
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

Manuscript received June 25, 2006.
Manuscript revised June 30 , 2006.

23

AN ALGORITHM FOR VISIBILITY-DETECTION IN PBR

YUEPING FENG, HUIXIANG ZHONG, HUIQIN WANG,YUNJIE PANG

College of computer science and technology, Jilin University, Changchun 130012 P.R.China

Abstract:
Point-based rendering attracts more and more interest

from researchers as 3D digital scan devices are used more
widely in computer graphics. Within point-based rendering,
removing hidden points from a 3D object is a key process to
make the rendered object look realistic. This paper presents
an algorithm for visibility-detection in point-based rendering,
which is designed according to the features of point-based
models.

Keywords:
Point-based rendering, hidden points, back direction

point, sorting of points

1. Introduction

There are many ways of representing a 3D object
surface in computer graphics. Polygons, spline surface,
implicit surface are all used. By using these representations,
the process of producing a 3D object surface can be
simplified. Among these representations, polygon or
triangle representation is used most widely and considered
as the most important representation since all the others
such as implicit surface, NURBS, subdivision surface can
be converted to it. In addition, this representation can also
be easily processed by using common graphics devices.
However, as the complexity of an object model to be
rendered keeps on increasing, the number of triangles also
increases. As Smith[1] said, ”The realistic means 800,000
polygons”. Thus, disposing triangles becomes the
bandwidth bottleneck and leads to floating-point
computation difficulty.

Recently, 3D digital scanners become very popular,
and geometric details and shapes obtained through scanning
also become abundant. This leads to the need of finding out
an efficient way in representing, processing and rendering
geometric models with a large scale and high complexity.
3D scanners create a large quantity of sampled points, and
there is no relationship between any of these points.
Traditional way of processing these points is to create
triangle meshes by sampling these points, but with the
advance of 3D scanning technology, the number of mesh
points obtained through 3D scanning usually falls on the
order of billion[2]. The efficiency of polygon model
transformation and reconstruction becomes lower, and the

limit of polygon representation also becomes dominant. As
a result, with the wide applications of 3D scanning devices,
the development of computer graphics needs to solve these
following problems: an efficient way of rendering objects
and scenes with high complexity; reduction of redundancy;
saving of data storage and new rendering structure which
can directly represent dense point clouds built by 3D
scanners.

Due to the above reasons, Point-Based Rendering
(PBR) becomes popular again [3]. This rendering algorithm
does not use the traditional triangle facet method. It records
the information of each point, and directly from the
information it can reconstruct the object. Thus, it provides a
new approach that can resolve the difficulty of fast
rendering processing of abundant 3D sampled data.

The algorithm proposed in this paper is just to deal
with one of the problems existing in point-based rendering.
Sometimes there is no facet (such as splat) to cover the
points which should have been concealed by the points in
front, so they are mistakenly displayed on the 3D object
surface. In order to identify these points and hide them, we
have developed a visibility-detection algorithm.

2. Point-based Rendering

2.1. Background and Related Work

Point-based rendering has a long history. In 1985,
Levoy and Wihtted[3] first proposed the idea of point-based
rendering. They discussed about the disadvantages of using
continuous scanning method to render, and pointed out that
although points are simple, they are sufficient in
representing any 3D object. As long as the points are dense
enough on a 3D object surface, projecting each point onto
the screen can still give a realistic visual effect. They used a
circular splat as rendering element, and set a minimum
value of the splat’s size to maintain the rendering quality.
With the development of PBR, other researchers also
proposed their own PBR algorithms. Currently, two PBR
algorithms, Qsplat[4,7,8,9] and Surfel[5,10,11,12], are most
developed and the basic ideas are both to construct a small
area centered around the sampled point. Qsplat uses a
hierarchy of bounding spheres for visibility culling, LOD
control, and rendering; and the level tree traverses in a

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

24

depth-first order. Surfel uses “Surfel” as basic element and
the data structure used is called LDC (Layered Depth Cube).
The rendering process of Surfel is similar to Qsplat. The
cost of applying the above two algorithms is considerably
high. However, the algorithm proposed in this paper uses
sampled points to render directly, and thus is more
cost-saving.

2.2. Point Data Structure on Objects

The surface of any 3D object can be viewed as a
composition of a set of points with different degree of
density. In 1974, Catmull noticed that the limit of division
in geometry is point [5]. Therefore, representing a
geometric object by points conforms to its intrinsic property.
The point data obtained from a geometric object may differ
from each other depending on how they are obtained. In our
research, the point data are all obtained from polygon
meshes. The data structure used to describe the point is as
follows:

point_data{
position;

 normal;
 color;
 visbility;
 M
 }

where position is the coordinate of the point in world axis;
normal is the normal vector of the point; color is the color
or texture of the point and visibility is the visibility of the
point. The value of visibility is initially assigned to false.
As points are used to render in this case, the traditional
visibility-detection algorithm needs to be modified as well.

2.3. Visibility-detection algorithm for PBR

Visibility-detection is a necessary process to render an
image with realistic visual effect. Usually
visibility-detection means to remove hidden lines or
surfaces. In PBR, visibility-detection is to remove hidden
points, i.e. points that are invisible. Hidden points can be
subdivided into 2 groups: back points and non-back points.
Back points can be identified through the angle between the
vector V in the view direction and normal vector N of each
point. When V · N < 0, the point is a back point. Non-back
points can be defined as those that should have been
concealed by the points in front and do not satisfy the
condition of being a back point. Because there is no facet to
conceal the points, these hidden points can be displayed
through the gap on the 3D object surface, causing failures
of rendering. Therefore, different algorithms have been
developed to remove these hidden points.

2.4. Removing back points

The angle between the vector V in the view direction
and normal vector N of each point can be used to determine
whether a point is a back point or not. When V · N < 0, the
point is a back point and the value of the visibility is set to
false.

Figure 1 shows an image after the back points are
removed. The arrow shows the points which should have
been concealed but displayed through the gaps. This is
because the object is represented by discrete points, when
the density of the points is not high enough to cover all the
pixels on the projected plane, there are gaps between these
points. These gaps can be filled up by re-sampling.
However, the problem of uneven density still exists. In
addition, with different resolutions, gaps may still exist. As
a result, there is a need to do a second iteration of
visibility-detection based on view point.

Figure 1: Image after removing back points

2.5. Visibility-detection based on view point

After removing the back points, all the invisible points
that are not facing the view point have been removed.
However, the above algorithm cannot remove all the hidden
points in every circumstance. It can identify and remove all
the hidden points for a single convex polygon, but it cannot
guarantee it has removed all the hidden points for converse
polygons or complicated scenes with many objects inside.
Therefore, the depth-buffer method used in traditional
visibility-detection has been modified to give a new
visibility-detection algorithm based on view point.

The basic idea of visibility-detection based on view
point is like this: as some points on a 3D object may be
projected to the same pixel on the screen, each pixel thus
corresponds to a point sequence (the sequence may be
empty). In this sequence, the point that can be seen has the
shortest distance to the view point since all the other points
in the sequence are concealed by the point in front
(assuming there is no gap between points). If the points
inside each sequence are sorted according to the view
direction, the very first point in each sequence is thus the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, Jun 2006

25

visible point (Figure 2). As a result, only the first point in
each sequence needs to be considered when dealing with
displaying or lighting effect. The sorting method is as
follows:

1. The initial sequence of these points is empty.
2. For each point P in non-back point set, obtain the

world coordinate, view position coordinate, normal
vector and color of P.

3. Project P onto the screen, obtain the corresponding
screen coordinate, i.e. the pixel point (x, y); if the
corresponding sequence of point (x, y) is empty,
put the point into the sequence; if not, use quick
sort to find a proper position in the sequence for
this point, and insert it into the sequence.

 Figure 2: Sorting of points

Figure 3: Image after sorting of points according to view
point, arrows pointing to back-points

In each sequence, only the first point has the visibility
value set to true, while all the rest are set to false. During

rendering, only those points with a visibility value of true
can be displayed on the screen.

(a)

（b）

Figure 4: Images after removing back points and
visibility-detection

2.6. Visibility-detection based on local-dependent depth

After completing the above steps, most of the hidden
points have been removed; the results are shown in Figure 4.
From Figure 4, it can be observed that all the points with
“true” visibility value have been displayed on the screen.
But it is also noted that many points on the cow legs in (a)
and the cheeks in (b) which should not have been displayed
are displayed. There are 2 reasons why these points cannot
be removed, one is that they are not back points; the other is
that there is no point in front to conceal them, i.e., the
density of points in front of these points is not large enough
to conceal the corresponding pixel area on the screen.
Therefore, these points can be seen from the gaps between
the points in front of them (from the view direction). In
order to remove these points, visibility-detection based on
window-dependent depth algorithm has been developed.

As we know, according to view direction, these points
are different from points around them in terms of depth (z
axis). There are many points in front of them, but as they
are not in line with view point, they cannot conceal the
points that should be concealed. Therefore,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

26

window-dependent depth can be used to identify which
points should not be displayed.

After the above hidden points removal, a depth matrix
with visible points can be obtained. The maximum values
of x and y are recorded in this matrix and the depth matrix
is thus defined, the size of which is x × y and all the entries
have their values set to 0 initially. This matrix is used to
store the distance from each point to the view point (depth).
The display window is divided into 3 × 3 sub-windows in
which hidden points problem is discussed. The depth of
each point in these sub-windows (9 in total) is computed
and the maximum depth (max) and minimum depth (min)
are recorded. Threshold is defined as k × (max − min)
where k is an unsigned integer; meandep denotes the
average distance from each point to view point. If meandep
< depth of point < threshold, the point is taken as a
hidden-point. For this type of point, there are 2 methods to
make them invisible: one is to record this point as invisible
point; the other is to make this point an inserted point,
which is used to fill up the gap on the object surface. But its
normal vector needs to be changed before it can be done, so
that during the calculation of lighting these points can be
taken to be the same as other points around them. The
method adopted to calculate the normal vector is called
approximating method, which uses points around to
approximate the normal vector. The method is described as
shown in Figure 5:

Figure 5: Calculation of normal vector
The normal vector can be calculated as follows: for a

point (, ,)P x y z , define a vector neighborhood

{ }(, ,) |q x y z P qδ ε= − < , where q is a point inside the

vector neighborhood, ε is determined by the density of
sampled points. Obtain 4 points 1 2 3 4, , ,P P P P , from this
vector neighborhood which are at the upper left, upper right,

lower left and lower right of P and have the shortest
distance to it, then the normal vector NP of P can be
calculated through the formula below:

3 31 2 2 4 4 2

1 2 2 3 3 4 4 1

/ 4N
PP PPPP PP PP PP PP PPP

PP PP PP PP PP PP PP PP
⎡ ⎤

= × + × + × + ×⎢ ⎥
⎣ ⎦

window-dependent algorithm to remove invisible
points can be described as follows:

1. Record the maximum values of x and y, define a
depth matrix whose size is x × y and set all initial
values to 0.

2. assign the value of each entry of the matrix as the
distance between the very first point to view point
(depth).

3. Divide the depth matrix into 3×3 sub-matrix,
compute the followings in the sub-matrix:

maximum and minimum depth: max, min;
average value of depth :

meandep = (max+ min)/2;
threshold =k × (max − min);

 (where k is an unsigned integer)
4. if (meandep < depth of point < threshold)

{
property of this point;

}

Figure 6: Hidden points detected

After applying the above algorithm, these hidden
points (pink points in Figure 6) can be found and their color
are then set to background value, so these points will not be
displayed in the image space and the objective of hiding
these points is achieved. The images with hidden points
removed are shown in Figure 7. From Figure 7 it can be
observed that the points on cow’s leg and dragon’s body
have been removed. After visibility-detection, image
rendering techniques have been applied to render the
images with hidden points removed, and images with
realistic visual effect are obtained in Figure 8.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, Jun 2006

27

3. Conclusions

The objective of producing realistic computer graphic
images is to provide a high visual quality. Our objective is
to have simple algorithms, low complexity and fast
processing time. That is also why we use a pure point-based
rendering algorithm. This algorithm does not require us to
define area for each point, and there is also no need to
determine whether the area is overlapped during painting
the color. Therefore, this algorithm is better than splat or
Surfel point-based rendering in terms of processing time
and complexity. However, as visibility is only related to
view direction, if the view direction is changed, we need to
compute all the data again. We have processed the most
complicated image in Figure 4 (Dragon, 100250 points) by
using a Pentium IV computer, the data input time is: 4
seconds approximately, algorithm processing time: 5
seconds approximately.

Figure 7: Images after visibility-detection

Figure 8: Images with realistic visual effect shown

after removing all the hidden points

Acknowledgements

The work was supported by the Doctoral Site
Foundation from the MOE, PRC (Grant No. 20010183041).

References

[1] Smith, A. R.: Smooth Operator. The Economist, pages
73–74, March 6 1999. Science and Technology
Section.

[2] Levoy, M., Pulli, K., Curless, B.: Rusinkiewicz, S.,
Koller, D., Pereira, L., Ginzton, M., Anderson, S.,
Davis, J., Ginsberg, J., Shade, J., and Fulk, D. The
Digital Michelangelo Project: 3D Scanning of Large
Statues, Proc. SIGGRAPH, 2000.

[3] Levoy, M. and Whitted ,T. :The Use of Points as
Display Primitives. Technical Report TR 85-022, The
University of North Carolina at Chapel Hill,
Department of Computer Science, 1985.

[4] Szymon R., Levoy, M.: “Qsplat: A Multiresolution
Point Rendering System for Large Meshes”,
SIGGRAPH’2000 Proceedings, New Orleans, LA
USA, 343-352.

[5] Pfister, H. , Zwicker, M.J. van Baar, J. and Gross, M.:
Surfels: Surface Elements as Rendeing Primitives. In
Computer Graphics, SIGGRAPH 2000 Proceedings,
pages 335–342. Los Angeles, CA, July 2000.

[6] Catmull, E.: A Subdivision Algorithm for Computer
Display of Curved Surfaces [D], University of Utah,
Salt Lake City, 1974.

[7] Zwicker, M., Pfister, H., van Baar, J., Gross,
M..:Surface splatting. In: Proc. of ACM SIGGRAPH
01. pp. 371–378.

[8] Zwicker, M., R¨as¨anen, J., Botsch, M., Dachsbacher,
C., Pauly, M.: Perspective accurate splatting. In: Proc.
of Graphics Interface 04.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

28

[9] Wu, J., Kobbelt, L., 2004. Optimized subsampling of
point sets for surface splatting. In: Proc. of
Eurographics 04.

[10] Pfister, H.,Zwicker, M. ,van Baar, J.and
Gross,M.:Surfels: Surface Elements as Rendering
Primitives, to appear in Proc. SIGGRAPH 2000, July
2000.

[11] Schaufler, G., Jensen, H. W.: Ray tracing point
sampled geometry.Proc.Eurographics Rendering
Workshop (1998).

[12] Tobor, I., Schlick, C. , Grisoni, L.: Rendering by
surfels. In Proceedings of Graphicon, 2000. 3, 8, 25.

