
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

157

Manuscript received May 5, 2006.
Manuscript revised May 25, 2006.

A Simple Attack on a Recently Introduced Hash-Based Secure User
Authentication Scheme

 Minho Kim† and Çetin Kaya Koç††

†Information Security Laboratory, School of EECS, Oregon State University, Corvallis, Oregon 97331, USA
††Information Security Research Center, Istanbul Commerce University, Eminönü, Istanbul 34112, TURKEY

Summary
User authentication is an important service in network security.
Recently, several user authentication protocols have been
proposed. However, a scheme which withstands all known
attacks is not yet available. The Lee-Li-Hwang (LLH)
authentication scheme [3] was proposed to circumvent the
guessing attack in the Peyravian-Zunic (PZ) password scheme
[6]. However, Yoon, Ryu, and Yoo (YRY) [9] discovered that
the LLH scheme still suffers from the denial of service attack,
and proposed an enhancement for the LLH scheme to solve its
security problems. More recently, Ku, Chiang, and Chang (KCC)
[2] demonstrated that the YRY scheme is vulnerable to the off-
line guessing and the stolen-verifier attacks. In this paper, we
show that the YRY scheme is also vulnerable to the denial-of-
service attack. Furthermore, it was also claimed in [2] that the
YRY scheme cannot achieve backward secrecy. We show in this
paper that this claim is not entirely valid.

Key words:
Hash function, user authentication, stolen-verifier attack, denial-
of-service attack

1. Introduction

Recently, several user authentication protocols have been
introduced and attacked [1-9]. It was shown in [2] by Ku,
Chiang, and Chang (KCC) that the YRY scheme is
vulnerable to the off-line guessing and the stolen-verifier
attacks. In this paper, we show that the YRY scheme [9] is
also vulnerable to the denial-of-service attack if the
password verifier can be stolen. In addition, we show that
the claim made in [2] about the lack of backward secrecy
in the YRY scheme is not valid. We review the YRY
scheme in Section 2. We then describe the stolen-verifier
attack that was described in [2] using our notation in
Section 3. Finally in Section 4, we explain the details of
our attack and clarify the lack of backward secrecy claim.

2. Review of the LLH Scheme

A hash-based secure user authentication scheme was
described in [9]. The scheme has 3 phases: Registration
phase, User authentication phase, and Change password
phase. We first introduce the notation used to describe the
protocols, and then the detailed steps of these protocols.

2.1 Notations

• U/ C/ S/ A denote User, Client, Server, and
Adversary.

• h denotes a cryptographic hash function, such
that h(m) means the message m is hashed once,
while h2(m) means it is hashed twice, i.e., h2(m) =
h(h(m)). Furthermore, h(a, b) denotes the hash of
concatenated a and b, i.e., h(a, b) = h(a||b).

• UID denotes the identification of the user.
• P denotes the memorable password of the user.
• Rc and Rs denote random numbers generated by

Client and Server, respectively.
• ⊕ denotes the bitwise XOR operation.
• The expression A (→)⇒ B: X means A sends the

message X to B via an (in)secure channel.

2.2 Registration Phase

This registration phase is performed only once when a
new user wants to join the system. On the other hand, the
authentication phase is executed whenever the user wants
to login to the system. The procedures of this phase are as
follows:

R1. U ⇒ S: UID, HPW

U randomly chooses UID and P, and then calculates a
password verifier HPW = h(UID, P)

R2. S stores UID and HPW in the verification table.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

158

2.3 User Authentication Phase

In this phase, the user logs in to a server for accessing
resources and the server authenticates the user. The
procedures of this phase are as follows:

A1. C → S: UID, Rc⊕HPW, h(Rc).

U enters UID and P to C. C computes HPW = h(UID,
P) and randomly chooses a number Rc, and then
computes the hash value h(Rc). Next, C sends UID,
Rc⊕HPW, and h(Rc) to S.

A2. S → C: Rs⊕HPW, h(Rc, Rs).
S retrieves the U’s password verifier HPW from the
verification table, and then obtains Rc by computing
(Rc⊕ HPW)⊕HPW. Next, S verifies the equality of the
computed h(Rc) with the obtained Rc and the received
h(Rc). If they are equal, S randomly generates a
number Rs and then computes Rs ⊕ HPW, h(Rc, Rs),
and AUTH* = h(HPW, Rc, Rs). Next, S sends Rs⊕HPW
and h(Rc, Rs) to C.

A3. C → S: UID, AUTH.
C retrieves Rs by using (Rs⊕HPW)⊕HPW and
computes h(Rc, Rs). If the computed and received h(Rc,
Rs) are equal, C computes AUTH = h(HPW, Rc, Rs)
and sends UID and AUTH to S.

A4. S compares AUTH with AUTH*. If they are equal, S
authenticates U. Otherwise, S rejects C’s request and
terminates the session.

2.4 Change Password Phase

The change password phase is invoked whenever the
client wants to change its password P with a new one, say
NewP. The procedures of this phase are given below. Note
that Steps C1 and C2 are the same as the ones in the user
authentication phase.

C3. C → S: UID, AUTH, Mask, VMask.

C retrieves Rs by using (Rs⊕HPW)⊕HPW and
computes h(Rc, Rs). If the computed and received h(Rc,
Rs) are equal, then C computes

NewHPW = h(UID, NewP),
AUTH = h(HPW, Rc, Rs),
Mask = NewHPW⊕h(HPW, Rc + 1, Rs),
VMask = h(NewHPW, Rs).

Then, C sends UID, AUTH, Mask, and VMask to S.
C4. S retrieves the U’s HPW from the verification table. If

AUTH = AUTH*, then S accepts C to change the U’s
password, and then obtains the new password verifier
NewHPW as NewHPW = Mask⊕h(HPW, Rc +1, Rs).
Next, S calculates h(NewHPW, Rs) and compares it
with VMask. If they are equal, S replaces the old HPW

with the new password verifier NewHPW in the
verification table. Otherwise, S rejects C's change
password request and terminates the session.

3. KCC Impersonation Attack with Stolen-
Verifier

Suppose that the adversary has stolen the verifier HPW =
h(UID, P) of the user from the server. The adversary can
compute Rc, (Rc⊕HPW)⊕HPW by XORing, and then he
can get more information in sequence, computing h(Rc),
Rs using (Rs⊕HPW)⊕HPW, h(Rc, Rs), and AUTH* =
h(HPW, Rc, Rs). After that, the adversary has all the
information that he needs to login into the server. If the
adversary obtains an HPW through the stolen-verifier
attack, he can then perform the following:
B1. A can make a random generated number Ra to

compute Ra⊕HPW and h(Ra). He sends UID,
Ra⊕HPW, and h(Ra) to the server in Step A1.

B2. S retrieves the Ra = (Ra⊕HPW) ⊕HPW by XORing,
and then S verifies the equality of the computed h(Ra)
and received h(Ra). If they are equal, S randomly
generates a number Rs and computes Rs⊕HPW, h(Ra,
Rs), and AUTH* = h(HPW, Ra, Rs). S sends Rs⊕HPW
and h(Ra, Rs) to A in Step A2.

B3. A retrieves Rs using (Rs⊕HPW)⊕HPW and computes
h(Ra, Rs). Next, if the computed and received h(Ra, Rs)
are equal, A computes AUTH = h(HPW, Ra, Rs) and
sends UID and AUTH to S in Step A3.

B4. S compares AUTH with AUTH*. If they are equal, S
authenticates A in Step A4. After that, A can
impersonate U.

Additionally, this attack can be adapted on the change
password phase in the same way. This is described as
below.

B5. A can get the Rs and AUTH = h(HPW, Rc, Rs) after

Steps C1 and C2, and then he can choose his new
password Pa and the random number Ra. Next, A
computes NewHPW, Mask, and VMask with his own Pa
as

NewHPW = h(UID, Pa) ,
Mask = NewHPW⊕h(HPW, Rc + 1, Rs) ,
AUTH = h(HPW, Ra, Rs) ,
VMask = h(NewHPW, Rs).

Then, A sends UID, AUTH, Mask, and VMask to S in
Step C3.

B6. After receiving these values, S retrieves U's HPW
from the verification table and compares AUTH =

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

159

AUTH*. If they are equal, S accepts A to change the
user U’s P with A’s password Pa.

B7. S obtains the A’s new password verifier NewHPW as
NewHPW = Mask⊕h(HPW, Rc+1, Rs), and then S
compares h(NewHPW, Rs) with VMask. Since
h(NewHPW, Rs) = VMask, it accepts and S replaces the
old HPW with the new password verifier NewHPW in
the verification table.

Thus, the adversary can impersonate as the user to login
and change the password. He can then launch other attacks
within the system. If the user logs in after an attack, she
may not be able to discover that the attacker has logged
into the system impersonating as her, without checking the
login records. Until the user or the system manager
discovers the attacker's login, the attacker may continue to
impersonate the user.

4. Our Denial of Service Attack with the
Stolen-Verifier

The adversary is able to prevent the client from logging in
during the user authentication phase or changing its
password P with NewP in the change password phase by
making the server reject all login requests and change
password requests. As mentioned in the impersonation
attack, the adversary can replace all information that were
related to the login and change password phases (Table 1).

Table 1: Replaced Information

From To

Rc Ra
NewP Pa

NewHPW = h(UID, NewP) NewHPW* = h(UID, Pa)
AUTH = h(HPW, Rc, Rs) AUTH* = h(HPW, Ra, Rs)

Mask = NewHPW ⊕
h(HPW, Rc + 1,Rs)

Mask* = NewHPW* ⊕
h(HPW, Ra + 1, Rs)

After receiving the replaced message, if the user tries to
login the server, he will be rejected since both the
password and the password verifier were changed.

DoS1. In the user authentication phase, U enters UID and

P to C. C computes HPW = h(UID, P) and randomly
chooses a number Rc, and then computes h(Rc). Next,
C sends UID, Rc⊕HPW, and h(Rc) to S in Step A1.
Since S retrieves A’s new password verifier
NewHPW* = h(UID, Pa) from the verification table,
he obtains Rc* that is different from Rc, Rc* was
obtained by computing (Rc⊕HPW)⊕ NewHPW*.

Next, S verifies the equality of the computed h(Rc)
and the received h(Rc*). They are not equal.
Therefore, S rejects C’s request.

DoS2. Even though this attack happened after U’s

successful login, the problem is the same as in the
user change password phase since the request in Step
C1 is the same as in Step A1.

DoS3. If this attack happened after Step C2, C computes

NewHPW = h(UID, NewP),
AUTH’ = h(HPW, Rc, Rs),
Mask = NewHPW⊕h(HPW, Rc + 1, Rs), and
VMask = h(NewHPW, Rs), and then

C sends UID, AUTH, Mask, and VMask to S in Step C3.
At this moment, AUTH* = h(HPW, Ra, Rs) is not
equal to AUTH’ = h(HPW, Rc, Rs) that S computed in
Step C2, not in Step C3. Therefore, S rejects C’s
request to change U’s password.

DoS4. If this attack happened after Step C3, C computes

NewHPW, AUTH, Mask, and VMask the same as DoS3,
and then C sends UID, AUTH, Mask, and VMask to S
in Step C3. AUTH’ = h(HPW, Rc, Rs) is equal to
AUTH = h(HPW, Rc, Rs) that S computes in Step C2,
accordingly, S accepts C to change the U’s password.
However, S obtains a different password verifier as
NewHPW’ = Mask⊕h(HPW, Ra + 1, Rs), which is not
equal to U’s new verifier NewHPW, since Rc was
already changed with Ra by A. After that, S computes
h(NewHPW’, Rs) and compares it with VMask. The
value of h(NewHPW’, Rs) is not equal to VMask =
h(NewHPW, Rs). Consequently, S rejects C’s change
password request and terminates the session.

For those reason, both the user's authentication and change
password requests are rejected until the user has re-
registered with the server.

The adversary can interrupt or lock the account of any
user. In addition, this attack works even if P is a strong
password.

5. No Lack of Backward Secrecy

It was assumed in [2] that the adversary has stolen the
HWP. If C detects that the HWP is compromised, it can
invoke the password change phase to change password P
with a new one, say NewP. However, by intercepting the
messages transmitted in Step C1 and Step C2 of the
change password phase, the adversary can use the stolen

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

160

HPW to retrieve Rc and Rs, and compute h(HPW, Rc + 1,
Rs). Moreover, by intercepting the message transmitted in
Step C3 of the change password phase, the adversary can
use the computed h(HPW, Rc + 1, Rs) to retrieve NewHPW
from Mask(=NewHPW⊕h(HPW, Rc + 1, Rs)). However,
there is a limitation. Even though the adversary intercepts
the messages in Step C1 and Step C2 of the change
password phase, he cannot retrieve Rc and Rs, because the
HPW is already changed with NewHPW, and it is not
equal to the HPW of the previous stolen verifier. If the
adversary wants to get Rc and Rs after the change
password phase, he needs to obtain the new password
verifier. Only then, the adversary cannot the computes
h(HPW, Rc + 1, Rs). Therefore, the claim in [2] is not valid.

6. Conclusions

In this paper, we have shown that a hash-based secure user
authentication scheme proposed in [9], which resists the
several attacks (such as replay, server spoofing, and
denial-of-service attacks) is still vulnerable. If the
adversary is able to obtain a copy of the verifier, he can
launch denial-of-service, stolen-verifier, and
impersonation attacks to interrupt communication between
the user and the server. Furthermore, we show that the
claim made in [2] about the lack of backward secrecy in
the YRY scheme is not valid.

References
[1] W. C. Ku, “A hash-based strong-password authentication

scheme without using smart cards,” ACM Operating System
Review, vol. 38, no. 1, pp. 29-34, Jan 2004.

[2] W. C. Ku and M. H. Chiang and S. T. Chang, “Weaknesses
of Yoon-Ryu-Yoo's hash-based password authentication
scheme,” ACM Operating System Review, vol. 39, no. 1, pp.
85-89, Jan, 2005.

[3] C. C. Lee and L. H. Li and M. S. Hwang, “A remote user
authentication scheme using hash functions,” ACM
Operating System Review, vol. 36, no. 4, pp. 23-29, Oct,
2002.

[4] C. W. Lin, J. J. Shen, and M. S. Hwang, “Security
enhancement for optimal strong-password authentication
protocol,” ACM Operating System Review, vol. 37, no. 2,
pp. 7-12, Apr 2003.

[5] C. L. Lin, H. M. Sun, and T. Hwang, “Attacks and solutions
on strong-password authentication,” IEICE Transactions on
Communications, vol. E84-B, no. 9, pp. 2622-2627, Sep
2001.

[6] M. Peyravian and N. Zunic, “Methods for protecting
password transmission,” Computers & Security, vol. 19, no.
5, pp. 466-469, 2000.

[7] A. Shimizu, T. Horioka, and H. Inagaki, “A password
authentication method for contents communication on the
internet,” IEICE Transactions on Communications, vol.
E81-B, no. 8, pp. 1666-1673, Aug 1998.

[8] M. Sandirigama, A. Shimizu, and M. Noda, “Simple and
secure password authentication protocol (SAS),” IEICE
Transactions on Communications, vol. E83-B, no. 6, pp.
1363-1365, Jun 2000.

[9] E.-J. Yoon and E.-K. Ryu and K.-Y. Yoo, “A secure user
authentication scheme using hash functions,” ACM
Operating System Review, vol. 38, no. 2, pp. 62-68, Apr
2004.

Minho Kim is a Ph.D. student in
the Department of Electrical Engineering
and Computer Science at Oregon State
University. He received B.S. degree in
Computer Science from Korea Air Force
Academy and M.S. degree in Computer
Science from Yonsei University, Seoul,
South Korea, in 1993 and in 1998. He has
also worked as an assistant professor of
Computer Science at Korea Air Force

Academy. His research interests are in cryptography, computer
and network security, and wireless communications.

Çetin Kaya Koç received his Ph.D.
degree from University of California,
Santa Barbara. Dr. Koç's research interests
are in cryptographic engineering,
algorithms and architectures for
cryptography, computer arithmetic and
finite fields, parallel algebraic computation,
and network security. He has co-founded
the Workshop on Cryptographic Hardware
and Embedded Systems (CHES), and has

been an Associate Editor of IEEE Transactions on Computers
and IEEE Transactions on Mobile Computing. Dr. Koç has also
been working as a consulting engineer with research and
development interests in cryptographic engineering and
embedded systems for several companies including Intel, RSA
Security, and Samsung Electronics. Dr. Koç is currently on leave
from Oregon State University, working at Information Security
Research Center of Istanbul Commerce University in Istanbul,
Turkey.

