
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

166

Manuscript received May 5, 2006.
Manuscript revised May 25, 2006.

An Online Method for Editing Any Web Page
Using Proxy Agents

Tadachika Ozono,† and Toramatsu Shintani††,

Computer Science and Engineering, Graduate School of Engineering
 Nagoya Institute of Technology

Gokiso-cho, Showa-ku, Nagoya 466-8555 JAPAN

Summary
We propose an online method WFE for editing any Web page by
realizing a proxy agent. The main strength of WFE is that the
method can provide users with a way to edit any web page
regardless of its original author. When a user access a web page
via the proxy agent, the proxy agent augments the web page with
client-side scripting via JavaScript that provides the user with the
editing functions. By utilizing the XHTML DOM, the script
included by the proxy agent allows the user to simply select any
portion of text on the page and then directly edit the underlying
HTML even if the selected text appears in many different places in
the document. WFE identifies the specific instance of the selected
text to be found. We also describe the system called WPM to
show how effectively the method WFE can be used. WPM
provides marking and anchoring functions on ordinary web
browsers. The users can mark words and phrases on web pages by
using their browsers without any extra plug-ins like similar
systems. The result shows that the method WFE is effective in
developing Web applications such as the system WPM.
Key words:
WWW, Dynamic HTML, Web Page Edit

1. Introduction

The World Wide Web (WWW) has become an
important information transmission environment. WWW
enables users to publicize information on their Web pages.
However, making and editing Web pages are still
bothersome issues for novice users. Although Web
authoring systems (e.g., Dreamweaver, Go-Live, etc.) can
help, the systems require a certain amount of knowledge for
effective use. In this paper, we propose a new online
method called WFE (Web Flexible Editing) for making and
editing any Web page. WFE can provide users with a way
to edit any web page in which users can edit and delete
existing texts and add new texts and images on a Web page
by using a proxy agent. Users of WFE can even add
handwriting graffiti on Web pages. When a user access a
web page via the proxy agent, the proxy agent augments the
web page with client-side scripting via JavaScript that
provides the user with the editing functions. By utilizing
the XHTML DOM, the script included by the proxy agent
allows the user to simply select any portion of text on the

page and then directly edit the underlying HTML even if
the selected text appears in many different places in the
document. WFE identifies the specific instance of the
selected text to be found.

Users can edit any Web page in which WFE does not
directly edit an HTML text for a page on a Web server. In
WFE a user can simply edit an HTML text cached by a
proxy agent. The proxy agent also enables us to modify
dynamically generated Web pages or Web pages that get
updated continuously. The proxy agent can save the
modified page (an HTML text) to a Web server to publicize
the modified page via the Internet. WFE does not require
particular any extra plug-ins or software components like
similar systems. Users can edit Web pages using common
existing Web browsers (e.g., Internet Explorer, Safari,
Mozilla). Although the DOM interfaces are not truly
standardized across browsers, WFE works for the common
Web browsers because WFE provide some functions that
depend on the DOM interfaces of the Web browsers.

To show how effectively the method WFE can be used.
We have implemented the system called WPM (Web Page
Marker), which provides marking and anchoring functions
on ordinary web browsers. WPM is designed to realize a
effective system, which is one of Web browsing support
systems [9]. WPM users can mark words and phrases on
web pages by using their browsers. There are Google
Toolbar [6] and a Mozilla Firefox [4] as an existing tool
with a similar function. Google Toolbar has a function
which indicates a word used for reference by highlight.
Firefox is a Web browser with an emphasis display function
in the reference in a page. WPM doesn't require any
preparing plug-in and special software components by
using WFE.
The rest of this paper is organized as follows. We first show
an outline of the WFE. Then, we describe the
implementation of WFE. Here, we explain about the proxy
agent for WFE and the dynamic editing function based on
JavaScript. Next, we show the outline of WPM. Finally,
we discuss the features of the method, and then we describe
some concluding remarks.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

167

2. An outline of WFE

There are several existing systems to post information using
a Web browser. BBS (Bulletin Board System), which is
often implemented as a CGI program, is one way to post
information. In BSS, since users must follow its format to
input text and images, users cannot freely edit Web pages.
Wiki [7][12] is an administration system for Web content
for collaborative Web page construction. Although users
of Wiki can edit HTML texts and generate Web pages using
a Web browser, they must know its original scripts and tags
to do so effectively. On the other hand, WFE does not
require such format and original syntax. Moreover, it can be
used for every Web page on the Internet. It has several
technical advantages as follows:
• Users simply indicate the editing action (e.g., insert

text, add comments) for the target Web page. Unlike
other technologies, WFE does not need particular Web
page forms to input data or texts on Web pages. When
a user is browsing Web pages and wants to post
information, he/she simply select the text by mouse
dragging and clicking the place where the text is to be
placed on browser. It is almost like putting a Post-it
(sticky note) on paper.

• There is no need to reload the Web page to see the
results. Reloading an edited page would be
bothersome, particularly, if it is a large Web page with
much text and many images. With WFE, users do not
need to reload after editing. When they edit a Web
page, the results are reflected immediately. For
example, when a user edits a sentence on a Web page,
the sentence is immediately replaced with the new one.

• This pseudo-editing is done by using a proxy agent.
Users browse and edit Web pages via the proxy agent.
When a user edits a Web page, the edited data is stored
into a cache memory managed by the proxy agent. The
proxy agent can merge the original Web page and the
edited data, and then generates a new Web page
reflecting the user's edited data. Accordingly, although
the original Web page is not modified, users can
browse edited it via the proxy agent. Users not
browsing via the proxy agent will simply view the
original one.

Fig. 1. Editing a Web Page using WFE

Figure 1 shows an example of editing a Web page using
WFE. The user wants to modify a sentence describing a
submission deadline for WWW2005 (http://www2005.org/
papers/). First, the user selects the target text, “November
8, 2004”, by mouse dragging in the Web browser. Next, the
user clicks the right mouse button to open the WFE menu
(Figure 1-(a)). When the user clicks the “Edit” button on
the menu, WFE identifies the selected text from the HTML
text and dynamically generates a form for editing on the
Web page (Figure1-(b)). As shown in Figure 1-(b), the
chosen text is in the form. If the text is decorated with
HTML tags, the tags are also in the form. The user edits the
text in the form and then clicks the “Save” button to save
the edited text. In this example, the user inputs the HTML
tag

before “November 8, 2004”. That is, the user tries to
modify the color and size of the text.

Figure 2 shows another example in which the user
wants to attach a note to the paper submission information.
The user clicks the right mouse button at the position where
he/she wants to attach a note, and WFE opens an
appropriate menu in Figure1-(a). From the menu, the user
can select the type of note, i.e., the “Comment” note or the
“Image” note (Figure 2-(a)). If the user selects the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

168

“Comment” button, WFE opens a text area form in which
the user inputs a comment note, as shown in Figure 2-(b). If
the “Image” button is selected, WFE opens a menu for
selecting an image file (in Figure 2-(c)). Figure 2-(d) shows
a page on which a comment and an image have been
attached. The user can move/delete/edit the attached
comment and image by using the menu that appears with a
right mouse click at their position. The edited data is stored
and maintained by the proxy agent. While users who
browse the page using the proxy agent view the edited page,
other users view only the original page. Accordingly, by
using a private proxy agent, the user can keep the edited
data. WFE not only enables users to pseudo-edit all Web
pages, but also enables users to generate new Web pages
using only their Web browser without suffering from
trouble with HTML.

3. The architecture of WFE

Figure 3 shows the architecture of WFE, which is
based on a proxy agent and a script for dynamic editing
function based on JavaScript. The proxy agent is

implemented using MiLog [5], which is an agent
development framework based on Java. Since the MiLog
agent has a WWW server function and a Web proxy
function, we can easily implement an agent for realizing a
Web proxy. Moreover, we can program a MiLog agent
based on a logic programming language like Prolog. Thus,
a pattern-matching mechanism for identifying selected a
portion of text from an HTML text can be effectively
realized. The proxy agent for WFE has three main
functions as follows:

• Caching HTML files downloaded from target URL (in

Figure 3-i): When a user sends a request for a certain
URL via the proxy agent, the agent caches the returned
HTML files in a database (a working memory) of the
agent.

• Attaching JavaScript for pseudo-editing functions to
each cached HTML file and send the files to a Web
browser (in Figure 3-ii): The proxy agent attaches
JavaScript to each HTML file to enable pseudo-editing
using a Web browser. Since the proxy agent already
has a function for a proxy server, there is no need to

Fig. 2. Attaching notes using WFE

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

169

implement a mechanism for sending HTML files to the
browser. When a user access a web page via the proxy

agent, the proxy agent augments the web page with
client-side scripting via JavaScript that provides the
user with the editing functions.

• Modifying cached HTML files based on edited data (in
Figure 3-iv): When a user edits an HTML file in a Web
browser, the script added to the HTML file sends the
edited data in the file to a proxy agent. The proxy
agent then modifies the cached HTML file using the
edited data and stores it in the database.

The pseudo-editing function in WFE is based on
JavaScript and DOM. WFE can handle mouse actions and
send edited data to a proxy agent. The outline of the
mechanisms of the functions can be described as follows:

• Receiving an HTML text selected by a user and

identifying it in HTML file (in Figure 3-iii): Since the
HTML tags decorating the selected text must be
extracted with the selected text, the pseudo-editing
function must identify the selected text in the HTML
file and retrieve the tags around it.

• Generating a form for editing (in Figure 3-iii): The
dynamic editing function generates a form that
includes the text and tags identified in Figure 3-iii.

• Rendering only the edited part of HTML text (in
Figure 3-iii): The dynamic editing function replaces
only edited text, so bothersome reloads of Web page
are avoided.

• Sending edited data to the proxy agent (in Figure 3-iv):
We explain the detail of the proxy agent and added

JavaScript codes in the remaining sections.

Fig. 3. The architecture of WFE

3.1 The proxy agents in WFE

A proxy agent is allocated to each user and manages
the pseudo-editing functions on the user's computer. A
user simply specifies the address of his/her proxy agent for
proxy setting in a Web browser. The proxy agent analyses
an HTTP header sent from the Web browser to get the URL.
The agent then downloads and caches the HTML files for
the URL. Next, the agent adds JavaScript to the HEAD tag
of each file. In practice, the added JavaScript indicates a
JavaScript file to use for dynamic editing function. If there
is no HEAD tag, the agent automatically adds one. A
sample of the script added to the HTML file is as follows:

<script type="text/javascript">

Fig. 5. Execution example of WPM

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

170

 var TargetID = (ID of Web page)
 var AgentAddress = (Address of proxy agent)
</script>
<script type="text/javascript"
 src="(Address of proxy agent)/wfe.js">
</script>

The TargetID is an unique ID for each HTML file.

The proxy agent uses this ID to specify the cached HTML
file to be modified. The AgentAddress is the IP address
with a port number of the proxy agent. If the proxy agent
works on a Web server, the IP address of the server is used
for the AgentAddress. The ``wfe.js'' is the JavaScript
file for dynamic editing function, which is explained in the
next section.

3.2 The framework for dynamic editing

When a user selects a target text on the Web browser
by dragging the mouse cursor, the Dynamic Editing
Function (DEF) gets the selected text, and searches for it
from HTML file by pattern-matching. The process is then
branched out according to the number of texts that match
with the selected one. If there is only one matching text, the
DEF identifies the target text to be edited by the user. On
the other hand, if there are several matching texts, the DEF
must identify the position of the text in the HTML file. For
this identification, we use a SPAN tag. That is, the DEF
inserts a SPAN tag with an original name attribute, and in
conjunction with the insertion, the DEF gets the mouse
cursor position when the user selects the text. Next, the
DEF gets the position of each SPAN tag (precisely, each
text between and . The text nearest to the
mouse cursor position is identified as the one to be edited
by the user. After identifying the text, the DEF replaces the
selected text with the text-field form into which the selected
text is inputted. When the user has finished editing, the
DEF replaces the text field form with the inputted text. If
the selected text is wedged by SPAN tag, the DEF deletes
all SPAN tags in the HTML file.

Figure 4 shows the pseudo script that is a part of the
script for the DEF. We suppose this script processes an
HTML file in which there are multiple texts that match with
the selected text. In the first two lines in Figure 4, the
selected text and the text wedged by BODY tag are
substituted into variables, respectively. In the lines 3 and 4,
the DEF inserts SPAN tag. To put it concretely, the
selected text “selectedTxt” is replaced with
“selectedTxt”. Even if there are
multiple matching texts, all those texts can be replaced
because the replacing process is recursively executed. In
the line 5, the DEF gets a list of SPAN tags, and then in the
line 6, the nearest SPAN tag from the mouse cursor position
is returned by the original function “getNearestNode()”.

Finally, in the lines 7 and 8, the nearest SPAN tag and the
wedged text is replaced with the text field form. The
function “submitText()” in the line 7 deletes all SPAN tags.

Pseudo Script: For Text Replacing
1: var selectedTxt =
 document.getSelection();
2: var htmlSource =
 document.getElementsByTagName
 ("body")[0];
3: var reg = new RegExp(selectedTxt, "g");
4: var htmlSource = htmlSource.replace(reg,
 "" + selectedTxt +
 "");
5: var aList = htmlSource.getElementsByName
 ("wfe");
6: var index = getNearestNode
 (Mouse.x,Mouse.y,aList);
7: var formHTML = '<INPUT name="txtfield"
 type="text" size="18" value="'+
 selectedTxt + '"><INPUT type="submit"
 value="Save" onclick=
 "submitText();">';
 8: aList[index].innerHTML = formHTML;

Fig. 4. A pseudo script to replace selected text

To sum up, the DEF can precisely identify the selected
text without complicated text processing. Accordingly, the
DEF exerts a light load on the computer.

4. The Web Page Maker

WPM (Web Page Maker) is a Web browsing support
system implemented based on WFE, which makes it
possible to carry out marking to existing Web pages by
operation on a web browser. WPM can improve the
browsing experience of the existing browser. By choosing
a text with a mouse cursor, a font of the selected portion, a
background color, a character color, character size, etc. can
be changed. Since the operation of the system is performed
by the operation similar to carrying out marking to paper, it
is intelligible for a user. WPM has also an anchor creation
function to a Web page that carried out marking. By
enabling creation of anchors in arbitrary parts, the ease of
reading the web page is improved and revisit is supported.

Figure 5 shows an example of marking using WPM.
First, a user selects the target text ``World Wide Web'', by
mouse dragging in the Web browser (in Figure 5-(a)). Next,
he/she clicks the right mouse button to carry on marking (in
Figure 5- (b)). When the user does marking to some
particular text on the Web page, the same text else where on
the same page is automatically marked. The user can grasp
visually where the word that carried out marking is
contained.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

171

The system architecture of WPM is based on a proxy
agent and marking mechanism implemented by using WFE.
The proxy agent adds marking mechanism to the HEAD tag
of each HTML file. A user activates a marking mechanism
on a Web browser by using a mouse action. When a text is
chosen on a Web browser, the marking mechanism will
change the character decoration of the text on the browser.
The information used for marking is stored in a database of
the proxy agent.

5. Discussion

When a user edits text using WFE, he/she does not
need to reload the Web page. WFE can display the edited
page instantaneously. This is because WFE does not render
the whole page. WFE simply replaces the edited text with
JavaScript. We call the editing the pseudo-editing. Figure
6 shows the experimental result of the process of adding
comments to a Web page by using WFE. The vertical axis
shows the processing time (msec). The horizontal axis
shows the number of the comments. The size of the
original page is 8,509 bytes, and the size of the comments is
between from 90 to 110 bytes. In the Figure, the a-1 plots
the graph for the processing time of the pseudo-editing in
which results are reflected when a user add comments to a
Web page by using a cache memory of a proxy agent. The
a-2 shows the processing time in which a proxy agent
merges an original Web page and the added comments to
generate a new Web page on a Web server. The result
shows the pseudo-editing of WFE can be effectively used
for large scale Web applications.

WFE users can share useful annotations within a
community while the privacy of the information is ensured

[11]. Users in a community share annotations via their
proxy agents. Because, other users do not normally know
about the proxy agents, they cannot view the shared
annotations. If a user actually wants to make an annotated
Web page public, he/she can do so by generating a new
Web page and storing it on a Web server. The proxy agent
generates the new page by merging the original page with
the annotations attached to the page. There are several
annotation systems. WBI [1] and Crit-Link [3] are existing
annotation system which has similar functions to WFE.
Especially, WBI has the similar function to WFE. WBI
stands between an user and the Web for monitoring, editing,
and generating documents. Additionally, WBI introduces
several agents to observe each user's action. However,
these systems do not allow users to freely and flexibly edit
common Web pages. For example, users cannot edit
documents on a Web page and attach texts and images on
the arbitrary place on the Web page. On the other hand, in
WFE, users can freely edit the Web pages.

6. Conclusions

We have described the WFE (Web Flexible Editing)
method, for online editing of Web pages. WFE users can
pseudo-edit common Web pages on the Internet without
needing to know particular scripts and HTML tags.
Furthermore, since the result of editing is instantaneously
reflected, users do not need to reload the page to see the
results. We are currently trying to apply the WFE method
to develop online education tools [2] as Web applications.
In Our approach, schoolchildren in the lower grades can
fully utilize the Web tools [10]. The evaluation of the Web
tools is an ongoing work [8]

Fig. 6. The experimental result of WFE

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

172

We also described WPM, a Web browsing support
system to which WFE is applied. WPM enables a user to do
marking on a Web page like marking on paper. Advantages
of WPM can be described as follows; (1) In arbitrary Web
pages, marking is made possible, (2) WPM can use from
existing common web browsers and there is no necessity
that a user prepares plug-in and special software
component.

The result shows that the method WFE is effective in
developing Web applications such as the system WPM.

References
[1] Barrett, R., Maglio, P. P., and Kellem, D. C. 1997. How to

personalize the web. In In the Proc. of the ACM Conference
on Human Factors in Computing Systems (CHI-97), pages
75-82.

[2] Chiu, B. C., and Yu, T.T. 2002. Promoting the use of
information technology in education via lightweight
authoring tools. In In the Proc. of the International
Conference on Computers in Education, pages 501-505.

[3] Yee,K. 2002. Critlink: Advanced hyperlinks enable public
annotation on the web. In ACM Conference on Computer
Supported Cooperative Work, (Demonstration Abstract).

[4] Firefox, http://www.mozilla.org/products
[5] Fukuta, N., Ito, T., and Shintani, T. 2001. A logic-based

framework for mobile intelligent information agents. In In
the Proc. of the 10th International World Wide Web
Conference (WWW10), pages 58-59.

[6] Google Toolbar, http://toolbar.google.com
[7] Leuf, B., and Conningham, W. 2001. The Wiki Way: Quick

Collaboration on the Web, Addison-Wesley.
[8] Matsuo, T., Ito, T., and Shintani, T. 2004.

Qualitative/Quantitative Methods-Based e-Learning Support
System in Economic Education, Proc. of the 19th National
Conference on Artificial Intelligence (AAAI-2004),
pp592-598.

[9] Obendorf, H., and Weinreich, H. 2003. Comparing link
marker visualization techniques: changes in reading behavior,
Proceedings of the twelfth international conference on World
Wide Webpp. 736-745.

[10] Tanaka, M., Matsuo, T., Tashiro, N., Nishi, K., Ito, T., and
Shintani, T. 2004. An implementation of web-based
interactive integrative learning supporting system. In In the
Proc. of the 2004 International Conference on Artificial
Intelligence (IC-AI’04).

[11] Tashiro, N., Hattori, H., Ito, T., and Shintani. T. 2004.
Implementing a proxy agent based writable web for a
dynamic information sharing system. In In the Proc. Of the
13th World Wide Web Conference (WWW-2004), pages
256-257.

[12] Wiki wiki web, http://c2.com/cgi/wiki

 Tadachika Ozono received his bachelor
degree in engineering from Nagoya Institute
of Technology, his master degree in
engineering from Nagoya Institute of
Technology, and his Ph.D in engineering
from Nagoya Institute of Technology. He is
a research associate of the Graduate School of
Computer Science and Engineering at

Nagoya Institute of Technology. His research topic is a web
intelligence using multiagent and machine learning technologies.

