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Summary 
The paper proposes a method to distribute images over network. 
There are several good properties: safety, lossless reconstruction, 
and real-time decoding. The size of each transmitted share is also 
competitive, as compared with an earlier work which is also bit-
level based.. 
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Introduction 

To transmit or store an image in a safer way against 
interceptor, there are at least three possible major 
approaches: encryption with keys [1]; hiding the image in 
other media or objects [2-3]; sharing the image among 
distinct channels/places [4-17]. Mixing these three major 
branches are also possible. In this paper, we focus on 
image secret sharing. In an (r,n) image sharing system 
(r≤n), the given image is encrypted into n shadow, noisy-
like, images called shares The generated shares can be 
independently transmitted through various communication 
channels. To recover the image, at least r shares should be 
accessible at the same time. As a result, sharing among n 
of the many existing channels can balance between fault-
tolerance (up to n-r used channels can be disconnected) 
and security (up to r-1 of the n used channels can be 
intercepted, not to mention that each of the much-more-
than-n channels is usually filled with many other coy or 
ordinary images not related to the given important image). 

To share an image, a possible way is to use polynomial-
style sharing (PSS) (see Ref. [5-7]). Using PSS can get 
shares of smaller size, but it is “extremely” time-
consuming in the decoding phase to recover the image 
from the r received shares. There is another way to share 
an image, as stated below. In [11-14] are non-expansive 
secret sharing scheme which can be used as private-key 
cryptosystem. In [15-17] can also recover the secret image 
in its original quality. In Ref. [8], Lukac and Plataniotis 
successfully applied visual-cryptography (VC) techniques 
in a bit-level manner (using VC on each bit-planes) and 
obtain another type of image sharing method having the 
following good properties: 

1. real-time decoding, as opposed to PSS approach; 

2. lossless recovery of images (PSS is also lossless).   

If people really have to pick an disadvantage of this 
method in [8], then maybe the only disadvantage is that 
each (grey or colour) share is several times bigger than the 
given image. In the current paper, we propose an 
alternative method that is also bit-level based. This new 
method keeps the above advantages of [8], and uses shares 
of size smaller than that of [8] (thus reduce their 
transmission time and storage space). In the (r = n) case, 
our share-size is even smaller than the size of the input 
image; while the share-size in [8] is, say, 4 times greater 
the input image. (As for the (r,n) case (with r<n), our 
share-size is a little smaller than that in [8].) 

The rest of this paper is organized as follows. The method 
is stated in Sec. 2; which contains two subsections: Sec. 
2.1 is for the (n,n) case, whereas Sec. 2.2. is for the (r,n) 
case. Experimental results are shown in Sec. 3. Discussion 
is in Sec. 4. 

2. The Proposed method 

For a given H×W gray-scale or color image G, and for a 
given pair of parameters (r,n), our method to create the n 
expected shares is as follows (also see Fig. 1): 

1 Physically split the secret image G, whose size is H×W, 
into two parts: upper parts and lower parts (see Fig. 2). For 
the given parameter pair (r, n), the upper part consists of 
first [n/(n+1)]×H×W pixels of the input image. 

2 Notably, there are 8 bit-planes for a gray image (or, 24 
bit-planes if color). Each bit-plane B = BU ∪  BL also has 
its own upper part BU and lower part BL. The upper part 
BU is the first [n/(n+1)]×H×W bits of plane B; while the 
lower part BL is the remaining [1/(n+1)]×H×W bits. 

3. Sequentially pick a not-yet-processed bit-plane B = BU 
∪  BL to process, until all 8 (or 24) bit-planes are 
processed. Each bit-plane is processed by two sub-steps to 
generate n binary-value shares {S1,…,Sn} for this bit-
plane. The two sub-steps are:  
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(3-i) Share the lower part. 

(3-ii) Then, share the upper part. 

(The details of (3-i) and (3-ii) are described later in Sec. 
2.1 for the case r=n;and then described again in Sec. 2.2 
for the case r<n.) 

   4. The generated share bits are used to produce gray-
scale( or color) share images suitable for secure 
distribution over untrusted networks. 

 

 

Fig .1 Flowchart of the proposed method. 

 

 

 

 

                                

Fig. 2. An example of split. (a) is the original, (b1) is the upper part, and 
(b2) is the lower part. 

 

2.1 Sharing a bit plane B in the (n,n) case. 

Step 1. (Sharing the Lower part (BL) of B.) 

For each share Sm, where m =1,2,…,n-1, randomly assign 
its bits located at {ni+m: i=0,1,2,….}.  As for the last 
share, i.e. Share Sn , we do not randomly assign its bits 
located at {ni+n; i=0,1,2,….}. Instead, we use the lower 
part (BL) of B to compute the bit-values of the share Sn at 
location {ni+n; i=0,1,2,….}. More specifically, for each 
i=0,1,2, …, we compute the value of Sn(ni+n) by 
Sn (ni+n) =[ S1 (ni+1) ⊕  S2 (ni+2) ⊕ …⊕  Sn-1 (ni+[n-
1]) ] ⊕  BL(i) 
where ⊕  is the exclusive-OR operator. Note that Sn 
(ni+n) is computed this way because later we can recover 
the lower part of B by using 
BL(i) = S1 (ni+1) ⊕ S2 (ni+2) ⊕ …⊕ Sn-1 (ni+[n-1]) ⊕  
Sn (ni+n) 
Step 2. (Sharing the Upper part (BU) of B.) 
Use data BU (the upper part of B) to determine the 
remaining bits of all shares. The requirement is very 
simple: at each position t, we require that 
BU (t) = S1 (t) ⊕ S2 (t) ⊕ …⊕ Sn (t).  
In other words, we only requires that: there are “odd” 
number of 1s appearing in the n-bits set {S1 (t), S2 (t), …, 
Sn (t)} if and only if BU (t)=1.   ♦♦ 
 
Example (k=3,n=3) 
Assume the upper n/(n+1)=3/(3+1)=3/4 part of the 
original bit-plane B is BU= 1010101…; and assume the 
lower 1/(n+1)=1/(3+1)=1/4 part of B is BL=1110…. Then, 
we show how to use the above algorithm to produce the 
n=3 shares {S1, S2, S3}, where each share has (3H/4)×W 
bits when the bit-plane B has H×W bits. 
Step 1. For Share S1, randomly assign its bits at 
{1,4,7,…} = {3i+1:  i=0,1,2,….}.  For Share S2, randomly 
assign its bits at {2,5,8,…} = {3i+2:  i=0,1,2,….}. 
However, for the last share, i.e. Share S3 (because n=3), 
we do not randomly assign its bits at {3,6,9,…} = {3i+3: 
i=0,1,2,….}. Instead, we use the lower part (BL) of B to 
compute the values of these bits at location {3,6,9,…} of 
Share 3. More specifically, for each i=0,1,2,3,4…, we 
require that  
S3 (3i+3) = S1(3i+1) ⊕ S2 (3i+2) ⊕  BL ( i ) 
for the purpose that later we can recover the lower part of 
B by using 
BL( i ) = S1 (3i+1) ⊕ S2 (3i+2) ⊕ S3 (3i+3). 
For example, since BL is assumed to be 1110...  in this 
example, the above idea of Step 1 can be illustrated by Fig. 
3.  
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Fig. 3. Step 1 of the (k=3,n=3) example. 
 
Step 2.  Use data BU (the upper part of B) to determine the 
remaining bits of all shares. The requirement is very 
simple: at each position t, we require that 
BU (t) = S1 (t) ⊕ S2 (t) ⊕ S3 (t).  
In other words, there are “odd” number of 1s appearing in 
these three bits {S1(t), S2(t), S3(t)} if and only if BU (t)=1. 
One of the many solutions is shown in Fig. 4. Note that all 
three shares have been created after Step 2. 
 

S1  

1 
?=0 ?=1 1 ?=0 ?=1 0 

S2  

?=0 0 ?=0 ?=1 1 ?=0 ?=0

S3  

?=0 
?=0 0 ?=0 ?=0 1 ?=1

data BU (upper 

part of B) 
1 0 1 0 1 0 1 

Fig. 4. Step 2 of the (k=3,n=3) example. 

 

2.2 Sharing a bit plane B in the (r,n) case, i.e. when 
r<n 

Step 0: Create a pair of basis matrices C0 and C1 for the 
(r,n) system. (The creation of C0 and C1 is introduced in 
many other papers, see Ref. [9] for example, we do not 
introduce the detail here.) No matter how they are created, 
this pair must have the following properties: 

● Each matrix has n rows. Each entry of the two matrices 
is just a single bit whose value is either 0 or 1; each 1 
means a black dot while each 0 means a white dot. 
● “Stacking” r of the n rows of C0 (or C1) is defined as 
getting a row whose ith element is the result of using the 
“OR” operator (not “exclusive-OR”) on the ith elements of 
the corresponding r rows.  
● Stacking any r rows of C0 together always get a row 
whose number of 1s are less than the number of 1s 
obtained from stacking any r rows of C1. 
Step 1 (To share the information of BL, i.e. the lower part 
of B). 
(1-i) Initially, let q=1. 
(1-ii) Let p be the q-th bit of the string BL, i.e. p=BL(q). 
(1-iii) For m=1,2,…,n, use the m-th row of Cp to paint the 
([q-1]n+m)-th block of the share Sm (m=1,2,…,n).  

(1-iv). If q reaches H
1

1
+n , then Step 1 ends here, and we go 

to Step 2. Else, q q+1and go to (1-ii). 
Step 2 (To share the information of BU, i.e. the upper part 
of B). 
(2-i) Initially, let q=1. 
(2-ii) Let p be the q-th bit of the string BU. Also, let m=q 
(mod n) 
(2-iii-A) If the mth row of Cp is identical to the qth block 
of the share Sm, then, for all k=1,…,n, paint the qth block 
of the share Sk using the kth row of Cp. Then go to Step 
(2-iv). 
(2-iii-B) If the mth row of Cp is different from the qth 
block of the share Sm, then, we need to permute the 
columns of Cp to get a temporary matrix Cp´ whose mth 
row is identical to the qth block of the share Sm. (This 
permutation subroutine is quite easy to design, so we omit 
it here.) Then, for all k=1,…,n, paint the qth block of the 
share Sk using the kth row of Cp´.Then go to Step (2-iv). 
(2-iv). If q reaches H

1+n
n

, then go to post-processing. Else, 
let q q+1and go to (2-ii). 
 
POST-PROCESSING: We already have n shares, and 
each share is a sequence of H

1+n
n

×W blocks. Now, convert 
each sequence of blocks from 1-dim block-string to its 2-
dim image version. In other words, for each share, divide 
its H

1+n
n

× W blocks into H
1+n

n
 rows. (The first W blocks 

form the first row; the next W blocks form the second 
row; etc.)      
     ♦♦ 
 
Example (k=2,n=6) 
Assume the upper n/(n+1)=6/(6+1)=6/7 part of the 
original bit-plane B is BU= 1001…; and assume the lower 
1/(n+1)=1/(6+1)=1/7 part of B is BL=1011…. Then, we 
show how to use the above algorithm to produce the n=6 
shares {S1, …, S6}, where each share has (6H/7)×W 
“blocks” when the bit-plane B has H×W bits. 

S1 (Random 
values at 1,4,7, 
…) 

1 ? ? 1 ? ? 0 

S2 (Random 
values at 2,5,8, 
…) 

?   0 ? ?   1 ? ? 

Data BL (Lower 
part of B) 

    1    1  

S3 (Compute bits 
3,6,9,.. by ⊕ ) 

? ? 0 ? ? 1 ? 
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C0 : 
1 0 1 0 
1 0 1 0 
1 0 1 0 
1 0 1 0 
1 0 1 0 
1 0 1 0 

 

 
Step 0. Create a pair of basis matrices C0 and C1 for the 
(2,6) system. Since n=6, each matrix has 6 rows. The two 
matrices in Fig. 5 obviously meet the requirements stated 
in the Step 0 of the algorithm.  

Fig. 5. The basis matrices C0 and C1 used for the (2,6) system in the 
example. 

 
 
Step 1: (To share BL=1011… , i.e. to share the lower part 
of B.) 
Because the 1st bit of BL is 1, We look up the matrix C1. 
Then, use the 1st  row of C1 , i.e. use 1100 to paint 1st  
block of share S1.(Since 1100 means BBWW, we may use 
the first two entries (BB) to paint the upper half of the 
block, then use the next two entries (WW) to paint the 
lower half of the block.) Analogously, the share S2 uses 
1010 (the 2nd row of C1) to paint its 2nd block. The share 
S3 uses 1001 (the 3rd row of C1) to paint its 3rd block. 
The share S4 uses 0110 (the 4th row of C1) to paint its 4th 
block. The share S5 uses 0101 (the 5th row of C1) to paint 
its 5th block. The share S6 uses 0011 (the 6th row of C1) 
to paint its 6th block. Then the cycle repeats itself again 
using next bit of BL. Since BL(2)=0, we use C0 now. The 
rows 1-6 of C0 are copied respectively (one row per share), 
to 7th block of S1, 8th block of S2, 9th block of S3, 10th 
block of S4, 11th block of S5, and 12th block of S6. This 
is Cycle 2. Third cycle uses BL(3)=1 to grab C1 to paint 
the (12+i)ith block of the share Si (i=1,2,..6). The process 
repeats again and again until all bits of BL are used. 
 
              
              
              
              
              

(a) 
 
 
 

              
              
              
              
              

(b) 
 
              
              
              
              
              

(c) 
 
              
              
              
              
              

(d) 
 
 
              
              
              
              
              

(e) 
 
              
              
              
              
              

(f) 

Fig. 6. Step 1 for the (r=2, n=6) example. Here, (a)-(f) are, respectively, 
the six shares S1 – S6. 

     
 
Step 2: (To share BU , i.e. share the upper part of B.) 
Note that the upper part of B is 1001…; so, we look up 
first C1, then C0, then C0 again, then C1 again, and so on. 
First, because BU(1) = 1, we use the six rows of C1 to paint 
the 1st blocks of shares S1-S6. In this painting, the painted 
pattern of the 1st block of the 1st Share (S1) has no 
contradiction with what it had been painted earlier in Step 
1. (The block had been painted earlier in Step 1 as 1100 
(i.e. BBWW), so, no contradiction if we use the 1st row of 
C1 to paint it.) Therefore, the 1st blocks of all six shares 

C1 : 
1 1 0 0 
1 0 1 0 
1 0 0 1 
0 1 1 0 
0 1 0 1 
0 0 1 1 
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are done using the six rows of C1. Now we proceed to 
BU(2). Since BU(2)=0, we use the six rows of C0  to paint 
the 2nd blocks of shares S1-S6. Again, this painting is 
accepted because the painted pattern of the 2nd block of 
the 2nd share (S2) has no contradiction with what it had 
been painted earlier in Step 1. Now we proceed to BU 
(3).Because BU (3)=0, we also try to use the six rows of C0  
to paint the 3rd blocks for Shares S1-S6. However, we 
find that this will cause the 3rd block of the 3rd share (S3) 
has contradiction with what it is already painted in Step 1 
earlier. (The block had been painted in Step 1 as 1001 (i.e. 
BWWB), rather than 1010 (i.e. BWBW) ). Therefore, we 
permute the columns of C0 to get a temporary matrix C0´ 
whose 3rd row is also 1001. Then, we use the six rows of 
the new matrix C0´ to paint the 3rd blocks of the six shares. 
Notably, all six rows of C0´ become 1001 after this 
permutation of columns; that explains why the 3rd blocks 
of all six shares are painted as 1001 (BWWB) in Fig. 7. 
Now, we proceed to the 4th bit of BU and find that 
BU(4)=1, so we use the six rows of C1  to paint the 4th 
blocks for Shares S1-S6. In the painting, the painted 
pattern of the 4th block of the 4th Share (S4) has no 
contradiction with what it had been painted in Step 1 
earlier. (The block had been painted earlier in Step 1 as 
0110 (i.e. WBBW), so, no contradiction if we use 4th row 
of C1 to paint it.) Therefore, the 4th blocks of the six 
shares are done using the six rows of C1. Our explanation 
ends here, for the remaining process are similar. 
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(c) 

              
              
              
              
              

(d) 
              
              
              
              
              

(e) 
              
              
              
              
              

(f) 

Fig. 7. Step 2 for the (r=2, n=6) example. Here, (a)-(f) are, respectively, 
the six shares S1 – S6. Darker elements were determined earlier in Step 1, 
and hence cannot be changed now in Step 2. 

3. Experiments 

In the first experiment, the (r,n) is (2,2). The result is 
shown in Fig 8, of which (a) is the input gray-value image 
Lena; (b) and (c) are the two gray-value shares (the size of 
each share is just n/(n+1)=2/3 of that of (a)); (d) is the 
restored error-free result using (b) and (c). The result can 
be compared with Ref. [8]. In Ref[8], their recovery is also 
error-free (just like ours), but each of their shares is 4 
times lager than the input image, while each of our shares 
is n/(n+1)=2/3 times smaller than the input image. In other 
words, their share-size is (2×2)×(3/2)=6 times bigger than 
ours if the input image is the same. 
In the second experiment, the (r,n) is (2,6). The result is 
shown in Fig 9, of which (a) is the input gray-scale image 
Lena; (b) is one of the six gray-value shares (each share is 
(n/(n+1))×(2×2)= (6/7) ×(2×2) =3.43 times greater than 
(a)). Using any two of the six shares, we can get the error-
free recovery of the input image (identical to (a)). The 
result can be compared with Ref. [8]. Their recovery is 
also error-free (just like ours), and each of their shares is 4 
times lager than the input image, while each of our shares 
is (2×2) × 6/7 =3.43 times larger than the input image. 
Therefore, their share-size is (n+1)/n = 7/6 times bigger 
than ours if the input image is the same.  
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(a)                      (b) 

  
(c)                   (d) 

Fig. 8. An (r=2,n=2) experiment using our method. (a) is the input gray-
value image; (b) and (c) are the two gray-value shares (the size of each 
share is just n/(n+1)=2/3 of that of (a)); (d) is the restored error-free result 
(identical to (a)) using (b) and (c). 

   

(a)                                    (b) 

 
(c) 

Fig. 9. An (r=2,n=6) experiment using our method. (a) is the input gray-
value image; (b) is one of the six gray-value shares (each share is 
(n/(n+1))×(2×2)=(2×2)×6/7=3.43 times greater than (a)); (c) is the 
restored error-free result (identical to (a)) using any two of the six shares 

 
          (a)                                    (b) 
In general, in the (n,n) cases, e.g. the (2,2), or (3,3), or 
(4,4) cases, each of their shares is 2×2×(n+1)/n times 
larger than ours. Note that 2×2×(n+1)/n is a number 
between 4 and 6. We can therefore save more transmission 
time or storage space than the method in [8] does. On the 
other hand, in the (r,n) cases, then each of their  shares is 
(n+1/n) times larger than ours. Note that (n+1)/n is a 
number between 1 and 4/3=1.33 (for n>2 in the (r,n) case, 
because r cannot be 1.) Of course, as compared with [8], 

we still have a little advantage of space-saving or 
communication-time-saving in the (r,n) cases, although the 
advantage is not as sharp as in the (n,n) cases. 
When it is (r,n) case, our performance is similar to 
[PR2006], no matter it is encoding or decoding. But, when 
it is (n,n) case, our method is obviously faster than [8], no 
matter it is encoding or decoding. The reason is that, in the 
(n,n) case, we did not use any kind of blocks (for example, 
the 2×2 blocks) to expand any pixel. For readers’ interest, 
we also list the processing time of the polynomial-style-
sharing (PSS, see [TL02]). Its decoding time is definitely 
much slower than bit-level methods (ours and [8]). As for 
its encoding time, it beats us in the (r,n) case, but lose to 
us in the (n,n) case. The reason is that in the (n,n) case our 
system is extremely simple. 
 In summary, in the (n.n) case, we lead both [8] 
and PSS [5], no matter it is encoding or decoding. In the 
(r,n) case, PSS takes the lead in encoding, but falls far 
behind ours and [8] in decoding. 
 
 

4. Discussion 

 
In this paper, we have proposed a sharing method for grey 
or color images. The decoding speed, just like the one in 
[8], is real-time. The recovered image is lossless; so is [8]. 
But our method uses shares of size smaller than those used 
in [8], and hence, save transmission time and storage 
space. This advantage is particularly obvious in the (n,n) 
systems, i.e. when r=n. In that case, each grey/colour share 
is 4 to 6 times smaller than that used in [8]. 
Both [8] and our method are bit-level based; and each bit-
plane is processed independently. Therefore, if the 
transmission time (or storage space) is too limited, people 
may discard some less important bit-planes. For example, 
discard the last 3 bit-planes and only use the most 
important 8-3=5 bit-planes, then each grey-value share is 
actually a physical-combination of five bit-plane shares 
rather than a combination of eight bit-plane shares. 
Therefore, each share is reduced in size to 5/8 of the 
original grey-value share.  (If only the least important one 
of the eight bit-planes is removed, then the PSNR of the 
reconstructed image is about 52 db.) 
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