
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

228

Manuscript received May 5, 2006.
Manuscript revised May 25, 2006.

Multi-channel Secret Image Transmission with Fast Decoding: by
using Bit-level Sharing and Economic-size Shares

Wen-Pinn Fang, and Ja-Chen Lin,

Department of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan.

Summary
The paper proposes a method to distribute images over network.
There are several good properties: safety, lossless reconstruction,
and real-time decoding. The size of each transmitted share is also
competitive, as compared with an earlier work which is also bit-
level based..
Key words:
Data hiding, image sharing; real-time decoding; share-size;
lossless

Introduction

To transmit or store an image in a safer way against
interceptor, there are at least three possible major
approaches: encryption with keys [1]; hiding the image in
other media or objects [2-3]; sharing the image among
distinct channels/places [4-17]. Mixing these three major
branches are also possible. In this paper, we focus on
image secret sharing. In an (r,n) image sharing system
(r≤n), the given image is encrypted into n shadow, noisy-
like, images called shares The generated shares can be
independently transmitted through various communication
channels. To recover the image, at least r shares should be
accessible at the same time. As a result, sharing among n
of the many existing channels can balance between fault-
tolerance (up to n-r used channels can be disconnected)
and security (up to r-1 of the n used channels can be
intercepted, not to mention that each of the much-more-
than-n channels is usually filled with many other coy or
ordinary images not related to the given important image).

To share an image, a possible way is to use polynomial-
style sharing (PSS) (see Ref. [5-7]). Using PSS can get
shares of smaller size, but it is “extremely” time-
consuming in the decoding phase to recover the image
from the r received shares. There is another way to share
an image, as stated below. In [11-14] are non-expansive
secret sharing scheme which can be used as private-key
cryptosystem. In [15-17] can also recover the secret image
in its original quality. In Ref. [8], Lukac and Plataniotis
successfully applied visual-cryptography (VC) techniques
in a bit-level manner (using VC on each bit-planes) and
obtain another type of image sharing method having the
following good properties:

1. real-time decoding, as opposed to PSS approach;

2. lossless recovery of images (PSS is also lossless).

If people really have to pick an disadvantage of this
method in [8], then maybe the only disadvantage is that
each (grey or colour) share is several times bigger than the
given image. In the current paper, we propose an
alternative method that is also bit-level based. This new
method keeps the above advantages of [8], and uses shares
of size smaller than that of [8] (thus reduce their
transmission time and storage space). In the (r = n) case,
our share-size is even smaller than the size of the input
image; while the share-size in [8] is, say, 4 times greater
the input image. (As for the (r,n) case (with r<n), our
share-size is a little smaller than that in [8].)

The rest of this paper is organized as follows. The method
is stated in Sec. 2; which contains two subsections: Sec.
2.1 is for the (n,n) case, whereas Sec. 2.2. is for the (r,n)
case. Experimental results are shown in Sec. 3. Discussion
is in Sec. 4.

2. The Proposed method

For a given H×W gray-scale or color image G, and for a
given pair of parameters (r,n), our method to create the n
expected shares is as follows (also see Fig. 1):

1 Physically split the secret image G, whose size is H×W,
into two parts: upper parts and lower parts (see Fig. 2). For
the given parameter pair (r, n), the upper part consists of
first [n/(n+1)]×H×W pixels of the input image.

2 Notably, there are 8 bit-planes for a gray image (or, 24
bit-planes if color). Each bit-plane B = BU ∪ BL also has
its own upper part BU and lower part BL. The upper part
BU is the first [n/(n+1)]×H×W bits of plane B; while the
lower part BL is the remaining [1/(n+1)]×H×W bits.

3. Sequentially pick a not-yet-processed bit-plane B = BU
∪ BL to process, until all 8 (or 24) bit-planes are
processed. Each bit-plane is processed by two sub-steps to
generate n binary-value shares {S1,…,Sn} for this bit-
plane. The two sub-steps are:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

229

(3-i) Share the lower part.

(3-ii) Then, share the upper part.

(The details of (3-i) and (3-ii) are described later in Sec.
2.1 for the case r=n;and then described again in Sec. 2.2
for the case r<n.)

 4. The generated share bits are used to produce gray-
scale(or color) share images suitable for secure
distribution over untrusted networks.

Fig .1 Flowchart of the proposed method.

Fig. 2. An example of split. (a) is the original, (b1) is the upper part, and
(b2) is the lower part.

2.1 Sharing a bit plane B in the (n,n) case.

Step 1. (Sharing the Lower part (BL) of B.)

For each share Sm, where m =1,2,…,n-1, randomly assign
its bits located at {ni+m: i=0,1,2,….}. As for the last
share, i.e. Share Sn , we do not randomly assign its bits
located at {ni+n; i=0,1,2,….}. Instead, we use the lower
part (BL) of B to compute the bit-values of the share Sn at
location {ni+n; i=0,1,2,….}. More specifically, for each
i=0,1,2, …, we compute the value of Sn(ni+n) by
Sn (ni+n) =[S1 (ni+1) ⊕ S2 (ni+2) ⊕ …⊕ Sn-1 (ni+[n-
1])] ⊕ BL(i)
where ⊕ is the exclusive-OR operator. Note that Sn
(ni+n) is computed this way because later we can recover
the lower part of B by using
BL(i) = S1 (ni+1) ⊕ S2 (ni+2) ⊕ …⊕ Sn-1 (ni+[n-1]) ⊕
Sn (ni+n)
Step 2. (Sharing the Upper part (BU) of B.)
Use data BU (the upper part of B) to determine the
remaining bits of all shares. The requirement is very
simple: at each position t, we require that
BU (t) = S1 (t) ⊕ S2 (t) ⊕ …⊕ Sn (t).
In other words, we only requires that: there are “odd”
number of 1s appearing in the n-bits set {S1 (t), S2 (t), …,
Sn (t)} if and only if BU (t)=1. ♦♦

Example (k=3,n=3)
Assume the upper n/(n+1)=3/(3+1)=3/4 part of the
original bit-plane B is BU= 1010101…; and assume the
lower 1/(n+1)=1/(3+1)=1/4 part of B is BL=1110…. Then,
we show how to use the above algorithm to produce the
n=3 shares {S1, S2, S3}, where each share has (3H/4)×W
bits when the bit-plane B has H×W bits.
Step 1. For Share S1, randomly assign its bits at
{1,4,7,…} = {3i+1: i=0,1,2,….}. For Share S2, randomly
assign its bits at {2,5,8,…} = {3i+2: i=0,1,2,….}.
However, for the last share, i.e. Share S3 (because n=3),
we do not randomly assign its bits at {3,6,9,…} = {3i+3:
i=0,1,2,….}. Instead, we use the lower part (BL) of B to
compute the values of these bits at location {3,6,9,…} of
Share 3. More specifically, for each i=0,1,2,3,4…, we
require that
S3 (3i+3) = S1(3i+1) ⊕ S2 (3i+2) ⊕ BL (i)
for the purpose that later we can recover the lower part of
B by using
BL(i) = S1 (3i+1) ⊕ S2 (3i+2) ⊕ S3 (3i+3).
For example, since BL is assumed to be 1110... in this
example, the above idea of Step 1 can be illustrated by Fig.
3.

G

(Original

Gu

GL

S1 Share S2 Share Sn Share

split into
upper and
lower parts

Decompose
both parts into
bit-planes

Share each
bit-plane
individually

Noisy grey (or color) Shares Merge binary-planes of

each share to grey

Plane 1

(a)

(b1)

(b2)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

230

Fig. 3. Step 1 of the (k=3,n=3) example.

Step 2. Use data BU (the upper part of B) to determine the
remaining bits of all shares. The requirement is very
simple: at each position t, we require that
BU (t) = S1 (t) ⊕ S2 (t) ⊕ S3 (t).
In other words, there are “odd” number of 1s appearing in
these three bits {S1(t), S2(t), S3(t)} if and only if BU (t)=1.
One of the many solutions is shown in Fig. 4. Note that all
three shares have been created after Step 2.

S1

1
?=0 ?=1 1 ?=0 ?=1 0

S2

?=0 0 ?=0 ?=1 1 ?=0 ?=0

S3

?=0
?=0 0 ?=0 ?=0 1 ?=1

data BU (upper

part of B)
1 0 1 0 1 0 1

Fig. 4. Step 2 of the (k=3,n=3) example.

2.2 Sharing a bit plane B in the (r,n) case, i.e. when
r<n

Step 0: Create a pair of basis matrices C0 and C1 for the
(r,n) system. (The creation of C0 and C1 is introduced in
many other papers, see Ref. [9] for example, we do not
introduce the detail here.) No matter how they are created,
this pair must have the following properties:

● Each matrix has n rows. Each entry of the two matrices
is just a single bit whose value is either 0 or 1; each 1
means a black dot while each 0 means a white dot.
● “Stacking” r of the n rows of C0 (or C1) is defined as
getting a row whose ith element is the result of using the
“OR” operator (not “exclusive-OR”) on the ith elements of
the corresponding r rows.
● Stacking any r rows of C0 together always get a row
whose number of 1s are less than the number of 1s
obtained from stacking any r rows of C1.
Step 1 (To share the information of BL, i.e. the lower part
of B).
(1-i) Initially, let q=1.
(1-ii) Let p be the q-th bit of the string BL, i.e. p=BL(q).
(1-iii) For m=1,2,…,n, use the m-th row of Cp to paint the
([q-1]n+m)-th block of the share Sm (m=1,2,…,n).

(1-iv). If q reaches H
1

1
+n , then Step 1 ends here, and we go

to Step 2. Else, q q+1and go to (1-ii).
Step 2 (To share the information of BU, i.e. the upper part
of B).
(2-i) Initially, let q=1.
(2-ii) Let p be the q-th bit of the string BU. Also, let m=q
(mod n)
(2-iii-A) If the mth row of Cp is identical to the qth block
of the share Sm, then, for all k=1,…,n, paint the qth block
of the share Sk using the kth row of Cp. Then go to Step
(2-iv).
(2-iii-B) If the mth row of Cp is different from the qth
block of the share Sm, then, we need to permute the
columns of Cp to get a temporary matrix Cp´ whose mth
row is identical to the qth block of the share Sm. (This
permutation subroutine is quite easy to design, so we omit
it here.) Then, for all k=1,…,n, paint the qth block of the
share Sk using the kth row of Cp´.Then go to Step (2-iv).
(2-iv). If q reaches H

1+n
n

, then go to post-processing. Else,
let q q+1and go to (2-ii).

POST-PROCESSING: We already have n shares, and
each share is a sequence of H

1+n
n

×W blocks. Now, convert
each sequence of blocks from 1-dim block-string to its 2-
dim image version. In other words, for each share, divide
its H

1+n
n

× W blocks into H
1+n

n
 rows. (The first W blocks

form the first row; the next W blocks form the second
row; etc.)
 ♦♦

Example (k=2,n=6)
Assume the upper n/(n+1)=6/(6+1)=6/7 part of the
original bit-plane B is BU= 1001…; and assume the lower
1/(n+1)=1/(6+1)=1/7 part of B is BL=1011…. Then, we
show how to use the above algorithm to produce the n=6
shares {S1, …, S6}, where each share has (6H/7)×W
“blocks” when the bit-plane B has H×W bits.

S1 (Random
values at 1,4,7,
…)

1 ? ? 1 ? ? 0

S2 (Random
values at 2,5,8,
…)

? 0 ? ? 1 ? ?

Data BL (Lower
part of B)

 1 1

S3 (Compute bits
3,6,9,.. by ⊕)

? ? 0 ? ? 1 ?

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

231

C0 :
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0

Step 0. Create a pair of basis matrices C0 and C1 for the
(2,6) system. Since n=6, each matrix has 6 rows. The two
matrices in Fig. 5 obviously meet the requirements stated
in the Step 0 of the algorithm.

Fig. 5. The basis matrices C0 and C1 used for the (2,6) system in the
example.

Step 1: (To share BL=1011… , i.e. to share the lower part
of B.)
Because the 1st bit of BL is 1, We look up the matrix C1.
Then, use the 1st row of C1 , i.e. use 1100 to paint 1st
block of share S1.(Since 1100 means BBWW, we may use
the first two entries (BB) to paint the upper half of the
block, then use the next two entries (WW) to paint the
lower half of the block.) Analogously, the share S2 uses
1010 (the 2nd row of C1) to paint its 2nd block. The share
S3 uses 1001 (the 3rd row of C1) to paint its 3rd block.
The share S4 uses 0110 (the 4th row of C1) to paint its 4th
block. The share S5 uses 0101 (the 5th row of C1) to paint
its 5th block. The share S6 uses 0011 (the 6th row of C1)
to paint its 6th block. Then the cycle repeats itself again
using next bit of BL. Since BL(2)=0, we use C0 now. The
rows 1-6 of C0 are copied respectively (one row per share),
to 7th block of S1, 8th block of S2, 9th block of S3, 10th
block of S4, 11th block of S5, and 12th block of S6. This
is Cycle 2. Third cycle uses BL(3)=1 to grab C1 to paint
the (12+i)ith block of the share Si (i=1,2,..6). The process
repeats again and again until all bits of BL are used.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Step 1 for the (r=2, n=6) example. Here, (a)-(f) are, respectively,
the six shares S1 – S6.

Step 2: (To share BU , i.e. share the upper part of B.)
Note that the upper part of B is 1001…; so, we look up
first C1, then C0, then C0 again, then C1 again, and so on.
First, because BU(1) = 1, we use the six rows of C1 to paint
the 1st blocks of shares S1-S6. In this painting, the painted
pattern of the 1st block of the 1st Share (S1) has no
contradiction with what it had been painted earlier in Step
1. (The block had been painted earlier in Step 1 as 1100
(i.e. BBWW), so, no contradiction if we use the 1st row of
C1 to paint it.) Therefore, the 1st blocks of all six shares

C1 :
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

232

are done using the six rows of C1. Now we proceed to
BU(2). Since BU(2)=0, we use the six rows of C0 to paint
the 2nd blocks of shares S1-S6. Again, this painting is
accepted because the painted pattern of the 2nd block of
the 2nd share (S2) has no contradiction with what it had
been painted earlier in Step 1. Now we proceed to BU
(3).Because BU (3)=0, we also try to use the six rows of C0
to paint the 3rd blocks for Shares S1-S6. However, we
find that this will cause the 3rd block of the 3rd share (S3)
has contradiction with what it is already painted in Step 1
earlier. (The block had been painted in Step 1 as 1001 (i.e.
BWWB), rather than 1010 (i.e. BWBW)). Therefore, we
permute the columns of C0 to get a temporary matrix C0´
whose 3rd row is also 1001. Then, we use the six rows of
the new matrix C0´ to paint the 3rd blocks of the six shares.
Notably, all six rows of C0´ become 1001 after this
permutation of columns; that explains why the 3rd blocks
of all six shares are painted as 1001 (BWWB) in Fig. 7.
Now, we proceed to the 4th bit of BU and find that
BU(4)=1, so we use the six rows of C1 to paint the 4th
blocks for Shares S1-S6. In the painting, the painted
pattern of the 4th block of the 4th Share (S4) has no
contradiction with what it had been painted in Step 1
earlier. (The block had been painted earlier in Step 1 as
0110 (i.e. WBBW), so, no contradiction if we use 4th row
of C1 to paint it.) Therefore, the 4th blocks of the six
shares are done using the six rows of C1. Our explanation
ends here, for the remaining process are similar.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7. Step 2 for the (r=2, n=6) example. Here, (a)-(f) are, respectively,
the six shares S1 – S6. Darker elements were determined earlier in Step 1,
and hence cannot be changed now in Step 2.

3. Experiments

In the first experiment, the (r,n) is (2,2). The result is
shown in Fig 8, of which (a) is the input gray-value image
Lena; (b) and (c) are the two gray-value shares (the size of
each share is just n/(n+1)=2/3 of that of (a)); (d) is the
restored error-free result using (b) and (c). The result can
be compared with Ref. [8]. In Ref[8], their recovery is also
error-free (just like ours), but each of their shares is 4
times lager than the input image, while each of our shares
is n/(n+1)=2/3 times smaller than the input image. In other
words, their share-size is (2×2)×(3/2)=6 times bigger than
ours if the input image is the same.
In the second experiment, the (r,n) is (2,6). The result is
shown in Fig 9, of which (a) is the input gray-scale image
Lena; (b) is one of the six gray-value shares (each share is
(n/(n+1))×(2×2)= (6/7) ×(2×2) =3.43 times greater than
(a)). Using any two of the six shares, we can get the error-
free recovery of the input image (identical to (a)). The
result can be compared with Ref. [8]. Their recovery is
also error-free (just like ours), and each of their shares is 4
times lager than the input image, while each of our shares
is (2×2) × 6/7 =3.43 times larger than the input image.
Therefore, their share-size is (n+1)/n = 7/6 times bigger
than ours if the input image is the same.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

233

(a) (b)

(c) (d)

Fig. 8. An (r=2,n=2) experiment using our method. (a) is the input gray-
value image; (b) and (c) are the two gray-value shares (the size of each
share is just n/(n+1)=2/3 of that of (a)); (d) is the restored error-free result
(identical to (a)) using (b) and (c).

(a) (b)

(c)

Fig. 9. An (r=2,n=6) experiment using our method. (a) is the input gray-
value image; (b) is one of the six gray-value shares (each share is
(n/(n+1))×(2×2)=(2×2)×6/7=3.43 times greater than (a)); (c) is the
restored error-free result (identical to (a)) using any two of the six shares

 (a) (b)
In general, in the (n,n) cases, e.g. the (2,2), or (3,3), or
(4,4) cases, each of their shares is 2×2×(n+1)/n times
larger than ours. Note that 2×2×(n+1)/n is a number
between 4 and 6. We can therefore save more transmission
time or storage space than the method in [8] does. On the
other hand, in the (r,n) cases, then each of their shares is
(n+1/n) times larger than ours. Note that (n+1)/n is a
number between 1 and 4/3=1.33 (for n>2 in the (r,n) case,
because r cannot be 1.) Of course, as compared with [8],

we still have a little advantage of space-saving or
communication-time-saving in the (r,n) cases, although the
advantage is not as sharp as in the (n,n) cases.
When it is (r,n) case, our performance is similar to
[PR2006], no matter it is encoding or decoding. But, when
it is (n,n) case, our method is obviously faster than [8], no
matter it is encoding or decoding. The reason is that, in the
(n,n) case, we did not use any kind of blocks (for example,
the 2×2 blocks) to expand any pixel. For readers’ interest,
we also list the processing time of the polynomial-style-
sharing (PSS, see [TL02]). Its decoding time is definitely
much slower than bit-level methods (ours and [8]). As for
its encoding time, it beats us in the (r,n) case, but lose to
us in the (n,n) case. The reason is that in the (n,n) case our
system is extremely simple.
 In summary, in the (n.n) case, we lead both [8]
and PSS [5], no matter it is encoding or decoding. In the
(r,n) case, PSS takes the lead in encoding, but falls far
behind ours and [8] in decoding.

4. Discussion

In this paper, we have proposed a sharing method for grey
or color images. The decoding speed, just like the one in
[8], is real-time. The recovered image is lossless; so is [8].
But our method uses shares of size smaller than those used
in [8], and hence, save transmission time and storage
space. This advantage is particularly obvious in the (n,n)
systems, i.e. when r=n. In that case, each grey/colour share
is 4 to 6 times smaller than that used in [8].
Both [8] and our method are bit-level based; and each bit-
plane is processed independently. Therefore, if the
transmission time (or storage space) is too limited, people
may discard some less important bit-planes. For example,
discard the last 3 bit-planes and only use the most
important 8-3=5 bit-planes, then each grey-value share is
actually a physical-combination of five bit-plane shares
rather than a combination of eight bit-plane shares.
Therefore, each share is reduced in size to 5/8 of the
original grey-value share. (If only the least important one
of the eight bit-planes is removed, then the PSNR of the
reconstructed image is about 52 db.)

Acknowledgments

This work is supported by National Science Council,
Taiwan, R.O.C., under Grant NSC 94-2213-E-009-093.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.5B, May 2006

234

References
[1] N. Bourbakis and A. Dollas, “SCAN-based compression-

encryption-hiding for video on demand,” IEEE Multimedia
Magazine, Vol. 10, pp. 79-87, 2003.

[2] C.C. Thien and J.C. Lin ,”A simple and high-hiding
capacity method for hiding digit-by-digit data in images
based on modulus function”, Pattern Recognition, Vol. 36
(12), pp. 2875-2881, 2003.

[3] C.K. Chan and L.M. Cheng, “Hiding data in images by
simple LSB substitution”, Pattern Recognition, Volume 37
(3), pp. 469-474, 2004.

[4] J.B. Feng, H.C. Wu, C.S. Tsai and Y.P. Chu, A new multi-
secret images sharing scheme using Largrange’s
interpolation, Journal of Systems and Software, Volume 76
(3) , pp.327-339, 2005.

[5] C.C. Thien and J.C. Lin, "An Image-Sharing Method With
User-Friendly Shadow Images," IEEE-Trans. on Circuits
and Systems for Video Technology, Vol. 13, No. 12, pp.
1161-1169, 2003.

[6] C.C. Thien and J.C. Lin, “Secret image sharing,” Computers
and Graphics, Vol. 26, pp. 765-770, 2002.

[7] Y.S. Wu, C.C. Thien and J.C. Lin, “Sharing and hiding
secret images with size constraint,” Pattern Recognition,
Vol. 37(7), pp. 1377-1385, 2004.

[8] R.Lukac and K.N. Plataniotis, “Bi-level based secret
sharing for image encryption”, Pattern Recognition, Vol. 38,
Issue 5, pp. 767–772, 2005.

[9] M. Naor, A. Shamir, “Visual cryptography”, Proc.
Eurocrypt ’94, Lecture Notes Computer Sci., Vol. 950,
pp.1-12, 1994.

[10] W.P. Fang and J.C. Lin, “Visual cryptography with extra
ability of hiding confidential data”, J. Electronics Imaging,
Vol.4, 2006.

[11] R. Lukac and K.N. Plataniotis, A cost-effective encryption
scheme for color images. Real-Time Imaging, Special Issue
on Multi-Dimensional Image Processing, vol.11, no.5-6,
pp.454-464, October-December 2005.

[12] S. Sudharsan, "Shared key encryption of JPEG color
images," IEEE Transactions on Consumer Electronics, vol.
51, no. 4, pp. 1204-1211, November 2005.

[13] R. Lukac and K.N. Plataniotis, "Digital image indexing
using secret sharing schemes: a unified framework for
single-sensor consumer electronics," IEEE Transactions on
Consumer Electronics, vol. 51, no.3, pp.908-916, August
2005.

[14] R. Lukac and K.N. Plataniotis, "Colour image secret
sharing," IEE Electronics Letters, vol. 40, no. 9, pp. 529-
530, April 2004.

[15] D. Jin, W.Q. Yan, M. S. Kankanhalli, Progressive color
visual cryptography, Journal of Electronic Imaging, vol. 14,
no. 3, 033019, Jul-Sep. 2005.

[16] C. C. Lin and W. H. Tsai, "Secret image sharing with
capability of share data reduction," Optical Engineering, vol.
42, pp. 2340-2345, August 2005.

[17] R. Lukac and K.N. Plataniotis, Image representation based
secret sharing. Communications of the CCISA, Special
Issue on Visual Secret Sharing, vol. 11, no. 2, pp. 103-114,
April 2005.

Wen-Pinn Fang received his BS degree
in mechanical engineering in 1994 from
National Sun-Yet-Sen University and his
MS degree in mechanical engineering in
1998 from National Chiao Tung University,
where he is currently a PhD candidate in
the Computer and Information Science
Department. His recent research interests
include pattern recognition and image

processing..

Ja-Chen Lin received his BS
degree in computer science in 1977
and his MS degree in applied
mathematics in 1979, both from
National Chiao Tung University,
Taiwan, and his PhD degree in
mathematics from Purdue University,
U.S.A., in 1988. In 1981 to 1982 he

was an instructor with the National Chiao Tung University
and from 1984 to 1988 he was a graduate instructor with
Purdue University. In August 1988 he joined the
Department of Computer and Information Science at
National Chiao Tung University, where he is currently a
professor. His recent research interests include pattern
recognition and image processing. Dr. Lin is a member of
the Phi- Tau-Phi Scholastic Honor Society.

