request. The above discussion takes
care of the first three situations about when a
process takes a checkpoint. Below, we consider
the fourth situation.

Suppose that process P4 after taking the
checkpoint continues normal execution and sends
an application message M4,1 to process P7. Since
the application message is the first application
message to process P7 from P4 after taking the
checkpoint, it is piggybacked with the current
checkpoint sequence number (csn4) of process P4
which is 2. Process P7 on receiving the application
message piggybacked with the checkpoint
sequence number compares its current checkpoint
sequence number csn7 with the received
checkpoint sequence number. It finds that the
received checkpoint sequence number is equal to 2
and is greater than its current checkpoint sequence
number (csn7) which is equal to 1. Therefore
process P7 decides to take a checkpoint before
processing the application message M4,1. P7 then
takes its checkpoint C7,1 and increments its

checkpoint sequence number to 2 and then
processes the application message M4,1.

Eventually process P7 also receives the secondary
checkpoint request sent by process P5. P7 first
compares its current checkpoint sequence number
with the received checkpoint sequence number
which is 1. It finds that its current checkpoint
sequence number is greater than the received
checkpoint request. Hence P7 discards the
secondary checkpoint request as it has already
taken its checkpoint for the current execution of
the algorithm.

In the above example we observe that P7 sent a
message M7,1 to P5. So even if there was no such
piggybacked message as M4,1, process P7 would
eventually receive the secondary checkpointing
request Rs,1 from P5 and take its checkpoint C7,1.

Observe that because of the non-blocking nature
of the algorithm the following situation may arise
as well. Consider that there was no such message
as M7,1; that is, assume that P7 has not sent any
application message to any process at all. However,
assume that it receives the piggybacked message
M4,1 from P4. In our approach P7 will take its
checkpoint and then process the message and then
would behave like any other process involved in
the checkpointing approach. This helps in the
advancement of the consistent state of process P7.
This means that in the event of a failure occurring
after P7 takes its checkpoint C7,1, process P7 can
restart from this checkpoint, instead of its initial
state C7,0 after the system recovers from the failure.

M1,1

M3,1

M4,1

M5,1 M5,2

M4,1

P1

P2

P3

P4

P5

P6

P7

C1,0

C2,0

C3,0

C4,0

C5,0

C6,0

C7,0

C2,1

C3,1

C4,1

C5,1

R1

R1

R1

Rs

Rs1

Rs1

M7,1

C7,1

C1,1

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

100

The above discussion leads to the following
observation.

Observation 1: If a process Pk has not yet
participated in the current execution of the
checkpointing algorithm, it takes a checkpoint at
the first occurrence of an interrupt caused by a
checkpoint request which is either a primary
checkpoint request or a secondary checkpoint
request or a piggybacked application message and
later ignores any other checkpointing request, if
any, associated with the current execution of the
checkpointing algorithm.

We now describe the avalanche effect that may
occur in a coordinated checkpointing approach,
because of some typical communication pattern
among the processes.

Avalanche Effect: Consider the following
situation: suppose process Pi initiates the
coordinated checkpointing scheme. It takes a
checkpoint; checks its dependency vector and
sends primary requests to all processes that are
directly dependent on it. Suppose Pj receives the
primary request from Pi since it is directly
dependent on Pi; Pj takes a checkpoint; checks its
own dependency vector and sends a secondary
request to Pk. Process Pk in turn takes a
checkpoint; checks its dependency vector and
sends a request to Pr and it goes on in such a way
that Pi gets a secondary request from some process
Ps, because Pi is dependent on Ps and so it takes a
checkpoint again, and sends a secondary request to
another process looking at its dependency vector.
If this continues then the checkpointing scheme
can never terminate. This phenomenon is known
as avalanche effect.

Claim 1: Avalanche Effect does not occur in our
approach.

Proof: Assume that avalanche effect is possible in
our approach. Without any loss of generality, let
us assume that the message communication pattern
is such that process Pi has taken a checkpoint after
receiving a primary checkpointing request, and
then has sent a secondary checkpoint request to Pk;
process Pk takes its checkpoint and after checking
its dependency vector DVk[] sends a secondary
request to Pr, and Pr acts similarly and sends a
secondary request to Pq. Following the same way
finally some process Ps sends a secondary

checkpoint request to Pi because in its dependency
vector, DVs[i] = ≠ 0, and Pi in turn again sends a
secondary request to Pk and so on. Therefore, it
appears that the chain of requests form a loop as Pi,
Pk, Pr, Pq,…..,Ps, Pi , Pk, … for a possible
avalanche effect to occur.

Consider process Ps. It has received a secondary
request and taken a checkpoint, and then has sent a
secondary checkpoint request to Pi since DVs[i]
is not zero. Let us examine if this scenario leads to
a possible avalanche effect.

Since DVs[i] is not zero, therefore Ps has received
at least one application message, say Mi from
process Pi before Pi takes its checkpoint. Observe
that process Pi must have sent this message (s) to
Ps before it has initiated the checkpointing process;
otherwise this message would have been a
piggybacked one and then according to our
approach Ps would have taken a checkpoint first
when it received the piggybacked message and
then process it. Obviously then Ps would just
ignore the secondary request it has received,
because by then it has finished its participation in
the checkpointing process and as a result it would
not send any secondary checkpointing request to Pi.
However, this is not the case with Ps, because it
has sent a secondary request to Pi. As pointed out
above, since Pi sent this message (s) before taking
its checkpoint, therefore this message can not be
an orphan and as a result Pi does not need to take
any checkpoint when it receives the secondary
request from Ps. Therefore Pi will just ignore the
request. Hence there can not exist a chain of
requests forming the loop of processes as Pi, Pk, Pr,
Pq,…..,Ps, Pi , Pk, … which might otherwise lead to
a possible avalanche effect. Hence the assumption
that avalanche effect is possible is not valid in our
approach. ■

In the following algorithm we have considered all
four situations mentioned in Section 3.2 about
when a process takes a checkpoint.

4. Algorithm Non_Blocking

As in any conventional coordinated check pointing
scheme at any instant of time any one process can
initiate the check pointing algorithm.

The responsibility of the initiator process and all
other processes are stated below.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

101

Initiator process Pi
Step 1: take a checkpoint, check the dependency vector DVi[];
Step 2: when DVi[k] = = 1 for 1<= k<= n
 Send a Primary request-Rn to process Pk;
 /* checks the dependency vector and multicasts a checkpoint request */
Step 3: increment the checkpoint sequence number csni;
Step 4: continue normal computation;
 if any secondary checkpoint request is received
 discard it and continue normal execution;
Any Process Pj j! = i and 1 <= j <= n

 if Pj receives a primary checkpoint request from Pi
 take a checkpoint; /* if Pj is busy with other high priority job, it takes a checkpoint after the
 job ends; otherwise it takes a checkpoint immediately */
 if DVj[] = null;
 increment csnj;
 continue computation;
 else
 send secondary checkpoint request to each Pk such that DVj[k] = 1;
 increment csnj;
 continue computation;

 else if Pj receives a secondary checkpoint request
 if Pj has already participated in the checkpointing algorithm
 /* csnj is greater than the received checkpoint sequence number*/
 ignore the checkpoint request and continue computation;
 else
 take a checkpoint; /* if Pj is busy with other high priority job, it takes a checkpoint after
 the job ends; otherwise it takes a checkpoint immediately */
 if DVj [] = null;
 increment csnj;
 continue computation;
 else
 send secondary checkpoint request to each Pk such that DVj[k] = 1;
 increment csnj;
 continue computation;

 else if Pj receives a piggy backed application message
 if Pj has already participated in the checkpointing algorithm
 /* csnj is greater than the received checkpoint sequence number*/
 process the message and continue computation;
 else
 take a checkpoint; /* if Pj is busy with other high priority job, it takes a checkpoint
 after the job ends; otherwise it takes a checkpoint immediately*/
 if DVj [] = null;
 increment csnj;
 process the message;
 continue computation;
 else
 send secondary checkpoint request to each Pk such that DVj[k]=1;
 increment csnj;
 process the message;
 continue computation;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

102

Theorem 1: Algorithm Non-Blocking produces a
consistent global state of the system.

Proof: In the first two steps of the algorithm for
initiator process, the initiator process Pi identifies
all the application messages received from
different processes that might become orphan if it
takes a checkpoint by looking at its dependency
vector. The initiator then sends primary
checkpoint requests to all those processes that
have sent at least one message to it asking them to
take their respective checkpoints. Hence any
application message received by Pi cannot be an
orphan.

Consider the pseudo code for any process Pj.
Process Pj makes sure that all processes from
which it has received messages also take
checkpoints so that there are no orphan messages
that it has received. In the second else if block of
the pseudo code, process Pj first takes its
checkpoint if needed, then processes the received
piggybacked application message. Hence such a
message cannot be an orphan. Hence the algorithm
generates a consistent global state (CGS) of the
system. ■

Claim 2: Number of processes taking checkpoints
is minimum.

Proof: According to Observation 1 a process takes
a checkpoint if and only if it is the initiator, or it
receives either a primary checkpoint request or a
secondary checkpoint request or a piggybacked
application message. This means that any process
that is not an initiator or that does not receive any
of the above mentioned control messages, does not
take a checkpoint. Hence the proof follows. ■

Summery of the main advantages our algorithm
are as follows:

1. Our algorithm follows a one phase approach
when compared to the three phase and five
phase approaches in [3], [8] and [4].

2. Our algorithm does not take any temporary
checkpoints, and hence the overhead of
converting temporary checkpoint to
permanent checkpoint is eliminated, unlike in
[4] and [8].

3. Our algorithm does not use mutable
checkpoints as in [3]. Hence the overhead of
converting them to permanent ones is
eliminated. Also our work does not allow any
process to take useless checkpoints.

4. The number of interrupts to processes is less
than those in the algorithms [3], [4], and [8].

A detailed estimate of the number of control
messages (hence, interrupts to the processes)
needed by our algorithm and the related works is
given in the next section.

5. Performance

The main advantage of our algorithm over the
algorithms [3], [4], and [8] is that the cost for
determining a consistent state of the system is
much less compared to the ones in [3], [4], and [8].
We have presented the comparison of performance
of the above three algorithms with our algorithm
in Table 1. .

For ease of interpretation of the performance
parameters we consider an n+1 process distributed
system. Let nmin represent the minimum number of
processes that need to take a checkpoint, Cair be
the cost of sending a message from one process to
another, and nbroad be the cost of broadcasting a
message to all processes in the system.

The cost to complete the checkpoint process using
algorithm [3] is given as 2*nmin*Cair + min
(nmin*Cair, nbroad) in the best case. As mentioned
earlier, in algorithm [3] first the initiator sends
control messages to minimum number of
processes that need to take a checkpoint each. The
cost for this is nmin*Cair . When each process takes
a tentative checkpoint it replies back to the
initiator acknowledging the request to take a
checkpoint. Hence a cost of 2*nmin*Cair is needed.
When the initiator receives the acknowledgement
from all the processes, it informs them to convert
their respective tentative checkpoints into
permanent checkpoints which contributes further
a cost of nmin*Cair. If the cost of broadcasting the
message is less than sending the messages to nmin
processes then the message can be broadcasted. In
this way, the algorithm in [3] generates a
consistent set of checkpoints. The total cost for
such a generation is 2*nmin*Cair + min (nmin*Cair,
nbroad) in the best case (secondary and tertiary
dependencies are not considered).

In [4] the initiator broadcasts dependency vector
request to all the n processes the cost of which is
nbroad. The initiator receives the vectors from the n
processes the cost of which is n*Cair. Initiator
calculates the minimum dependency set from the
dependency vectors and sends checkpoint request
message to the minimum number of processes that
need to take checkpoints, the cost of which is

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

103

Table 1: Performance Comparison of the Checkpointing Algorithms.

 Mutable [3] Non intrusive [4] CCUML [8] Our algorithm

Cost (best case) 2*nmin*Cair + min(nmin*Cair, nbroad) n*Cair + 2 * nmin*Cair + 2 * nbroad n*Cair +2*nbroad nmin*Cair

Useless checkpoints present nil nil nil

Temporary checkpoints present present present no

Non-Blocking Yes Yes Yes Yes

Number of checkpoints nmin nmin n+1 nmin

nmin*Cair. These processes reply to the initiator
after taking temporary checkpoints, the cost of
which is nmin*Cair. Finally the initiator broadcasts a
commit message to all the processes, the cost of
which is nbroad. In this way the algorithm in [4]
generates a consistent set of checkpoints. The cost
for such a generation is n*Cair + 2 * nmin*Cair + 2 *
nbroad.

In [8] the initiator broadcasts the checkpoint
request to all processes the cost of which is nbroad.
The initiator receives replies from the n processes
the cost of which is n*Cair. Finally the initiator
broadcasts a commit message to all processes to
convert their temporary checkpoints to permanent
ones, the cost of which is which is nbroad. Hence
the total cost in [8] is n*Cair + 2*nbroad. Note that it
does not guarantee that only minimum number of
processes will take checkpoints.

In Fig. 3 and Fig. 4 the ordinate represents the cost
of sending control messages to complete the check
pointing algorithm in the best case for the four
algorithms. In Fig. 3 we assume nbroad = n *Cair ;
that is cost of broadcasting a message is equal to
the cost of sending n messages.

Fig. 3 Comparison of costs when nbroad = n * Cair

In Fig. 4 we assume the cost of broadcasting is
equal to the cost of sending a single message; that
is nbroad = Cair. Fig. 3 clearly demonstrates the
better performance of our approach than the ones
in [3], [4], and [8]. In Fig. 4, the cost for sending
control messages in our approach and the one in

[8] are same. However, the work in [8] does not
offer minimum number processes to take
checkpoints.

Fig. 4 Comparison of costs when nbroad = Cair

6. Suitability for Mobile Computing
Environment

Consider a distributed mobile computing
environment. In such an environment, only limited
wireless bandwidth is available for communication
among the computing processes. Besides, the
mobile hosts have limited battery power and
limited memory. Therefore, it is required that, any
distributed application P running in such an
environment must make efficient use of the
limited wireless bandwidth, and mobile hosts’
limited battery power and memory. Below we
justify why the proposed algorithm will be more
effective than the ones in [3], [4], [8], and [10] in
mobile computing environment.

The following advantages make our approach
more suitable for the mobile computing
environment:

(1) Our algorithm is a single phase algorithm
which clearly indicates that it terminates fast
which is an important advantage when considering
limited battery power of mobile hosts. None of the
other related works [3], [4], [8], [10] is a single
phase algorithm.

0

50

100

150

200

250

5 8 13 16 21 24 29 33 38 41 46 49 54 57 62 65
No. of Processes

Cost
Mutable
Non-Intrus.

Our alg.

CCUML

0
50

100
150
200
250
300

5 8 13 16 21 24 29 33 38 41 46 49
No. of Processes

Mutable

Non-Intrusive

Our alg.

CCUML

Cost

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

104

(2) As is seen from Table 1, the presented
algorithm uses the minimum number of control
messages. It definitely offers much better
bandwidth utilization than the above mentioned
related works.

(3) Minimum number of control messages means
that mobile hosts face minimum number of
interrupts compared to the other works. It saves
the limited battery power of the mobile machines
significantly.

(4) In our algorithm, processes neither take any
useless checkpoints unlike in [3], nor they take
any unnecessary local checkpoints unlike in [10].
This offers better utilization of the mobile hosts’
limited memory.

7. Conclusion

In this paper, we have presented a single phase
non-blocking coordinated checkpointing approach
suitable for mobile computing environment. The
main features of the algorithm are: (1) it is free
from the avalanche effect and minimum number of
processes take checkpoints; (2) it does not take
any temporary, tentative, or mutable checkpoint
unlike in some other important related works [3],
[4], [8]. Absence of temporary, tentative, or
mutable checkpoints (hence some possible useless
checkpoints) means that much fewer number of
control messages are needed. These advantages
make the proposed algorithm more suitable for
mobile computing environment than the
algorithms mentioned above.

References
[1] K.M. Chandy, and L. Lamport, "Distributed
Snapshots: Determining Global States of Distributed
Systems," ACM Transactions Computer Systems, vol. 3,
no. 1, pp. 63-75, Feb. 1985.

[2]. G. Cao, and M. Singhal, “On coordinated
checkpointing in distributed systems,” Parallel and
Distributed Systems, IEEE Transactions on Parallel and
Distributed Systems, vol. 9, Issue 12, pp. 1213 – 1225,
Dec. 1998.

[3] G. Cao, and M. Singhal, “Mutable checkpoints: a
new checkpointing approach for mobile computing
systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 12, Issue 2, pp. 157-172, Feb 2001.

[4] P. Kumar, L. Kumar, R.K. Chauhan, and V.K. Gupta,
“A non-intrusive minimum process synchronous
checkpointing protocol for mobile distributed systems,”
ICPWC 2005, IEEE International Conference on
Personal Wireless Communications, pp. 491-495, Jan
2005, New Delhi.

[5] E.N.Elnozahy, D.B.Johnson, and W. Zwaenepoel,
“The Performance of Consistent Checkpointing,”
Proceedings of 11th Symp. On Reliable Distributed
Systems, pp. 86-95, October 1992, Houston.

[6] L. M. Silva and J.G. Silva, “Global Checkpointing
for Distributed Programs,” Proceedings of 11th Symp.
On Reliable Distributed Systems, pp. 155 –162, October
1992, Houston.

[7] R. Koo and S. Toueg, “Checkpointing and Rollback-
Recovery for Distributed Systems”, IEEE Transactions
on Software Engineering, SE-13, (1), pp. 23-31, January
1987.

[8] S. Neogy, A. Sinha, P.K. Das, “CCUML: a check
pointing protocol for distributed system processes,”
TENCON 2004. 2004 IEEE Region 10 Conference vol.
B, no.2, pp. 553 – 556, November 2004, Thailand.

[9] B. Gupta, S. Rahimi, and Z. Liu, “A New Non-
Blocking Synchronous Checkpointing Scheme for
Distributed Systems,” Proc. ISCA 20th Int. Conf.
Computers and Their Applications, pp. 26 – 31, March
2005, New Orleans.

[10] R. Prakash, and M.Singhal, “Low-Cost Check
pointing and Failure Recovery in Mobile Computing
Systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 7, no. 10, pp. 1035-1048,
October 1996,

[11] D. Manivannan, and M. Singhal, “Asynchronous
Recovery Without Using Vector Timestamps,” Journal
of Parallel and Distributed Computing, vol. 62, no. 12,
pp. 1695-1728, December 2002.

Bidyut Gupta received his PhD in
Computer Science and his MTech
degree in Electronics Engineering
from the University of Calcutta,
India. Currently, he is a professor
of computer science and the
graduate director for Computer
Science department at the
Southern Illinois University
Carbondale.

Shahram Rahimi received his
PhD in Scientific Computing and
his MS degree in Computer
Science from the University of
Southern Mississippi in 1998 and
2002 respectively, and his BS from
National University of Iran
(Tehran) in 1992. Currently, he is
an assistant professor at Southern

Illinois University and the Editor-in-Chief of the
International Journal of Computational Intelligence
Theory and Practice.

Ziping Liu is an assistant professor at the Computer
Science Department, South East Missouri State
University.

