Linguistic Truth-value Lattice-valued Logic System with Important Coefficient and Its Application to Evaluation System

Dan Meng¹, Huading Jia², Zaiqiang Zhang³, and Yang Xu⁴
1. School of Economics Information Engineering, Southwest University of Finance and Economics, Chengdu, Sichuan 610074, P.R.China
 E-mail: mengd_t@swufe.edu.cn
2. Institute of Image and Graphics, Sichuan University, Chengdu, Sichuan 610064, P.R.China
 E-mail: jiahd@swufe.edu.cn
3. School of Economics and Management, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P.R.China
 E-mail: shangweizz@126.com
4. Department of Applied Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P.R.China
 E-mail: yangxu@home.swjtu.edu.cn

Abstract—In this paper, a linguistic truth-value lattice proposition logic system \(LTVLP(X) \) is presented firstly. It is an useful and reasonable tool to deal with the linguistic term set including linear ordered set and non-linear ordered set. Then an operator linguistic truth-value lattice-valued proposition logic \(OLTVLP(\bar{X}) \) is given. The \(OLTVLP(\bar{X}) \) can provide a theoretical model for multi-evaluator single-layer evaluation problem with linguistic term set. Then it follows an evaluation approach in \(LTVLP(X) \) and \(OLTVLP(\bar{X}) \) by using logic formula for an application case. Any linear information and incomparable information can be dealt with in the framework under \(LTVLP(X) \) and \(OLTVLP(\bar{X}) \).

Key Words: Artificial intelligence, intelligent evaluation system, linguistic truth-value lattice-valued proposition logic system, operator linguistic truth-value lattice-valued proposition logic system

I. INTRODUCTION

In real world, there are many decision situations in which the information cannot be assessed precisely in a quantitative form but may be in a qualitative one, and thus, the use of a linguistic approach is necessary [9]. Similarly, there are many evaluation situation in which the information cannot be evaluated in a quantitative form but may be in a qualitative one, so the use of linguistic approach is necessary and effective. For example, when we try to evaluate “service quality”, we tend to use natural language other than numerical value; second, it is unnecessary to get the accurate numerical value(e.g., when we try to evaluate the “height” of a person, maybe intuitive linguistic terms like “very tall”, “tall”, “small”, “very small” is better than measure value which is measured by scale.) In these situations, a linguistic approach is necessary and helpful. Moreover, some linguistic term seem difficult to distinguish their boundary sometimes, but their meaning of common usage can be understood.

It is natural and reasonable to represent the linguistic term set by using a partially ordered set or lattice[1], [3]. Based on the above feature of linguistic evaluation term set, a proper algebraic and logic model must be chosen to deal with this problem. In this paper, we present the \(LTVLIA, LTVLP(X) \) and \(OLTVLP(\bar{X}) \) and take them as the representation and operation model of evaluation problem.

In this paper, a linguistic truth-value lattice-valued proposition logic system \(LTVLP(X) \) is presented firstly. It is an useful and reasonable tool to deal with the linguistic term set including linear ordered set and non-linear ordered set. Then an operator linguistic truth-value lattice-valued propo-
sition logic $OLT\mathcal{V}LP(X)$ is given. The $OLT\mathcal{V}LP(X)$ can provide a theoretical model for multi-evaluator single-layer evaluation problem with linguistic term set. It follows an evaluation approach in $LT\mathcal{V}LP(X)$ and $OLT\mathcal{V}LP(X)$ by using logic formula for an application case. Any linear information and incomparable information can be dealt with in the framework under $LT\mathcal{V}LP(X)$ and $OLT\mathcal{V}LP(X)$.

II. PRELIMINARIES

A. Lattice Implication Algebra

Definition 2.1: [17] Let (L, \lor, \land, O, I) be a bounded lattice with an order-reversing involution $''$ and I and O the greatest and the smallest element of L respectively, and $\rightarrow: L \times L \rightarrow L$ be a mapping. (L, \lor, \land, O, I) is called a lattice implication algebra if the following conditions hold for any $x, y, z \in L$,

1) $x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z)$;
2) $x \rightarrow x = I$;
3) $x \rightarrow y = y' \rightarrow x'$;
4) $x \rightarrow y = y \rightarrow x$ implies $x = y$;
5) $(x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x$;
6) $(l_1) \ (x \lor y) \rightarrow z = (x \rightarrow z) \land (y \rightarrow z)$;
7) $(l_2) \ (x \land y) \rightarrow z = (x \rightarrow z) \lor (y \rightarrow z)$;

B. Lattice-valued Propositional Logic $LP(X)$

Language[18]*:

The symbols in $LP(X)$ are

1) the set of propositional variable: $X = \{p, q, r, \ldots\}$;
2) the set of constants: L;
3) logical connectives: \rightarrow, $'$;
4) auxiliary symbols: \rightarrow, \sim.

The set F of formulae of $LP(X)$ is the least set Y satisfying the following conditions:

a) $X \subseteq Y$;
 b) $L \subseteq Y$;
 c) if $p, q \in Y$, then $p', p \rightarrow q \in Y$.

Semantics

Lemma 2.2: [18] Let L be a lattice implication algebra, then

1) $\alpha \lor \beta = (\alpha \rightarrow \beta) \rightarrow \beta$;
2) $\alpha \land \beta = (\alpha' \lor \beta')'$.

hold for any $\alpha, \beta \in L$. Hence, L and $LP(X)$ can be looked as algebras with the same type $T = L \cup \{', \sim\}$ and for any $p, q \in F$,

- $p \lor q \equiv (p \rightarrow q) \rightarrow q$,
- $p \land q \equiv (p' \lor q')'$.

Definition 2.3: [16] A mapping $v : LP(X) \rightarrow L$ is called a valuation of $LP(X)$, if it is a T-homomorphism.

Lemma 2.4: [16] Let $f : LP(X) \rightarrow L$ be a mapping, then f is a valuation of $LP(X)$ if and only if it satisfies:

1) $f(\alpha) = \alpha$ for any $\alpha \in L$;
2) $f(p') = (f(p))'$ for any $p \in F$;
3) $f(p \rightarrow q) = f(p) \rightarrow f(q)$ for any $p, q \in F$.

III. LINGUISTIC LATTICE-VALUED PROPOSITION LOGIC SYSTEM

A. Linguistic Truth-valued Lattice Implication Algebra $LTI\mathcal{V}A$

Definition 3.1: Let

\[(L_1, \land_1 \lor_1, \rightarrow_1, I_1, O_1),\]

\[(L_2, \land_2 \lor_2, \rightarrow_2, I_2, O_2)\]

be lattice implication algebra respectively, and its order-reversing involution mapping be $'$, respectively, and the product of L_1 and L_2 be as follows:

\[L_1 \times L_2 = \{(a, b) | a \in L_1, b \in L_2\}\]

Lemma 3.2: [18] Let\[
(L_1 \times L_2, \land, \lor, \rightarrow, (O_1, O_2), (I_1, I_2))\]

is a lattice implication algebra.

Proof It can be proved by the definition of lattice implication algebra given in definition 2.1.

Definition 3.3: [16] $(L_1 \times L_2, \land, \lor, \rightarrow, (O_1, O_2), (I_1, I_2))$ is called a product lattice implication algebra.

Definition 3.4: Let

\[MT = \{True(\text{Abbr. to T)}, False(\text{Abbr. to F})\},\]

the following lattice implication algebra $(MT, \land, \lor, \rightarrow, (O, F, T))$ is called meta linguistic truth-value lattice implication algebra, where \land, \lor, \rightarrow is the same as that of in classical logic.

*Example 3.5: Consider the set $L = \{a_i| i = 1, 2, \ldots, n\}$, define order on L as follows: if $i \leq j$ iff $a_i \leq a_j$, where $i, j \in \{1, 2, \ldots, n\}$, for any $1 \leq j, k \leq n$, define

1. $a_j \lor a_k = a_{\max(j,k)}$;
2. $a_j \land a_k = a_{\min(j,k)}$;
3. $a_j' = a_{n-j+1}$;
4. $a_j \rightarrow a_k = a_{\min(n-j+k,n)}$.

then $(L, \land, \lor, \rightarrow, a_1, a_n)$ is a lattice implication algebra, where \rightarrow is Lukasiewicz implication algebra on finite chains, and Hasse graph of L is as in figure 1.

In natural language, we usually take some hedge to modify our natural language, hedge operator and its algebraic structure is discussed in [13], [14]. In this paper, we choose some modifactory word to denote the linguistic term.
Example 3.6: Let \(MW = \{ \text{Slightly (Abbr. to Sl), Somewhat (Abbr. to So), Rather (Abbr. to Ra), Absolutely (Abbr. to Ab.)} \} \) be a modifier word set, then chain \(Sl \leq So \leq Ra \leq Al \leq Ex \leq Qu \leq Ve \leq Hi \leq Ab \) is a lattice implication algebra with operation as given in example 3.5, and it is a nine modifier word set.

Example 3.7: Let \(MW = \{ \text{Slightly (Abbr. to Sl), Exactly (Abbr. to Ex), Absolutely (Abbr. to Ab.)} \} \) be a modifier word set, then chain \(Sl \leq Ex \leq Ab \) is a lattice implication algebra with operation as given in example 3.5, and it is a three modifier word set.

Definition 3.8: Let \(MW = \{ a_1, a_2, \cdots, a_n \} \) be linguistic hedge lattice implication algebra, \(MT \) be meta linguistic lattice implication algebra, then the product \(MW \times MT \) of \(MW \) and \(MT \) is a linguistic truth-value lattice implication algebra (abbr. to LTVLIA), its Hasse graph is as figure 2:

![Fig. 1. HASSE Graph of Lattice L.](image)

B. Linguistic Truth-value Lattice-valued Proposition Logic System \(LTVLP(X) \)

- Language
 The symbols in \(LTVLP(X) \) are
 1) the set of propositional variable:
 \[X = \{ p, q, r, \cdots \} ; \]
 2) the set of constants: \(LTVLIA ; \)
 3) logical connectives: \(\land, \lor, \neg, \neg ; \)

4) auxiliary symbols: \(; \), ().

- Semantics
 Definition 3.9: The set \(F \) of formulae of \(LTVLP(X) \) is the least set \(Y \) satisfying the following conditions:
 1) \(X \subseteq Y ; \)
 2) \(LTVLIA \subseteq Y ; \)
 3) if \(p, q \in Y \), then \(p, p \lor q, p \lor q \lor q \lor q \lor q \lor q \in Y . \)

Definition 3.10: A mapping \(v : LP(X) \rightarrow LTVLIA \) is a linguistic lattice-valued valuation of \(LP(X) \), if it is a \(T \) - homomorphism.

Lemma 3.11: Let \(f : LP(X) \rightarrow LTVLIA \) be a mapping, then \(f \) is a linguistic lattice-valued valuation of \(LP(X) \) if and only if it satisfies:
 1) \(f(\alpha) = \alpha \) for any \(\alpha \in LTVLIA ; \)
 2) \(f(p') = (f(p))^f \) for any \(p \in F ; \)
 3) \(f(p \lor q) = f(p) \lor f(q) \) for any \(p, q \in F . \)

C. Operator Linguistic Truth-value Lattice-valued Logic System \(OLTVP(X) \)

Definition 3.12: Let \((LTVLIA, \land, \lor, \rightarrow, O, I) \) be a linguistic truth-value lattice implication algebra, \(\lambda \in [0,1] \), the symbols in operator linguistic truth-value lattice-valued proposition logic system \(\lambda LTVLP(X) \) are:
 1) the set of lattice-valued atom propositional variable:
 \[\lambda X = \{ \lambda p, \lambda q, \lambda r, \cdots \} ; \]
 2) the set of lattice-valued atom constants: \(\lambda LTVLIA ; \)
 3) logical connectives: \(\land, \lor, \neg, \neg ; \)
 4) auxiliary symbols: \(; \), ().

The set \(F \) of formulae of \(\lambda LP(X) \) is the least set \(\lambda Y \) satisfying the following conditions:
 1) \(\lambda X \subseteq \lambda Y ; \)
 2) \(\lambda L \subseteq \lambda Y ; \)
 3) if \(\lambda_1 p, \lambda_2 q \in \lambda Y \), then \((\lambda p)'; \lambda_1 p \rightarrow \lambda_2 q \in \lambda Y, \lambda_1 p \lor \lambda_2 q \in \lambda Y \), \(\lambda_1 p \lor \lambda_2 q \in \lambda Y \).

IV. Single-layer Evaluation System by Using Linguistic Truth-valued Proposition Logic System

A. Problem Formulation of Single-layer Evaluation System

Let the evaluation problem involve a set of \(n \) alternatives (objects) \(A_i (i = 1, 2, \cdots, n) \) to be evaluated and \(r \) evaluators \(r_k, k = (1, 2, \cdots, r) \). Let these alternatives to be evaluated be based on a set of \(m \) criterion (attribute) \(C_j (j = 1, 2, \cdots, m) \) and every criteria (attribute) can’t be divided further, then it is a single-layer evaluation problem, it can be expressed as in figure 3.
which is a linear ordered set or non-linear ordered set. The following two ways, one is from the different granular or term set may be different. The difference comes from the set should satisfy the following conditions [4], [15]:

- For every alternative \(A_i (i = 1, 2, \cdots, n) \), the \(k^{th} (k = 1, 2, \cdots, r) \) evaluator will give the evaluation value for \(m \) evaluated attributes (or criteria) and \(n \) alternatives. For the \(i^{th} \) alternative, the \(k^{th} \) evaluator will give evaluation value for each criteria as shown in figure 4, where \(v_j^{(k)} (j = 1, 2, \cdots, m, i = 1, 2, \cdots, n) \) represents the linguistic evaluation value of the performance rating of alternative \(A_i (i = 1, 2, \cdots, n) \) with respect to criterion \(C_j (j = 1, 2, \cdots, m) \).

Different evaluator may have different opinion on importance of different criterion, i.e. they may have different preference on various criterion because of their academic background knowledge or experience difference. For example, when evaluating a performance of a public transportation company, government may think “social duty” is the most important, but customer may think “comfort” and “safety” is the most important. So the importance coefficient must be determined when we try to evaluate alternative. Here, for the \(k^{th} (k = 1, 2, \cdots, r) \) evaluator, we denote the importance coefficient of each criteria by the weighting vector

\[
\omega^{(k)} = (\omega_1^{(k)}, \omega_2^{(k)}, \cdots, \omega_m^{(k)}).
\]

In an evaluation problem, different evaluator may be not the same important. So the importance coefficient of each evaluator can be given in the following weighting vector:

\[
e = (e_1, e_2, \cdots, e_r).
\]

Example 4.2: For example, when we try to evaluate a supply chain, we have several evaluation criteria such as “tangibles”, “reliability”, “responsiveness”, “competence”, “courtesy”, “credibility”, “security”, “communication”, “understanding the customer”[2]. Accordingly, we have different evaluation linguistic term set such as \{ very high, high, medium, low, very low \} for reliability, and the linguistic term set is an linear order set and can be expressed as in figure 5.

```
\begin{itemize}
  \item Very High
  \item High
  \item Medium
  \item Low
  \item Very Low
\end{itemize}
```

However, there are some “vague overlap districts” among some words which cannot be strictly linearly ordered, a more general structure of linguistic terms is given as in figure 6. And the linguistic term set \{ most high, more high, exactly high, less high, least high, most low, more low, exactly low, less low, least low \} for competence is a non-linear set.

In this section, we take the \(LT\text{VLIA} \), \(LT\text{VL}_0(X) \) and \(OLT\text{VL}_0(X) \) as the representation and operation model.

Note 4.3: The linguistic term set is different in most evaluation cases. In the proposed evaluation system, every linguistic evaluation term will be transformed to the satisfaction-based linguistic truth-value proposition logic system \(SLTS \), then the \(SLTS \) can be transformed to linguistic truth-value term set \(LT\text{TVTS} \).

Example 4.4: Here we take a seven term set as as example, let set of degree of satisfaction term be \(SDST = \{ \text{most satisfactory}, \text{more satisfactory}, \text{satisfactory}, \text{average}, \text{less satisfactory}, \text{very unsatisfactory}, \text{unsatisfactory} \} \) for competence is a non-linear set.

```
\begin{itemize}
  \item Very High
  \item High
  \item Medium
  \item Low
  \item Very Low
\end{itemize}
```

\begin{itemize}
 \item (most,H)
 \item (more,H)
 \item (exactly,H)
 \item (less,H)
 \item (least,H)
\end{itemize}

\begin{itemize}
 \item (least,L)
 \item (less,L)
 \item (exactly,L)
 \item (more,L)
 \item (most,L)
\end{itemize}
dissatisfactory, more dissatisfactory, most dissatisfactory}, the linguistic truth-value set be \(LTVS = \{ \text{most } T, \text{ more } T, \text{ T}, \alpha, \text{ F}, \text{ more } F, \text{ most } F \} \), where \(\alpha \) is between “satisfactory” and “unsatisfactory”. When we evaluate the “service quality”, we can use the term set {best, better, good, medium, bad, worse, worst}, if an evaluator think the service is “worse”, then its corresponding value is \(v_6 \), its corresponding semantic is that the degree of satisfaction of “service quality” is “more dissatisfactory”. Accordingly, the truth-value of proposition “the service is good” is “more F”.

Example 4.5: Take the evaluation of competence in supply chain evaluation in example 4.2 as an example. Its linguistic term set \(LTS = \{ \text{most high}, \text{ more high}, \text{ exactly high}, \text{ low}, \text{ more low}, \text{ exactly low}, \text{ less low}, \text{ least low} \} \) for competence is a non-linear set, its satisfaction-based linguistic term set \(SLTS \) can be transformed to linguistic truth-value set as \(SLTS = \{ \text{most satisfactory}, \text{ more satisfactory}, \text{ exactly satisfactory}, \text{ less satisfactory}, \text{ least satisfactory}, \text{ most dissatisfactory}, \text{ more dissatisfactory}, \text{ less dissatisfactory}, \text{ least dissatisfactory} \} \), then the satisfaction-based linguistic term set \(SLTS \) can be transformed to linguistic truth-value set \(LTPTS = \{ \text{most } T, \text{ more } T, \text{ exactly } T, \text{ less } T, \text{ least } T, \text{ most } F, \text{ more } F, \text{ exactly } F, \text{ less } F, \text{ least } F \} \) accordingly.

C. Evaluation System Based on Linguistic Truth-valued Lattice-valued Logic System

After every linguistic evaluation value has been transformed to the linguistic truth-value, the adjacent key step of evaluation process is the aggregation of every linguistic truth-value for each criterion of every alternative.

In this section, we present a new approach by using linguistic truth-value lattice implication algebra from the point of linguistic truth-value lattice-valued proposition logic system. For the \(i \)th alternative, the \(k \)th evaluator will give the linguistic truth-value lattice evaluation vector, as expressed in (8):

\[
(v^{(k)}_{1(i)}, v^{(k)}_{2(i)}, \ldots, v^{(k)}_{m(i)})
\]

Definition 4.6: For the \(i \)th alternative \(A_i \), we can get \(r \) vector:

\[
V^{(k)}_{j(i)} = (v^{(k)}_{1(i)}, v^{(k)}_{2(i)}, \ldots, v^{(k)}_{m(i)}),
\]

where \(k = 1, 2, \ldots, r \), \(v^{(k)}_{j(i)} \in LTVP(X) \), every vector express as in (9) is called linguistic truth-value lattice-valued evaluation vector.

Definition 4.7: The importance coefficient of each criteria given by the \(k \)th \((k = 1, 2, \ldots, r) \) evaluator is \(\omega^{(k)} = (\omega^{(k)}_1, \omega^{(k)}_2, \ldots, \omega^{(k)}_m) \), linguistic truth-value lattice-valued evaluation vector is \((v^{(k)}_{1(i)}, v^{(k)}_{2(i)}, \ldots, v^{(k)}_{m(i)}) \), then

\[
(\omega^{(k)}_1 v^{(k)}_{1(i)}, \omega^{(k)}_2 v^{(k)}_{2(i)}, \ldots, \omega^{(k)}_m v^{(k)}_{m(i)})
\]

is called linguistic truth-value lattice-valued evaluation vector with criterion important coefficient, where \(\omega^{(k)}_i v^{(k)}_{i(i)} \in OLTVP(X) \).

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{linguistic term} & v_1 & v_2 & \ldots & v_s \\
\hline\text{distribution value} & g(1) & g(2) & \ldots & g(s) \\
\hline
\end{array}
\]

Table I: Linguistic Truth-value Evaluation Distribution

Definition 4.8: The important coefficient of each criteria given by the \(k \)th \((k = 1, 2, \ldots, r) \) evaluator is \(\omega^{(k)} = (\omega^{(k)}_1, \omega^{(k)}_2, \ldots, \omega^{(k)}_m) \), linguistic truth-value lattice-valued evaluation vector is \((v^{(k)}_{1(i)}, v^{(k)}_{2(i)}, \ldots, v^{(k)}_{m(i)}) \), the important coefficient of \(k \)th evaluator is \(e^{(k)} \), then

\[
(e^{(k)} v^{(k)}_{1(i)}, e^{(k)} v^{(k)}_{2(i)}, \ldots, e^{(k)} v^{(k)}_{m(i)})
\]

is called linguistic truth-value lattice-valued evaluation vector with criterion and evaluator important coefficient, where \(\omega^{(k)}_i v^{(k)}_{1(i)} \in OLTVP(X) \).

Definition 4.9: The evaluation result is determined by the aggregation of linguistic truth-value lattice evaluation vector with criterion important coefficient, it can be expressed as:

\[
\bigwedge^{m}_{j=1} e^{(k)} \omega^{(k)}_j v^{(k)}_{j(i)},
\]

where \(k = 1, 2, \ldots, r \).

Definition 4.10: 1) Let

\[
LTVTLIA = \{ v_1, v_2, \ldots, v_s \} = \{ v_o | o = 1, 2, \ldots, s \}
\]

be a linguistic truth-value lattice implication algebra, define a series of mapping \(g_o : (1, 2, \ldots, s) \) from \(([0, 1] \odot LTVTLIA)^m \) to \(R \) as follows:

\[
(\sum_{i=1}^{n} c_i v_i = v_o) \quad (13)
\]

2) Let \((e^{(k)} v^{(k)}_{1(i)}, e^{(k)} v^{(k)}_{2(i)}, \ldots, e^{(k)} v^{(k)}_{m(i)}) \) where \(j \in \{1, 2, \ldots, n\}, k \in \{1, 2, \ldots, r\} \) be an any linguistic truth-value lattice-valued evaluation vector with double important coefficient, define linguistic evaluation value distribution on \(LTVS \) as in table I, and vector

\[
(g(1), g(2), \ldots, g(s))
\]

is called linguistic truth-value lattice-valued evaluation distribution vector.

Definition 4.11: Let \(\{(a_{11}, a_{12}, \ldots, a_{i-s}) \} | i = 1, 2, \ldots, n \) be \(n \) linguistic truth-value lattice-valued evaluation distribution vector, define \(\oplus \) from \((R^n)^n \) to \(R^s \) as follows:

\[
(a_{11}, a_{12}, \ldots, a_{i-s}) \oplus (a_{21}, a_{22}, \ldots, a_{2s}) \oplus \cdots \oplus (a_{n1}, a_{n2}, \ldots, a_{ns})
\]

\[
(1/n(a_{11} + a_{21} + \cdots + a_{n1}), 1/n(a_{12} + a_{22} + \cdots + a_{n2}), \ldots, 1/n(a_{1s} + a_{2s} + \cdots + a_{ns})
\]

\[
(15)
\]
Definition 4.12: Let the importance coefficient of each criterion given by the $k^{th} (k = 1, 2, \ldots, r)$ evaluator be $\omega^{(k)} = (\omega_1^{(k)}, \omega_2^{(k)}, \ldots, \omega_m^{(k)})$, linguistic truth-value lattice-valued evaluation vector be $(v_1^{(k)}, \ldots, v_m^{(k)})$, the important coefficient of k^{th} evaluator is $e^{(k)}$, then the final evaluation result is as follows:

$$\oplus g(\bigwedge_{j=1}^m e^{(k)} \omega_j^{(k)} v_j^{(k)}),$$

(16)

V. Conclusion and Future Works

In this paper, a linguistic truth-value lattice-valued proposition logic system $LTVLP(X)$ is presented firstly. It is an useful and reasonable tool to deal with the linguistic term set including linear ordered set and non-linear ordered set. Then an operator linguistic truth-value lattice-valued proposition logic $OLTVP(X)$ is given. The $OLTVP(X)$ can provide a theoretical model for multi-evaluator single-layer evaluation problem with linguistic term set. It follows an evaluation approach in $LTVLP(X)$ and $OLTVP(X)$ by using logic formula for an application case. Any linear information and incomparable information can be dealt with in the framework under $LTVLP(X)$ and $OLTVP(X)$.

However, there is still some work need to be finished. The double-layer, multi-layer and mixed-layer evaluation problem with linguistic value based on satisfaction and linguistic truth-value will be given in another paper by the author and her colleagues. In addition, the model can be used to the group decision making with linguistic term set. These related work will be given by the author and her colleagues in the following published paper in the near future.

VI. Acknowledgements

This work was supported by the Scientific Research Fund of Southwestern University of Finance and Economics and the National Natural Science Fund of P.R. China (Grant No. 60474022).

References

Dan Meng received the B.S. and M.S. degrees in Pure Mathematics from Liaoning Normal University in 1998 and 2001 respectively. And received her Ph.D. degree in Transportation Information Engineering from Southwest Jiaotong University in 2004. Since July 2004, She works in Southwest University of Finance and Economics both as a teacher and a researcher. Her research field is artificial intelligence, intelligent decision system and intelligent information processing.

Huading Jia, he is Ph.D Candidate of Sichuan University now. His research field is intelligent decision system, Graphics, Image processing and data fusion. Now he works in Southwest University of Finance and Economics both as a teacher and a researcher.