
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

29

Selection of RTOS for an Efficient
Design of Embedded Systems

S. Ramanarayana Reddy

† Department of Computer Science, Indira Gandhi Institute of technology, Indraprasta University, Delhi 110006, India

Summary

Real Time Operating System (RTOS) is a basic building
block of most of the Embedded Systems (ES). There are
wide ranges of RTOS’s available to the designers/
developers of ES’s ranging from RTOS for robotics to
home appliances. Each application demands a specialized
set of requirements and to meet these requirements the
designer needs to select the RTOS, which meets the desired
requirements. It is a critical task for him/her and time
consuming because it involves to know all the
specifications of different RTOS and there are various
RTOS’s available in the market that include micro kernels
to commercial RTOS’s . So it is the task of the designer to
select the suitable RTOS from the vast list of RTOS’s. The
design space available to any RTOS is very large and there
are countless set of characteristics such as Development
Methodology, Scheduling Algorithms, Kind of Real Time
(Soft of Hard), Priority Levels, Development Host,
Standards followed, Kernel ROM size, Kernel RAM size,
Multi process Support, Multiprocessor Support, Interrupt
latency, Task Switching time, Kind of IPC mechanism,
Memory management, Power management, Task
management, Price etc. These characteristics will guide the
designer for selecting the RTOS that meets the
requirements. Selecting the RTOS based on these
parameters is a multidimensional search problem with each
dimension corresponds to a RTOS characteristic and it
requires an exhaustive search with tremendous computing
resources and time. In our framework of RTOS selection,
we have used the Simple Genetic Algorithm (GA) with
interactive GUI by which the developer can choose the
right RTOS for a given application or a project efficiently.

Key Words
 RTOS, GA, Real Time Systems, Embedded System Design

1. Introduction

Embedded systems are an invention that has taken
more than a hundred years to take the present day
shape. The way they have manifested themselves in
our lives, is nothing less tan the effect that the
discovery of fire or the invention of the wheel had on
the evolution of mankind. An embedded computing
system or embedded system includes a digital
electronic system embedded in a larger system and it
is an application specific. These systems are

becoming an integral part of various commercial
products like mobile phones, watches, flight
controllers etc. The developer needs to select a right
RTOS based on these applications. There is a strong
and compatible relationship between the system
hardware and the software, primarily the operating
system to ensure hard real time deadlines.

The organization of the paper is as follows: in section
2 we survey the related work in selecting the RTOS
and its important parameters. We explain the
important parameters of a RTOS and its role in
embedded systems design, in section 3. Section 4
describes the fundamentals of GA and it’s operators.
Section 5 will describe the selection of RTOS and in
section 6, the example. In section 7, experimental
results and discuses and finally, in section 8 we have
provided the conclusions and directions for future
work.

Related Prior Work

Decision making occurs in all fields of human
activities, such as scientific, technological and every
sphere of our life. Engineering design, which entails
sizing, dimensioning and detailed element planning is
also not exempt from its influence. The past decade
has seen a significant research work on selecting the
RTOS [17, 18, and 19]. Designers are impressive task
when selecting the RTOS for specific applications
like Space, Security, military, process industry,
communications, robotics, Data Acquisition,
consumer electronics and so on in which each
application demands specific requirements.

Just like high-level languages, RTOS’s allow
you to develop applications faster [19]. They can
require a little more overhead, but as the technology
improves, the overhead seems to diminish. In Greg
Hawley [19], he has provided criteria for selection of
RTOS based on the processor and based on the
requirements. He also considered many other
parameters like, company profile, licensing policy,
technical support etc.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

30

In Philip Melanson, Siamak Tafazoli [17], a
selection methodology for the RTOS market various
method are adopted for space applications. This
paper describes the elimination criteria for selection
of RTOS to a very specific space application and
ranked the existing commercial RTOS that are
available in the market but they have not provided the
generic framework for RTOS selection. In Ger
Scoeber, how to select your RTOS [18] described the
framework for selection of RTOS for a class of
applications and its characteristics that meets the
application but it doesn’t provided the methodology
to select the RTOS based on the designers/developers
requirements which are incorporated in this paper.
Criteria for selection of a RTOS need to be much
more flexible and much less specific [20].

Since 1940, several optimization problems have
not been tackled by classical procedures including:
Linear Programming, Transportation, Assignment,
Nonlinear Programming, Dynamic Programming,
Inventory, Queuing, Replacement, Scheduling [3, 9]
etc.

Normally, any engineering problem will have a
large number of solutions out of the feasible solutions.
The designer’s task is to get the best solution out of
the feasible solutions. The complete set of feasible
solutions constitutes feasible design space and the
progress towards the optimal design space involves
some kind of search within the space. The search is
of two kinds, namely deterministic and stochastic.

Non traditional search and optimization methods
have become popular in engineering optimization in
the recent past, and these algorithms include:
Simulated Annealing, Ant Colony Optimization,
Random Cost, Evolution Strategy, Genetic
Algorithms, Cellular automata [3, 9, 12] etc.
Obenland’s [16] paper looks at POSIX in real time
systems and POSIX thread extensions and compares
the performance of the general purpose operating
systems and two real time operating systems.
Stewart’s [15] paper illustrates different methods for
estimating execution time of both user level and
operating system overhead. Coarse gain timing
measurements is calculated in software in real time
granularity in milliseconds. Mana discusses Linux as
a real time operating system and different approaches
for real time Linux kernel. Timmerman [14]
describes the framework for evaluation of real time
operating systems. This article makes a really good
point of comparing RTOS under different load
conditions.

Yodaiken’s [2] paper explains hard real time
approach of RTLinux and it’s one of the first papers
written on RTLinux.

2. Need of RTOS for an Embedded

System
Embedded systems are continuously increasing their
hardware and software complexity moving to single-
chip solutions [1] (SoC’s). The RTOS in Embedded
System mainly does the following tasks.

 It simplifies control code required to
coordinate processes.

 It provides an abstraction interface between
applications with hard real-time
requirements and the target system
architecture.

 Availability of RTOS models is becoming
strategic inside hardware/software co-design
environments.

3.1 RTOS

RTOS can be defined as “The ability of the operating
system to provide a required level of service in a
bounded response time.” (POSIX Standard 1003.1).
A real-time system responds in a (timely) predictable
way to unpredictable external stimuli arrivals. To
build a predictable system, all its components
(hardware & software) should enable this
requirement to be fulfilled. Traffic on a bus for
example should take place in a way allowing all
events to be managed within the prescribed time limit.
RTOS should have all the features necessary to be a
good building block for a Real Time system.
However it should not be forgotten that a good RTOS
is only a building block. Using it in a wrongly
designed system may lead to a malfunctioning of the
RT system. A good RTOS can be defined as one that
has a bounded (predictable) behavior under all
system load scenarios (simultaneous interrupts and
thread execution). In RT system, each individual
deadline should be met. There are various types of
real-time systems

3.2 Types of RTOS

RTOS’s are broadly classified in to three types,
namely, the Hard Real Time RTOS, Firm Real Time
RTOS and Soft Real Time RTOS, which are
describes bellow.
Hard real-time: missing a deadline has catastrophic
results for the system;
Firm real-time: missing a deadline entails an
unacceptable quality reduction as a consequence;

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

31

Soft real-time: deadlines may be missed and can be
recovered from. The reduction in system quality is
acceptable.

3.3 The OS and RTOS

A real time operating system is an operating system
that allows one to specify constraints on the rate of
processes, and that guarantees that these rate
constraints will be met, whereas an operating system
is a low–level program that runs on a processor
responsible for scheduling processes, allocating
storage and interfacing to peripherals among many
other things.
Basically an operating system is a program that acts
as an interface between the user and the computer
hardware and controls the execution of all kinds of
programs. Real time operating systems are systems,
which respond to any external unpredictable event in
a predictable way and with strict timing constraints.
Real time operating systems have become a very
common phenomenon in real time applications in the
present day scenario. Developers are given the task of
making software with real time constraints. A large
number of RTOS are available in the market making
it difficult for the designers to decide which one to
use, such that it provides the best overall benefits in
terms of requirements a particular application.
Selecting an appropriate RTOS which meets all the
designer requirements is a very critical task. There
are set of certain benchmarks, which could be used to
examine an RTOS such as development hosts,
priority levels, thread switch latency, response time
etc. The important qualities that make the good
RTOS are Multi-threaded and pre-emptible, Thread
priority has to exist because no deadline driven OS
exists, and support predictable thread synchronization
mechanisms, and a system of priority inheritance
must exist.

4. Algorithms for RTOS Selection

There is hardly any specific algorithm found for
RTOS selection except the elimination criteria, which
is difficult for the developer and time consuming as it
mentioned in the related work. It is the first attempt
to use a tool to select RTOS which uses the Genetic
Algorithm. Over the last couple of decade, GA’s
have been extensively used for optimization and
search tools in various domains, which includes all
branches of engineering and Science. The basic
reasons for the success of GA’s are their broad
applications, Parallelism, easy of use and global
perspective2

In principle, GA’s are adaptive procedures that find
the solutions to problems by evolutionary process
based on natural selection. In practice, GA’s are
iterative search algorithms with various applications.
In general, GA’s maintain a population of individual
solutions to the problem. Each individual can be
represented by a string called chromosome. During
each iteration, or called generation, the individuals in
the current population are rated for their fitness as a
solution. The fitness function evaluates the “survival”
or “goodness” of each chromosome. By applying the
different genetic operators, new populations of
candidate solutions are generated.

4.1 GA Operators

In general, GA’s make use of different operators. In
this implementation, we use the selection, crossover,
and mutation operators which are described below.

4.1.1 Selection or Reproduction

 Individuals in the population can be heuristically or
randomly initialized. The population of the next
generation is reproduces using a probabilistic
selection process. Individuals with higher fitness will
have the more chance to reproduce.

4.1.2 Crossover

This operator takes two randomly chosen parent
individuals as input and combines to generate two
children. This is performed by choosing two crossing
points in the strings of the parents and then
exchanging the allelic values between these two
points as shown in the Figure 1. The crossover
operator provides a powerful exploration capacity by
exchanging the information from two parents.

Fig. 1. Crossover operation

 A: 00 111 000
 B: 11 000 111

Before crossover

 A: 00 000 000
 B: 11 111 111

After Crossover

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

32

4.1.3 Mutation

 The crossover operator may lead to falling into a
local minimum of the fitness function because a
generated child tends to be very similar to its parents.
In order to reduce this phenomenon, mutation
operator is used. This operator creates new individual
by modifying gene values of an existing individual as
shown in the Figure 2.

Fig. 2. Mutation Operation

Mutation provides the random search in the problem
space and prevents complete loss of genetic features
through selection and elimination. Thus mutation
operator reduces the probability of falling into a local
minimum of the fitness function.

After applying reproduction, crossover and mutation,
the new population is ready for testing for fitness.
Now, we apply GA for decoding new strings,
calculate fitness, and then generate a new population.

5. Selection of RTOS

Ranking RTOS is a tricky and difficult because there
are so many good choices are available in the market
[21]. The developer can choose either commercial
RTOS (44% developers are using) or open- source
RTOS (20) or internally developed RTOS (17 %).
This shows that almost 70% of developers are using
the RTOS for their current projects [20] and are
migrating from one RTOS to another due to various
reasons. To handle the current requirements of the
customers, developers are using 32 bit controllers in
their projects in which 92% projects/ products are
using RTOS[21] and 50% of developers are
migrating to another RTOS for there next project.
This influences importance of the selection of right
RTOS to a particular project so that it meets all the
requirements and fulfills its intended task.

In all of the related work authors have used the
elimination criteria which are manual and it takes
more time and need the detailed specifications of all
the existing commercial RTOS’s.

In order to select RTOS, the designer first identify
the parameters for selection based on the application
and the intended requirements are provided to the
systems through an interactive user friendly GUI

which is shown in below. The designer has the
freedom to omit and or include parameters and also
he/she can edit the database of RTOS for efficient
selection under multi user environment. Subsequently,
genetic algorithm is used to arrive at the RTOS
taking into account the parameters that are specified.

Fig. 3. Architecture of the System

5.1 RTOS Parameters
Among the different parameters for selecting the
RTOS, the ones used in our system are: 1. Interrupt
Latency, 2. Context switching 3. Inter task
Communication (Message Queue Mechanism, Signal
Mechanism, Semaphores), 4.Power Management
(Sleep mode, Low power mode, idle mode, Stand by
mode) 5. No. of Interrupt levels 6. Kernel Size
7.Scheduling Algorithms (Round Robin Scheduling,
First Come First Serve, Shortest Job First,
Preemptive Scheduling etc), 8.Interrupt Levels, 9
Maintenance Fee 10.Timers 11. Priority Levels
12.Kernel Synchronization (timers, mutexes, events,
semaphores etc), 13. Cost, 14. Development host, 15.
Task switching time and 16 Royalty Fee. There are
more parameters like target processor support,
Languages supported, Technical Support etc are also
important which are considered by the developer. We
have used the SGA for selecting RTOS, which is
described in the following section. Our system will
output a set of RTOS’s from which one will be
selected by considering the processor support,
languages supported and Technical Support etc
which are also important.

 Before Mutation: 110 0 011
After Mutation: 110 1 011

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

33

5.2 Genetic Algorithm
The genetic algorithm used in our system is given
below.

Simple Genetic Algorithm (SGA)

1. Randomly initialize population (t)
2. Determine fitness of population(t)
3. Repeat
4. select parents from population(t)

a. Perform crossover on parents creating
population(t+1)

b. Perform mutation of population(t+1)
c. Determine fitness of population(t+1)

5. Until best individual is good enough
5.2.1 The Population
The population is created statically and stored in the
system. From these, an initial population is created
randomly by using a random function.

5.2.2 The Fitness Function

The fitness function is the weighted sum of the
parameters given in section 3, each of which
contribute the “goodness” of the final selection of
RTOS

Fitness of a chromosome is evaluated by using the
fitness function (FF) which is given by

Let us first consider the weights. Each application of
an embedded system will have specialized
requirements. The requirements can be characterized
using the parameters specified in section 5.1 by
assigning appropriate weights. The weights change
depending on the application. For example, for
children toys, cost may be the main criteria and hence
will have maximum weight while for robotic
applications response time would be the parameter
with maximum weight. To meet these specifications,
the user has to specify the weights for each parameter
so that an appropriate RTOS will be selected. In the
fitness function, Wi is the weights assigned by the
user.

Consider, now, the fitness values. The parameters of
RTOS given above have different values for different
RTOS. For example, the interrupt latency can be 5ns

for one RTOS and 15ns for another. The different
values are mapped to a scale and the value on the
scale is the fitness value. For example, if the scale for
interrupt latency is 5 to 15 then, for the RTOS with
5ns as interrupt latency, the fitness value is 1 as it is
better to have low interrupt latency. Since the values
of these parameters are available beforehand for the
RTOS that are available in the market, the fitness
values are precompiled at the time of generating the
database of RTOS. However, the designer can alter
the values if needed.

Now, by using the fitness function FF defined earlier,
we evaluate the overall fitness value of the
Chromosomes.

5.2.3 The Operations

Cross Over
In our algorithm, two-point cross over is used, which
means that the cross over operation as described in
section 4.1.2 is performed at two places, which are
selected randomly. It helps to avoid the generation of
chromosomes, which are replica of their parents. The
cross over itself is performed using fifteen bits of the
selected chromosomes for cross over.

Mutation

In our algorithm, mutation is performed on five bits
of a chromosome, which are selected randomly by
using random function. We have chosen five bits to
overcome the problem of local minimum.

5.2.4 The New Population

The population is generated by using the Roulette
Wheel Selection, which is shown in the Figure 4.
Based on the chromosome fitness function value, the
survival of the chromosome is selected In our system,
if the chromosome fitness function value is less then
19 %, the chromosome will not be survived for next
generation. And if the chromosome fitness function
value is in between 19 to 35 %, the only one copy is
considered for next generation, else two copies are
considered for the nest generation.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

34

10000, 46%

0110, 35%

0101, 19%

Fig.4. Roulette Wheel Selection

5.2.5 Accuracy Percentage

If a RTOS that is chosen matches all the specified
parameters then the accuracy percentage is said to be
100%. In terms of fitness function, the accuracy
percentage is defined as follows:
First the chromosome corresponding to the
parameters specified by the user is created. The
fitness function value for this chromosome is
computed. Let it be x. Let y be the fitness function
value of a generated chromosome. The accuracy
percentage of this chromosome is
 Accuracy percentage = y /x * 100

In our system the user can specify the accuracy
percentage. Thus, if none of the RTOS which are
available in the system are matching exactly, it is still
possible to choose an RTOS which is close to the
required one. Accuracy percentage acts also as
stopping criteria for the SGA.

6. Example

We have developed a graphical user interface so that
the user can specify the weights for the parameters of
the RTOS for his application. The parameters
specified by the user using the GUI are given below.

Development Methodology – Cross Weight – 1
RTOS Supplied as – Object Weight – 2

 Development Host – UNIX Weight – 3
 Standard – POSIX .1 Weight – 4

Kernel ROM – 280K/4M Weight – 5
Kernel RAM – 500K/4G Weight – 6
Priority Levels – 512 Weight – 7
Multi process Support – No Weight – 8
Multiprocessor Support – No Weight – 9
MMU Support – No Weight – 10
Royalty free – No Weight– 11
Standard phone support – Paid Weight – 12
Preferred phone support – Paid Weight – 13
Base price – 7495$ Weight – 14
Maintenance fee – 15% of list price Weight– 15
Task switching time – 4us to 19us Weight – 16

In addition the user is asked to specify the percentage
of accuracy. Let it be 80%.

For the above specification, the decoded binary
Chromosome is

 0.0.0000.0000.0000.0000.000.0.0.0.0.0.0.001.000.000
and for which the Fitness Function value is calculated
as 34. For each chromosome is represented with the
36 bit length binary string. Each decimal point
separates the one characteristic of the RTOS which
represents the values of it. Hence we require 36 bits
to represent the entire chromosome.
The first population is generated randomly along with
its fitness function values corresponding to each
chromosome. This process is repeated until its
desired accuracy achieved. In this example the RTOS
that specifies the given description is: VxWorks.

7. Results

We have implemented the SGA with Visual Basic,
and experiments were conduced on Intel P4, 1.8 GHz
with 128 MB of RAM. In this section we compare
the results of the above example with different
population sizes taking a constant crossover and
mutation rate with 50% accuracy. Here, Ch1 to Ch14
represents the Chromosome Number (Ch Num), F
Val G1 to F Val G3 are Fitness value of Generation 1,
2 and 3 respectively.

30

40

50

60

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch8 Ch9 Ch10 Ch11 Ch12 Ch13 Ch14

Chromosome No.

Fi
tn

es
s v

al
ue F Val G1

F Val G2
F Val G3

Fig. 5. Fitness values of chromosomes with different
 generations.

Figure 5 shows the chromosomes fitness values with
various generations and it is found that the fitness
values of the chromosomes are more stable in
generation three and it takes more CPU time. Figure
6 depicts the CPU time/Population size and it shows
that more the population size and more the CPU time.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

35

0
0.5

1
1.5

2
2.5

3
3.5

0 50 100 150 200 250

Population size

CP
U

 ti
m

e

Fig. 6. Population Vs CPU Time

Again we compare the results of the test cases with
constant population sizes taking a variable crossover
rate and constant mutation rate of 5 bits per
chromosome with 50% accuracy is shown in the
figure7.

0

10

20

30

40

1 2 3

Bi
ts

 fo
r c

ra
ss

ov
er

0

0.1

0.2

0.3

0.4

CP
U

 ti
m

e
(s

ec
)

Fig. 7. No. of Bits for crossover Vs CPU Time

Again we compare the results of the test cases with
constant population sizes taking a constant crossover
rate of 15 bits per chromosome and a variable
mutation rate with 50% accuracy which is shown in
table 1.

Table 1 .Mutation Vs CPU Time

Again we compare the results of the test cases with
constant population sizes taking a constant crossover
rate of 15 bits per chromosome and a constant
mutation rate of 5 bits per chromosome with variable
accuracy percentage and the results are depicted in
the figure 8.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5

%
 o

f a
cc

ur
ac

y

0

0.1

0.2

0.3

0.4

0.5

0.6

CP
U

 ti
m

e
(s

ec
)

Fig. 8. Percentage of accuracy Vs CPU time

7.1 Discussions

As shown by the output of various test cases, the
graphs depict the result of various parameters which
affect the output of the system in terms of CPU time
and find that even though the output varies
considerably from sample to sample, there is a
tremendous reduction in performance due to
increased levels of percentage accuracy. As the
number of bits used for crossover and mutation
operations increases, the efficiency of the system
reduces and consumed more time. However, the
difference is very small considerably and can be
ignored.

However the effect on performance cannot be
ignored due to large population sizes. As more and
more generations are developed, they become better
than the previous generations, and thus a large
population of chromosomes is developed. Due to the
large population size, finding an optimal RTOS takes
more time than usually required. This is because a
large number of chromosomes have to be crossed
over, mutated and compared for the final results.

One of the most challenging aspects was to represent
the chromosomes in terms of binary strings. We have
used automatic allocation of each parameter to
variable length binary digits. We have used the
concept of separators to distinguish between the
binary conversions for various parameters.

We have also used a weight system to calculate the
fitness number. The user assigns weight according
the degree of effectiveness of each parameter. A
higher value will result in a higher fitness number if
that parameter has that specific value for an RTOS.

Test
No

NO of Bits for
Mutation

CPU Time (sec)

1 5 0
2 10 0.05
3 15 0.08

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

36

Operations like crossover, mutation, fitness number
etc are used often in the processing of chromosomes.
These have been coded in the form of functions that
are global to all modules.

Studying the output for the most optimal RTOS
based on user specifications, we came to the
conclusion that the most optimal RTOS was strictly
dependent on the test metrics parameters like
scheduling priorities, timing constraints, RAM and
Rom size, Development methodology, Development
host etc.

It was seen that when the percentage accuracy was
50%, the results were obtained most easily. As the
accuracy of percentage increased the RTOS’s
matching the specified criterion were fewer. However
a higher percentage of accuracy means a more
optimal solution.

Our analysis gives the developer/ designer a portal to
decide on a real time operating system which must
suits his choice of parameters and is the most optimal
one available for that purpose, with in a short time.

This method is efficient then the elimination
techniques because

• It never considers all the specifications of
the RTOS but it only consider the specified
ones of the developer.

• It doesn’t require much time.
• This system has a provision to provide

percentage accuracy (It helps to allow the
developers that how much % of guarantee
that the selected RTOS is) and weights for
all the specified parameters so that it selects
the optimal one that exits in the data base.

8. Conclusion

Real time applications have become a popular these
days due to the complexity in the system. To meet
those complexities, the developers are given the
invariable task of making the real time software.
There are quite large umber of RTOS are available in
the market and one dose get confused as to which one
such that it provides the efficient embedded systems
design in terms of cost, power consumption,
reliability, speed etc.

In this paper, we described a Simple Genetic
Algorithm that is designed to find the suitable RTOS
for a specific application. The methodology described
for RTOS selection is unique and efficient for large
number of RTOS’s. It has user-friendly graphical

interface (GUI) though which the designer can alter
the specifications and specify the new requirements
for RTOS selection for a given application. It
generates the optimal RTOS based on the
requirements that are entered by the user keeping in
mind the amount of accuracy required. This is done
with the help of genetic algorithms. Our analysis and
the developed system gives the user a portal to
decide a real time operating system which most suits
his choice of parameters and is the most optimal one
available for that purpose. The designer has an option
of choosing from pre-defined input or can specify
his/ her own input.

8.1 Advantages of the system
The main advantages of the system are:

The user gets an appropriate RTOS just by
giving the specifications and the desired accuracy and
the whole search based on those specifications is
carried out by the system and hence the result is
provided through an easy designed interactive GUI.

The user has the option of specifying the
accuracy percentage to carry out his search which
could vary depending on the level of strictness
required, which is an efficient method compared to
other methods which uses the elimination criteria
 The user has the provision of selecting more
than one option in each parameter thus making his
search more advanced in terms of parameters.
 Choosing the most appropriate RTOS can
still result in significant cost savings, improved level
of technical support and high levels of product
integration.

8.2 Limitations of the system

Though there are advantages of the system there are
some limitations which can be eliminated in future
work.

Only sixteen parameters have been taken into
consideration for carrying out the search and the user
cannot increase or add more parameters to this list
and can be dynamic.

The search is restricted as it runs only for those
RTOS’s already provided in the database as entered
by the administrator/user and not for all.

The number bits involved in the crossover and
mutation operations are fixed. Fifteen bits are taken
for crossover and five for mutation and can be made
variable.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

37

It is necessary that the user be aware of the
priority/weight of each sub option in each parameter
in order to obtain desired results.

Acknowledgements
The first author (SRNR) would like to express his
thanks to the Principal (IGIT) and the Dean (SC&SS,
JNU) for providing necessary facilities to complete
this research work.

9. References

[1] RTOS for FPGA-A White paper by Colin Walls,
Accelerated Technology, Embedded Systems
Division, Mentor Graphics Corporation
(www.mentor.com/fpga).
[2] Victor Yodaiken and Michael Barabanov “design
Document about RTLinux in FSMLabs 1997.
[http://citeseer.ist.psu.edu/408922.html]
[3] Koza, John R., Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press, 1992.

[4] Cramer, Nichael Lynn: "A Representation for
the Adaptive Generation of Simple Sequential
Programs" Proceedings, International Conference on
Genetic Algo, July 1985 [CMU], pp183-187.

[5] Wayne Wolf, Computers as Components:
Principles of Embedded Computing System Design,
Morgan Kaufmann Publishers, 2001.
[6] Frank Vahid and Tony Givargis, Embedded
System Design: A Unified hardware/ Software
introduction, John Wiley& Sons, 2002.
[7] Scott Rosenthal, Selecting an embedded
Processor involves both simple and non-technical
criteria, June, 1997.
[8] Sharad Agarwal, Edward Chan, Ben Liblit,
Processor Characteristic Selection for Embedded
Applications via Genetic Algorithms,
December,1998.
[9] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley, 1989.
[10] Khawar M. Zuberi, Kang G. Shin, (2001). "
EMERALALDS: A Small- memory Real Time
Microkernel", IEEE Trans on Software Eng.; Vol.27,
No.10, Oct.pp. 909 - 929.
[11] Shanil Mechant, Kalen Dedhia,"Performance
computation of RTOS, thesis, Dept of electrical Eng.,
Columbia University.
[12] Mehrdal Dianati, Insop Song, Mark Treiber, “An
Introduction to Genetic Algorithms and Evalution
Stragies” Univ. of Waterloo, Canada.

[13] Quagliarella. D, Periaux. J, Poloni. C, Winter. G,
“Genetic Algorithms and Evolution Strategy in
Engineering and Computer Science”.
[14] Martin Timmerman, “RTOS Evaluations”, Real
Time Magazine 98(3) March 1998.
[15] David Stewart, “Measuring Execution time and
Real Time Performance”, Embedded Systems
conference, San Francisco, April 2001.
[16] K. Obenland, “ Real Time Performance of
Standards based Commercial Operating Systems,
Embedded Systems conference, San Francisco, April
2001.
[17] Philip Melanson, Siamak Tafazoli, “A selection
methodology for the RTOS market”, DASIA 2003
conference, Prague Czec Republic, June 2003,.
[18] Ger Scoeber, “How to select your RTOS” Bits
and Cips Micro-event: Embedded operating Systems,
Jan 29th 2004.
[19] Greg Hawley, “Selecting a Real-Time Operating
System” Embedded Systems Programming Magazine.
[www.embedded.com]
[20] Ljerka Beus-Dukic, “Criteria for Selection of a
COTS Real-Time Operating System: a
Survey”[ljerka.beus@unn.ac.uk]
[21] Jim Turly, “Embedded Systems survey:
Operating systems up for grabs”, Embedded Systems
Design, May 24 2005.

S. Ramanarayana Reddy
received M. Tech degree, from
Jawaharlal Nehru University,
New Delhi in 2002. He is
working as a Lecturer (from
2002) in the Dept. of Computer
Science, IGIT, IP Univer., Delhi.
His research interest includes
embedded systems, system

programming, and real-time systems. He is a member of
CSI, VLSI Society of India and AMIE.

