
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 
 

 

120 

Manuscript received  May 5, 2006. 
Manuscript revised  May 25, 2006. 

VWS: Applying virtualization techniques to Web Services 

Julio Fernandez Vilas, Jose Pazos Arias and Ana Fernandez Vilas 
  

  
Department of Telematic Engineering,   University of Vigo,  Vigo, Spain 

Summary 
What web services can offer nowadays is insufficient to build 
complex applications based on web services. Several 
technological aspects have not been standardized yet, and the 
study of some of them is still at a very early stage. This paper 
presents a new technique that can be applied to web services 
technology in order to be able to build web services with features 
like QoS, high availability, proxy/firewall usage or SLA 
management, among others. This technique is based on the 
virtualization of the real web services used to serve the client 
requests, creating new virtual web services that will be the ones 
invoked by the clients. At the back-end, the implementation web 
services (the real ones) will be invoked in order to fulfill the 
primary invocation. 
Key words: 
Web services, virtualization, QoS, high availability. 

Introduction 

At this moment, we can easily use web services to 
integrate different systems, that is, as an enterprise 
application integration (EAI) tool. Integration is the main 
area where web services are being broadly used, due 
fundamentally to the high level of acceptance of the 
standards around web services technology. 

Nowadays, as web services are not a mature 
technology, some problems arise that can result in loss of 
control on some critical aspects of applications, such as 
QoS, availability, error management, multi-provider etc. 
These new problems, which are impossible to obviate, 
prevent web services technology from being massively 
adopted. 

Throughout this paper, we will analyze the lacks of 
the current web services architecture that impede the total 
exploitation of the technology, and we will present an 
alternative architecture which is fully compatible with the 
current one (in fact, it has been designed to coexist with it). 
This new architecture allows building web services that 
support a range of necessities (availability, multiple 
providers, quality of service, etc.) not covered by the 
current architecture in a standard way. 

The remainder of the paper is structured as follows. 
Section 2 analyzes some problems of the current 
architecture. Section 3 introduces the virtualization 
technique, whose implementation is discussed in section 4, 
together with other related issues. Several uses of the 

virtualization technique are commented in section 5, while 
section 6 holds a specific discussion about the different 
ways the architecture can be implemented. Finally, section 
7 discusses related work in this area, and section 8 
presents our conclusions and future work. 

2 Current Situation 

In the basic architecture proposed by the W3C, we can 
differentiate three main roles: client, provider and 
discovery agency. Two new elements were introduced in 
the last revision of the architecture [1]: human beings 
representing the client and the provider, referred to as 
requester human and provider human, respectively. These 
humans are responsible for agreeing on the service’s 
semantics and negotiating its description. Eventually, after 
reaching an agreement, the provider entity will publish a 
WSDL document containing the description of the service, 
which will be used by the client entity to perform a bind 
process. 

This architecture is divided into four layers: 
communications, messages, service descriptions and 
processes. This division is actually a way to organize the 
technological needs of web services for them to become a 
complete technology (reliability, transactionality, quality 
of service, availability, etc.), as long as all the 
infrastructure and the languages needed to support 
application development in the same conditions as other 
equivalent technologies (DCOM [2] or EJB [3]). 

The following subsections analyze several 
characteristics and problems of web services within the 
current architecture. 

2.1 Roles in Standard Architecture 

The current architecture has several problems that 
stem from the limitation in the definition of roles: 

 
• Dynamic binding cannot be done in a standard way, 

because the binding process must be carried out at 
design-time, not being it possible to perform it at 
runtime. A possible way to perform dynamic bind is 
based on the use of metadata [4], which impede the 
natural use of web services 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 

 

121

• When a client is bound to a provider, the execution of 
the client application remains bound to the web 
service of the service provider for the whole client 
application’s life. If the client decides to change his 
provider, he will find the necessity of binding a new 
web service to the client application. This would 
imply re-developing code, performing binding again 
and adapting the client application's logic. 

• To use more than one provider of the same 
functionally equivalent web service inside an 
application, every web service must be bound 
individually to the client application. Additionally, the 
code needed to handle the invocations and its errors 
must also be developed. 

This kind of problems arise from the non-distinction 
of two clearly distinguishable roles: “service provider” 
and “web service provider”. For example, a financial 
broker is a service provider (he provides a trading service 
in a stock market). Such a provider can offer his services 
through the telephone, through a network of branch 
offices or through a web service. In the latter case, the 
provider of the web service need not be the service 
provider. 

2.2 Invocation Model 

In the web services technology, a unique invocation model 
is considered: direct invocation. According to this model, 
client applications invoke web services directly, in such a 
way that if any of the provider’s components (network, 
applications server, database server, etc.) misbehaves, the 
invocation will fail. As a result, the technology has a 
limited availability, because requests cannot be re-routed 
to alternative web service providers. In addition, 
controlling quality of service and service level agreements 
is responsibility of the client or the provider, due to the 
absence of an intermediate element in charge of it. 

A solution to these problems can be achieved by 
changing the invocation model from direct to indirect, by 
means of introducing an intermediate element in the 
invocations. This idea is being used in some commercial 
initiatives, such as IBM’s Web Services Gateway [5], 
Xtradyne’s WS-DBC [6] or EntireX XML Mediator [7] 
from Software AG. All of them are characterized by the 
use of proprietary and single-purpose solutions designed 
to solve specific problems (security, message 
transformation…). The use of intermediaries is also 
reflected in the last architecture proposed by the W3C. 

2.3 Asynchronous Invocations 

Another lack of the current architecture is the possibility 
to make asynchronous invocations in a simple way. 

Therefore, when a client makes an invocation, it must wait 
for the response, which is usually a SOAP message over 
HTTP. This kind of invocations is not valid to build 
business processes (also referred to as long-running 
transactions) whose duration may be long and 
unpredictable. Although some initiatives exist, like 
BPEL4WS [8], that provide support for business processes, 
their asynchrony is achieved through polling mechanisms. 
Other initiatives, like WS-Callback [9], SOAP 
Conversation Protocol (SCP) [10] or Asynchronous Web 
Services Protocol (AWSP) [11] have been specifically 
designed to support asynchronous invocations with no 
polling, i.e. the web service replies to the client application 
as soon as the answer is ready. In this case, the client must 
be accessible from the Internet, in order to receive the call-
back from the web service. On the other hand, these 
initiatives did not consolidate properly due, possibly, to a 
lack of institutional support. 

2.4 Error Control and Error Management 

An invocation of a service normally follows this scheme:  
 
• Invoke the service. 

• Check the error obtained as a result of the invocation. 

• If there has been an error, decide whether the 
invocation can be retried. 

• Retry a finite number of times, if so decided. 

• If the invocation cannot be carried out, return an error 
to the next higher logical level of the client 
application or to the user if current one is the highest 
level. 

If, in a given moment, a client decides to change a 
service provider, the application must be modified by 
deleting the references and data types of the current web 
service provider to add those of the new one, being it also 
necessary to rebuild the proxies. If the client aim is to 
enhance the application with greater functionalities and 
availability, he must opt for adding more than one web 
service provider to the client application, which 
complicates management. The application must be 
modified for every new provider that is added, leading to 
the following invocation scheme: 

 
• Invoke the service. 

• Check the error obtained as a result of the invocation. 

• If there has been an error, decide whether the 
invocation can be retried. 

• Retry a finite number of times, if so decided. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 

 

122 

• If the invocation cannot be carried out and more 
providers are available, retry the invocation with the 
next one. 

• If the invocation has not been possible with any of the 
providers within predefined interval, return an error to 
the next higher logical level of the client application 
or to the user if the current is the highest level. 

All this logic for error control and management must 
be implemented by the developers of the client 
applications. Moreover, it becomes an ad-hoc 
programming that must be created for every new provider. 

2.5 High Availability 

Achieving high availability with web services is still an 
open issue. Nowadays, the solutions being adopted aim at 
improving the availability of the implementation of the 
web service, not the availability of the web service as a 
whole. In other words, they use high-availability systems 
(whether clusters or fault-tolerant systems) to improve the 
availability of the components responsible for the 
implementation of the service. This allows improving the 
availability from the provider’s point of view: if a node of 
a cluster fails, the web service can continue working at 
any other node; similarly, if a fault-tolerant system is used, 
the failure of one of the components will not affect the 
global operation of the system. The situation is greatly 
different from the client’s point of view, because 
availability is zero if the invocation of the service fails 
(network errors, server failures, maintenance tasks, etc.), 
regardless of whether the provider implements high-
availability techniques or not. 

These problems arise from the fact of protecting the 
implementation of the service, and not the elements that 
client applications use: its interface. 

2.6 Quality of Service 

Features such as a client being able to do invocations 
specifying a given QoS level, or a provider offering a 
range of different QoS levels to its clients, are 
undoubtedly necessary, but not possible nowadays with 
the current architecture. Even though there exist several 
works in this direction [12], they have not materialized 
into implementable proposals and some of them [13, 14] 
are theoretical studies on the metric systems to use. 

The current architecture, with no intermediaries, 
limits the QoS theories to the QoS capabilities of the 
underlying protocols (HTTP, TCP/IP). In [15] WS-QoS is 
introduced as a mechanism to achieve QoS features in web 
services, based on the use of a “service broker”. WS-QoS 
is a specific proposal to solve the QoS problem. 

QoS works in the web services area just care about 
the metrics of the implementation technology (response 
time, throughput…), but they do not consider metrics 
related to provider entities (price, quality, confidence…). 

2.7 Service Level Agreement 

The capability of a system to offer the chance to use 
service level agreements (SLA) is absolutely determined 
by the ability of that system to implement QoS techniques. 
This is because the SLAs must be stated in terms of 
measurable variables, for which reliable mechanisms are 
needed in order to provide objective measurements of the 
necessary metrics. These metrics are closely related to 
those used when applying QoS models, like response time, 
availability, security, cost, etc. 

At the same time, as we said before, it is necessary to 
separate the roles of “service provider” and “web service 
provider”, so that service-level agreements can be written 
considering metrics that reflect separately the operation of 
the web service itself and the operation of its provider. 
This need of separation is therefore applied to the quality 
of service implementation necessities, that is, we must be 
able to measure the behavior of a web service and of its 
provider in QoS terms. 

There are several works on SLA, but they are only 
theoretical works about a SLA framework [16, 17] or SLA 
specification languages [18]. 

3 Virtualization 

The technique we propose, namely virtualization, is based 
on grouping one or more web services inside a unique 
wrapper, which is then published as a standard web 
service. Clients use the new virtual web service as a 
standard one, i.e. there is no difference between real and 
virtual from the client’s point of view. With virtualization, 
some additional logic can be performed out of the client 
applications (error management, provider selection, etc.), 
and this way the software complexity is radically reduced, 
since developers need only to care about business logic. 

Wrapping a group of web services has nothing to do 
with the well-known web service wrappers, which are 
software components used to isolate the communication 
layer of the web services (SOAP, HTTP …) from the web 
services implementation. The wrapper term is used here to 
refer to a virtual view of a set of web services, so that 
clients have a unique view of that group. The virtual view 
is in fact published as a standard WSDL document. 

Virtualizing a web service requires a change in the 
web services architecture, since a virtual web service must 
reside in an intermediate element different from the client 
and the provider. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 

 

123

3.1 Architectural Change 

Let us consider a client application bound to a specific 
web service. Let us suppose that the provider modifies the 
parameters sent/received at the web service. After 
modifying the business logic, the provider should rebuild 
the wrapper classes and the WSDL document. A simple 
change in the name, the type or the namespace of a 
parameter will cause a change in the way SOAP messages 
are produced. The invocations will not run properly if 
client proxies and client applications remain unchanged, 
since SOAP messages sent from clients to servers and 
back do not follow the same schema. From this point of 
view, clients and servers are strongly coupled (like a 
method or a function inside a program).  

This strong coupling is caused by the nature of 
invocations: in the standard web services architecture, 
clients use “direct invocations” to invoke web services. 
What we propose here is to change the architecture, 
changing the invocation model from direct to indirect. We 
also suggest the use of intermediate elements inside the 
standard architecture (as proposed in [1]) to receive, 
process, and re-route SOAP messages. 

The architecture we propose is mainly based on the 
introduction of a virtualization layer. This layer must be 
seen as a non-intrusive element; in other words, its 
introduction must respect, at least, the following 
directives: 
 
• It must not alter the current infrastructure, that is, it 

must coexist with the languages and protocols 
currently in use. 

• It must not have an effect on the web services over 
which it is built. There must be no need to modify a 
web service to adapt it to the new architecture; on the 
contrary, the new architecture must be able to adapt 
itself to the services existing within the current one. 

• It must not affect client applications. It must be 
possible to use the virtual views of the services used 
by client applications the same way as real web 
services. 

• It must not alter the way providers operate at present, 
allowing a web service to comply with the standard 
architecture and with the new one at the same time. 

3.2 VWS Components 

The architecture we propose for the use of virtual web 
services (VWS) determines the existence of five elements: 
 
• Client: the entity that needs a service. This is 

equivalent to a client in a SOA structure [19]. 

• Delegate client: the agent on whom the client 
delegates the responsibility for executing a service. 
Generally speaking, it represents client applications. 

• Service provider: the entity that offers a service. It 
must be seen as a provider in a SOA architecture. 

• Delegate provider: the agent on whom the provider 
delegates the responsibility for offering a service. In 
web services technology, a delegate provider is a web 
service. 

• Engine or intermediary: the entity in charge of 
putting delegate clients and delegate providers in 
contact. It performs communication processes 
between both delegates following different algorithms, 
and pursuing different objectives depending on the 
runtime environment. 

 

Fig. 1 Complex VWS engine. 

A engine inside our proposed architecture can be 
something as simple as adding some kind of decision 
capabilities to the client proxies. Alternatively, it can be 
something as complex as a dedicated server (fig. 1). An 
engine of this kind is referred to as a VWS engine. 

A VWS engine is not a virtual server. It is a standard 
one, and it should be implemented the same way as a 
server used to process standard web service invocations. 
The term “VWS engine” refers to the capability of a server 
to understand virtual services definitions. That is, it can 
receive, process, and respond to standard web service 
invocations, but, in order to process a request, the engine 
uses VWS descriptions to select and invoke the most 
suitable web service provider. 

4 Implementing Virtualization 

Virtualization will guide us to the use of a new kind of 
services: virtual web services (VWS). Any application that 
is capable of using a standard web service can be bound to 
a virtual web service. Conversely, any provider 
component that can be exposed as a standard web service 
can also be published as a virtual web service. Our 
virtualization technology provides an XML-based 
definition language, called VWSDL (VWS Definition 
Language), for writing VWSDL documents. Clients do not 
use VWSDL documents, since these documents are just a 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 

 

124 

definition of an implementation of a virtual service, and 
that definition is only useful to a VWS engine. Our 
proposed language has been defined as a stand-alone 
language, that is, not as a WSDL extension, since it is 
intended for a distinct use. Even though the main objective 
of WSDL and VWSDL is the same (describe a web 
service), the way services are described are completely 
different. 
 
<method name="getPrice" type="equivalent" 
        default="COS#1"> 
  <select name="COS#1"   
   expression="0.7*adjust(av)+0.3*adjust(rt)" /> 
 
  <select name="COS#2" 
   expression="reverseAdjust(cost)" /> 
 

<cache from="21:30:00" to="23:00:00"  
       check="data" /> 
<cache from="08:00:00" to="15:00:00" 
       check="content" /> 

 
  <input> 
    <parm name="ticker" type="xsd:string"/> 
  </input> 
 
  <output> 
    <parm name="name" type="xsd:string"/> 
    <parm name="value" type="xsd:float"/> 
    <parm name="date" type="xsd:date"/> 
  </output> 
 
  <invoke id="inv2" method="sendItToMe" 
          location="http://a.com/s1.wsdl"> 
    <mapin name="map1i" type="transform" /> 
    <mapout name="map1o" type="transform" /> 
  </invoke> 
  <...> 
</method> 

Fig. 2 Example of a virtual method declaration (VWSDL fragment). 

VWS documents are used to describe virtual web 
services, and they must contain, at least, a list of the 
methods provided by the service (the virtual equivalence 
of a WSDL portType) using the method elements, as 
shown in fig. 2. In addition, for each method published 
inside a service, the input and output parameters, and their 
corresponding data types must be specified (just as with 
WSDL, a types section exists to allow the definition of 
data structures following a specific schema, using XML 
Schema Definition, XSD). 

method elements are also used to specify a list of 
web services (delegate providers) and methods that can be 
invoked in order to accomplish the execution of a virtual 
method. In fact, all those web services and their methods 
represent the implementation of a virtual method, and 
they can be specified (inside the method element) using 
as many invoke elements as needed (fig. 2). 

Each method element has its own name and type 
attributes. The type attribute is used to specify the type 
of implementation that is being defined for the method. 

For instance, the sequence value states that, in order to 
execute a virtual method, the engine must invoke a set of 
delegate providers (specified inside invoke elements) 
following a predefined sequence. Other values for the type 
attribute can be used to specify different engine behaviors 
(equivalent, alternate, parallel, iterative…). 

In order to understand the operation of a VWS engine, 
let us consider a virtual method defined using the 
equivalent type, which is used to build a virtual 
method by using a set of “equivalent” providers with the 
same functionality. At runtime, when an invocation arrives 
at a VWS engine, the engine must first analyze the request 
in order to select the corresponding VWSDL document. 
Then using an expression selected from a select 
element of the document, the engine must evaluate a set of 
providers (the ones specified inside invoke elements) 
according to that expression. The provider with the highest 
scoring according to the expression will be selected and 
invoked (after properly transforming parameter, if needed). 
If the invocation fails, the engine can select another 
provider or return a SOAP fault message to a client, 
depending on the definitions contained inside the method 
element. 

4.1 Parameter Handling 

Parameters in SOAP are nominal: input parameters sent to 
web services use the name of the elements (XML 
elements), and the same holds for return parameters. Let 
us suppose that we build a virtual method that receives a 
parameter called “P1” and returns a parameter called “RP”. 
This represents a little restriction in the way we write the 
method and invoke elements inside VWS descriptions, 
since the name of the parameters used in the virtual 
method must match the ones used in real methods. If a 
match can be found, the invoke elements can be used 
without a problem. When such a match cannot be found, a 
mapin element should be used to solve this situation, 
transforming client’s messages according to the schema 
providers expect to receive. For return parameters a 
mapout element can be used. Input and output mappings 
can be specified by using those VWSDL elements, which 
point to a transformation specification (typically described 
using XSL stylesheets). 

The VWS engine should check all type assignments 
described in the VWS documents, and this type-checking 
process should be made only once per VWS document: 
when the document is first deployed to the engine. 

The use of the mapping elements brings a lot of 
functionality to the virtualization technique, since mapping 
parameters between virtual and real services lessens the 
coupling level between client applications and web 
services. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 

 

125

5 Uses of virtualization 

The technique we have just described is the basis for 
solving the problems described in section 2. One of the 
most important contributions of our proposal, from a 
structural point of view, is the role separation between 
service provider and web service provider, which results 
in the introduction of intermediate elements that allow 
services to be offered by a kind of entities (service 
providers), while web services can be offered by a 
different kind (web services providers, i.e. VWS engines). 

One of the immediate uses of virtual web services is 
the simplification of the error control and management 
processes. Thanks to the use of virtual services, engines 
can retry invocations (under certain circumstances) using 
alternative providers when an invocation fails. This type 
of error control and subsequent recovery is done 
transparently to the client, who only has to invoke a 
standard web service (handled by the engine as a virtual 
one). 

Besides error management, differentiating the service 
provider from the web service provider allows modifying, 
removing and adding new service providers for the same 
virtual web service with no need to change the client 
applications, thus simplifying the developing process of 
client applications and provider management. 

Long-running processes are no longer a concern for 
clients, because the engine will deal with the invocation of 
all the web services needed to complete their execution. 
For the long-running processes to be controlled from the 
clients, VWSDL allows defining two ways to notify 
termination. The first is to set a callback URL which the 
VWS engine will invoke when a process finishes, either 
normally or abnormally. Second, for those clients that do 
not support the facility to receive invocations, VWSDL 
allows asking for the state of the running processes 
through a “query web service”; this service should be 
invoked periodically, as in a typical polling system. The 
use of VWS engines allows the creation of asynchronous 
web services that are implemented using synchronous 
ones, since the engine can deal with two kinds of 
invocations. 

The use of expressions in the select elements is 
the base for constructing systems that support Quality of 
Service techniques. Two mechanisms are used for that 
purpose: expressions that allow defining different “classes 
of service” in the VWS engine (like service levels in [16]), 
and the selection of classes of service to be used by the 
client (using SOAP-Header elements). The variables that 
appear in the expressions can be variables related to the 
web service provider (response time, availability …), 
variables related to the service provider (delivery time, 
service cost …), or independent variables managed by a 
third party entity. At the same time, variables can be 

quantitative or qualitative, in which case a numerical 
valuation process [20] must be performed. Finally, 
expressions must use variables represented in the same 
units, ranges and scales, for which several adjustment 
functions are provided by the expression evaluator module 
of the VWS engine. In [21] we have dealt with the 
application of virtualization techniques to QoS problems.  

Having a way to measure quality of service is an 
indispensable prerequisite for the use of SLAs. The VWS 
engine is a component of the architecture capable of 
controlling the operation of the services it invokes 
(response time, cost, …), which allows it to be used at the 
same time as an element capable of checking the 
fulfillment of certain objectives regarding providers’ 
utilization. In other words, we can put the VWS engine in 
charge of revising, in each invocation, the fulfillment of 
the service-level objectives (SLOs) stated in an SLA. In 
this way of doing things, the client entities and the 
provider entities must sign an SLA, and sent the VWS 
engine a description of it. The engine will be in charge of 
verifying the fulfillment of the SLA and also of notifying, 
whenever needed, the fail to fulfill any of the conditions in 
the agreement to both parts, for them to take appropriate 
actions. In [17], a theoretical structure for a qualification 
system based on the use of a rating repository is proposed. 
This theoretical structure can now be implemented using 
our virtualization architecture. 

If we use expressions to represent the operation of a 
web service (its response time, its availability, etc.), the 
VWS engine can be seen as an element that distributes 
work, that is, the engine would act as a controller node for 
a cluster of web service providers. This functionality 
allows constructing clusters of web services, offering 
high-availability systems where not only the 
implementation of the service is protected, but also its 
interface. Clusters built this way allow using 
heterogeneous nodes (clusters where nodes can have 
different platform implementations), and also to construct 
Internet-wide clusters. In [22] we have dealt with the 
construction of clusters of web services. 

6 Architecture Implementations 

There exist several ways to apply the proposed 
architecture to the current architecture. Those forms 
represent different implementations and lead to obtaining 
different functionalities depending on the localization of 
the VWS engine. Basically, we can distinguish three 
alternatives, depending on whether the engine is located: 
(1) in the private network of the client, (2) in the private 
network of the service provider, and (3) in the Internet, 
being accessible to both client and service provider. 

In case (1) above, (point 1 in fig. 3), the use of an 
engine offers the following functionalities: 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 

 

126 

 
• It makes the software of the client independent of 

that of the delegate provider, because the engine 
allows both of them to change their interfaces without 
affecting the other, as long as the engine can map the 
different structures of the SOAP messages exchanges 
in the invocations. 

• Provider independence. Virtual web services allow 
adding, modifying and removing providers without 
affecting the client, that is, with any need for the 
client to modify its applications. 

• Proxy. The use of the engine allows client 
applications to invoke Internet web services even 
when they have cannot connect to anything beyond its 
private network. 

• Automated error management. Because the 
methods of the virtual services are built from a list of 
web service providers functionally equivalent, the 
engine can control the errors that take place and, 
when a provider fails, try to use another one. This 
goes on unnoticed for client applications. 

• Cache. Under certain circumstances (configurable for 
each method of a virtual service), it is possible to 
cache client requests, noticeably improving response 
times. Take as an example the case of a web service 
that offers share prices on closing of financial markets, 
or a weather forecast web service. We have developed 
and published a work in this direction that 
demonstrates the benefits of such a system in a 
practical way [23]. 

An engine placed in the provider’s private network 
(point 2 in fig. 4) fundamentally allows building web 
services cluster systems, where the VWS engine acts as a 
controller node for the cluster, in charge of receiving 

requests and routing them to a certain node that is selected 
depending on the workload of each node (point 3 in fig. 3). 
Other possible functionalities are: 

 
• Firewall. The VWS engine allows providers residing 

in a private network to be invoked from outside that 
network, keeping a high security level inside of it. 

• When used as a cluster controller, it allows to 
introduce modifications in a node of the cluster while 
keeping the others unchanged, making it possible to 
perform software testing with a minimal impact in the 
construction of a new web service in case of an error. 

Last, in case (3) (Internet engine), its main use is that 
of a broker, that is, the engine acts like an intermediate 
component in the network that puts clients and service 
providers in contact (point 3 in fig. 3), moreover offering 
the following main functionalities: 

 
• Decoupling between delegate client and delegate 

provider, due to the fact that the definition of virtual 
services makes it possible to modify the interface of 
the delegate providers (web services) without 
changing the client software. 

• Use of multiple providers. 

• Error control and management. 

Given the level of integration between our proposal 
and the current architecture, the complexity of the 
implementations can increase indefinitely. For example, 
point 4 in fig. 3 represents a broker that uses another 
broker as a web service provider. 
 

Fig. 3 Sample architecture implementation. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 

 

127

7 Related Works 

Virtualization is being successfully applied on many other 
environments, such as storage virtualization, network 
virtualization and hardware virtualization. What we 
propose here is to virtualice software, creating new virtual 
components (VWS) with which we can achieve a degree 
of decoupling and independence between clients and 
providers greater than the one we could achieve with 
standard web services. 

The architecture we propose is innovative as a global 
solution for a range of problems that have only been 
addressed individually so far. Problems related to SLA 
management, quality of service or high availability are the 
subject of study by public and private entities, but the 
solutions proposed are specific for each one of these 
issues: architectures and languages to support SLA 
management [16, 18, 24], metrics for QoS [14, 19] and 
software and hardware architecture intended to improve 
the availability of the implementation of web services [25], 
but not their interface, which is what clients perceive as a 
web service. 

At the same time, the use of intermediate elements 
(the engines in our proposal) is a technique that is being 
implemented in some software platforms, but always with 
a specific use and using proprietary languages and/or 
systems. For example, WS-DBC [6] uses an intermediate 
element as a security system, while WS-Gateway [5] 
isolates the private networks of clients and/or providers, 
also supporting certain protocol changes (from SOAP to 
HTTP/POST, for example). 

8 Conclusions and Further Work 

What we propose is to use a common language for the 
description of virtual web services, which at the same time 
provides a standard way to construct the interfaces that 
intermediate elements must offer through standard WSDL 
documents. We also propose an extension of the standard 
architecture in order to support VWS in such a way that it 
be compatible with current architecture. 

VWS can help developing web services with rich 
features like high availability, performance optimization, 
QoS, error management, etc. 

The overall performance of the proposed architecture 
(whichever its use) will greatly depend on the variables 
and expressions used for the description of virtual web 
services. It has to be noted that the VWS engine 
introduces a new overhead inside the execution 
architecture, since requests must be received and re-routed 
to the appropriate provider. However, this overhead is not 
significant when compared to the benefits obtained with 
our architecture. 

Using VWS developers can build atomic web 
services that can be published and subsequently consumed 
by resource-constrained devices like mobile phones or 
PDA, that is, virtual web services can be used as a 
personalization mechanism regarding client requirements 
in order to simplify its use in such device types. 

VWS technology is the base for other works that 
extend the use of our model. Regarding these other 
features of our model: 
 
• We can use the VWS documents to build composite 

web services. This work is in progress, and we are 
defining a set of different types of invocations. Our 
goal is to develop a web services programming 
language (WSPL, as an extension of VWSDL) that 
supports basic programming structures (if-then-else, 
do-while, etc.). Its objective is to provide a simple 
composition method. 

• We plan to integrate WSLA with our web service 
descriptions. This way, a VWS engine can be used to 
analyze each invocation of a web service and evaluate 
SLOs after each invocation. 

Our proposal is not disruptive in its implementation, 
because it can coexist with the current architecture with no 
problems at all. Ideally, in fact, both architectures should 
coexist, because the standard one shall be used for easy 
problems in controlled environments, like the invocation 
of web services in a corporate network. On the other hand, 
engines become more interesting when any of the 
implementation scenarios commented in section 6 arises. 
 
References 
[1] D. Booth et al., “Web Services Architecture”, W3C Working 

Group Note, 2004, http://www.w3.org/TR/2004/NOTE-ws-
arch-20040211/ 

[2] “Distributed Component Object Model (DCOM)”, 
http://www. microsoft.com/com/tech/DCOM.asp 

[3] “Enterprise JavaBeans (EJB)”, http://java.sun.com/products/ 
ejb 

[4] “Web Services Invocation Framework (WSIF)”, 
http://ws.apache.org/wsif 

[5] C. Venkatapathy and S. Holdsworth, “An introduction to 
Web Services Gateway”, IBM, 2002, http://www-
106.ibm.com/developerworks/webservices/library/ws-
gateway/ 

[6] G. Brose, “Securing Web Services with SOAP security 
proxies”, Proceedings of the International Conference on 
Web Services, June 2003, pp. 231-234 

[7] EntireX XML Mediator, http://www.softwareag.com/ 
Corporate/products/entirex/ 

[8] F. Curbera et al., “Business Process Execution Language for 
WS”, 2003, http://www-106.ibm.com/developerworks/ 
webservices/library/ws-bpel/ 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006 
 

 

128 

[9] Y. Golan, M. Nottingham and D. Orchard, “WS-Callback 
Protocol”, 2003, http://dev2dev.bea.com/technologies/ 
webservices/WS-CallBack-0_9.jsp 

[10] D. Bau and D. Orchard, “SOAP Conversation Protocol 
(SCP)”, http://dev2dev.bea.com/pub/a/2002/06/SOAP 
Conversation.html 

[11] K. Swenson and J. Ricker, “Asynchronous Web Services 
Protocol (AWSP)”, http://xml.coverpages.org/ AWSP-
Draft20020405.pdf 

[12] A. Mani and A. Nagarajan “Understanding quality of 
service for Web services”, IBM Developer Works, 2002, 
http://www-106.ibm.com/developerworks/library/ws-
quality.html 

[13] “QoS for Web Services Defined”, Santra Technologies, 
2003, http://www.santra.com/knowledge/?id=qos 

[14] D. A. Menascé, “QoS Issues in Web Services”, IEEE 
Internet Computing, vol. 6(6), Nov./Dec. 2002, pp. 72-75 

[15] M. Tian, A. Gramm, H. Ritter and J. Schiller, “Efficient 
Selection and Monitoring of QoS-aware Web services with 
the WS-QoS Framework”, Proceedings of the 
IEEE/WIC/ACM International Conference on Web 
Intelligence (WI'04), pp. 152-158, 2004 

[16] A. Dan, H. Ludwig and G. Pacifici, “Web Services 
Differentiation with Service Level Agreements”, IBM, May 
2003, http://www-106.ibm.com/developerworks/library/ws-
slafram/ 

[17] S. Weller, “Web services qualification”, IBM Developper 
Works, 2002, http://www-106.ibm.com/developerworks/ 
library/ws-qual/ 

[18] H. Ludwig, A. Keller, A. Dan, R. P. King and R. Franck, 
“Web Service Level Agreement (WSLA) Language 
Specification”, http://www.research.ibm.com/wsla, 2003 

[19] Douglas K. Barry, “Web Services and Service-Oriented 
Architectures”, Morgan Kauffman, 2003 

[20] L. Zadeh, “Knowledge Representation in Fuzzy Logic”, 
IEEE Transactions on Knowledge and Data Engineering 
1(1), pp. 89-100, 1989 

[21] J. Fernandez, J. Pazos and A. Fernandez, “An architecture 
for building web services with QoS features”, Proceedings 
of the 5th Web-Age Information Management (WAIM’04), 
July 2004 

[22] J. Fernandez, J. Pazos and A. Fernandez, “High availability 
with clusters of Web Services”, Proceedings of the 6th Asia 
Pacific Web Conference (APWeb’04), April 2004 

[23] J. Fernandez, J. Pazos and A. Fernandez, “Optimizing web 
services performance using caching”, Proceedings of the 
International Conference on Next-Generation Web Services 
Practices (NWeSP’05), August 2005 

[24] Sahai, A. et al., “Automated SLA Monitoring for Web 
Services”, 13th IFIP/IEEE International Wokshop on 
Distributed Systems (DSOM 2002), pp. 28-41 

[25] “High Availability with QoS”, IBM and CISCO, 2000, 
http://www-1.ibm.com/servers/eserver/zseries/library/ 
specsheets/high_availability_qos.html 

 
 
 
 
 
 

Julio Fernandez received Master degree 
in Computer Science from the University of 
A Coruna (Spain-UDC) in 1992. He has 
been working as a mainframe system 
administrator from 1990 to 2004. He is the 
director of “Mainframe System” department 
since 2004 at a Spanish savings bank (Caixa 
Galicia). He has been working on a Ph.D. 
on web services since 2002, and he is 

currently working on a universal integration framework based on 
web services. 
 
 

Jose Pazos Arias received Master degree 
in Telecommunications Engineering from 
the Polytechnic University of Madrid 
(Spain-UPM) in 1995. He received Ph. D. 
degree in Computer Science from the 
Department of Telematics Engineering, the 
Polytechnic University of Madrid (Spain-
UPM) in 1995. He is the current director of 
the Networking and Software Engineering 

Group in the University of Vigo, since 1998. He is currently 
working on middleware and applications for Interactive Digital 
TV. 
 
 

Ana Fernandez received Master degree 
in Telecommunications Engineering from 
the University of Vigo (Spain-UVigo) in 
1996. She received Ph. D. degree in 
Computer Science from the University of 
Vigo in 2002. She is currently working in 
the Interactive Digital TV laboratory, since 
2002. She is at present an Associate 
Professor in the Department of Telematics 

Engineering at the University of Vigo. She is currently working 
on web services technologies and ubiquitous computing 
environments. 


