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Summary: 

Evoked potentials (EPs) have been widely used to quantify neurological system 

properties. Traditional EP analyses are developed under the condition that the 

background noises in EP are Gaussian distributed. Alpha stable distribution, a 

generalization of Gaussian, is better for modeling impulsive noises than Gaussian 

distribution in biomedical signal processing. This paper presents a new minimum 

L1-norm filter algorithm for EP estimation based on neural network. Simulation results 

show that the new algorithm is very effective under both Gaussian and lower order 

alpha stable noise condition and is closer to optimal fashion in EP signal estimation 

compared with traditional methods. 
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1. Introduction 

As the biomedical signals generated by neural system, 
EP is the special regular reaction of the neural system to 
voice, light and electronic impulse in outside. It includes 
such abundant information about each part of neutral 
transportation channel that the conditions and change of 
neurological system can be reflected. The checking and 
analytic technology of EP is an important measure in 
practical medical to diagnose injury or pathological 
changes in neural system[1][2]. In this technology, the 
signal variation caused by physical pathological changes 
is used to diagnose or analysis the neural system illness 
and injury. EP signal can be classified into several 
category according to different stimulations outside: 
somatosensory evoked potentials (SEP), auditory evoked 
potentials (AEP), and visual evoked potentials (VEP). 

Inevitably, the checking process of EP check is 
infected by electroencephalogram (EEG) signals which 
is a random signals generated in neural system. The EEG 

which is accompanied with the EP signals is regarded as 
noise and the signal-to-noise ratio(SNR) is less than  
0dB generally. The measure extracted EP are used to 
include coherent average, weighted average, matching 
filter and parameter model etc. It is equal to low-pass 
filter for noise that to coherent average or coherent 
weighted average with the EP signals acquired. But the 
average measure always result in losing real EP 
information. The new EP extraction measure involve 
adaptive filter, wavelet transform, neural network, 
Higher-order cumulants, independent component 
analysis(ICA)，unscented Kalman filter etc.[3][4][5]. The 
algorithms based on second-order statistics are popular 
to gain the EP signals because EEG mixed in EP signals 
is always assumed to be Gaussian distribution. Recently, 
some study showed that the EEG have the non-Gaussian 
character which can result in performance degradation of  
conventional methods based on  second-order statistics. 
Therefore, it is necessary to develop novel analysis 
method of EP in impulsive noise[6][7]. 

In many conventional signal analysis and handling 
measures which based on second-order linear theory, the 
system noise are always be assured as the Gaussian noise 
have finite second-order statistics. Nevertheless, the 
practical application in underwater acoustic, radar, 
communications and medical signal processing fields, 
many random signals and noises are non-Gaussian 
distributions, such as ocean circumstance noises, the 
instant peak in circuit lines, atmosphere noises, speech 
signals and biomedical signals and many kinds of noises 
man made, in which exist dramatic peak noises. The 
Non-Gaussian distribution signal and the Gaussian 
distribution signal are illustration in figure 1. 

Alpha stable distributions[6][7][8] is a sort of 
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Gaussian distribution in generalized. The conception for 
alpha stable distributions is presented by Levy firstly in 
1925 when he studied generalized center limit theory 
(GCLT). The statistic characters for Alpha stable 
distributions are determined by four parameters in the 
characters function. If a random variable is alpha stable 
distribution if and only if its characteristic function has 
the form [8] as 

( ) ( ) ( )[ ]{ }αϖβγµ α ,sgn1exp ttjttjt +−=Φ      (1) 

where, ( , ) tan ( 1)
2

t απω α α= ≠ or
2 log ( 1)t α
π

= , 

∞<<−∞ µ , 0>γ , 20 ≤< α , 11 ≤≤− β , α  is 

the characteristic exponent, it controls the thickness of 
the tail in the distribution. The Gaussian process is a 
special case of stable processes with 2=α . The 
dispersion parameter γ  is similar to the variance of 
Gaussian process and β  is the symmetry parameter. If 

0=β , the distribution is symmetric and the observation 

is referred to as the SSα  (symmetry α -stable) 
distribution, i.e., it is symmetrical about µ . µ  is the 
location parameter. When 2=α  and 0=β , the stable 

distribution becomes the Gaussian distribution and 

2/2σγ = .If the character index of the random signals 

in stable distribution is alpha only the statistic whose 
rank less than alpha are infinite[7][8]. 
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Fig.1.  The stable distributions samples 

  In this paper, we present a new neural network to 
solve the L1-norm optimization problem in alpha stable 
distribution environments, and use the Neural Network 
Aided Adaptive Minimum L1-Norm Filter for EP 
estimation. The performance of this novel adaptive EP 

estimation scheme is achieved to outperform that of the 
former algorithms that use the least-squares (L2-norm) 
model. Simulation and real data analysis showed that 
this new method is effective in tracking EP variations 
across trials and allows fast EP measurement in many 
time-critical circumstances. 

The remainder of this paper is organized as follows. 
The L1-norm optimization model and its neural network 
implementation are detailedly introduced in Section II. 
The experiences and results analysis is given in Section 
III, and the conclusions are given in Section IV. 

2. L1-Norm Optimization Model and Its 
Neural Network Implementation 

Due to its excellent properties, the 1L -norm 

optimization model has been extensively studied. 
However, with the increase of the model scale, these 
numerical algorithms are not adequate for solving 
real-time problems. One possible and promising 
approach to real-time optimization is to apply neural 
networks. Because of the inherent massive parallelism, 
the neural network-based approach can solve 
optimization problems within a time constant of the 
network. 

2.1 Minimum L1-norm Optimization Model 

In fact, many models can be mathematically 
abstracted as the following over-determined system of 
linear equations[9]: 

x As e= −                              (2) 

where )(}{a ij NMR NM >∈= ×A is the model matrix 

derived from a given data set, N
N Rsss ∈= T

21 ],...,,[s  

is the unknown vector of the parameters to be estimated, 

M
M Rxxx ∈= T

21 ],...,,[x is the vector of observation or 

measurements containing errors or artifacts, e MR∈ is 

the alpha stable distribution error or noise vector. Define 
the L1-norm of error vector as follows: 

1 1||e|| || As x||= −                         (3) 
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Then, the parameter vector s can be solved via 
solving the following unconstrained optimization model: 

1opt ||min ||xAss
s

−=                      (4) 

This model is called L1-norm optimization model, which 
is generally difficult to be solved because of 
discontinuous derivatives. Using the following 
Proposition 1, we turn the problem described in (4) into 
another form, which is easier to be solved. 
Proposition 1: The optimization model described in (4) 
is equivalent to the following optimization model: 
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Thus  

( ))(max T xAsy
y
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The proof of Proposition 1 is completed.        □ 

2.2 The L1-norm Neural Network Implementation 

Now we propose a neural network for solving the 
problem in (5) whose model is described by the 
following dynamic system: 
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The proposed L1-norm neural network (L1N-NN) 
described in (8) is shown in figure 2. 

Since the neural network described in (8) is a 
continuous-time network governed by a set of ordinary 
differential equations, It can be real-time implemented. 
In such implementation, the projection operator of 

)( ivP  is actually a simple limiter with a unit threshold. 

The matrix or vector multiplications are actually the 
synaptic-weighting and summing operations and hence 
can be implemented via a number of adders with a 
weighting function [10]. And the rest are a number of 
simple integrators.  

 

Fig.2. The L1-norm neural network 

In the following, we will prove that the neural 
network described in (8) and figure 2 globally converges 
to the exact solution to problem (5), or equivalently to 
problem (4). 

Let )(),( T xAsyys −=L , according to K-T 

theorem[7], If NR∈*s  is a solution to the problem in 

(5), we know that ),( ** ys  is a solution if and only if 

there exists a saddle point of model (5), and 

),(),(),( **** LLL ysysys ≤≤ . Thus we can easily have  

0)()( T ≤− xAsyy **-                     (10) 

)()()()( TT xAsyxAsy −≤− ***            (11) 

Then there exists *y  satisfying 
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For any y , the following inequality holds: 
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The solution set of  
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is just the equilibrium point set of dynamic system (8). 

Let yAE T=1 , )(2 x-AsyP-yE += , then  
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  Let ),( ** ys  denote the solution set of model (5). By 

(12), we can get that when ),( ys = ),( ** ys , 0s
=

dt
d  

and 0
y
=

dt
d

. Thus we can give the relationship between 

the solution set of model (5) and the equilibrium point 
set of dynamic system (8). 

3. Numerical Testing Results 

To test the performance of our method, two examples 
are given in this section. The simulations were carried 
out in Matlab6.5 program on a Pentium IV PC with 
1.2-GHz CPU and 256-MB memory. The first example 
is used to compare convergence speed and 
approximation accuracy to the nonlinear function. 
Because the comparison of EP estimation performance 
between minimum L1-norm and minimum L2-norm has 
been widely made, here we just place emphasis on the 
difference between L1-norm and L2-norm filtering. In the 
second example, we give the correlation coefficient 
based on L1-norm and based on L2-norm. 

3.1 Experiment one 

The two signals passed through an unknown 

admixture matrix are a segment of evoked potential 
signal (the sample frequency for 1000 Hz) and a 
simulated impulsive EEG signal, traditional method and 
new methods of this paper are adopted respectively, to 
extract the admixture signal. The relative mean square 
error (MSE) was used to measure the effectiveness of the 
method. The MSE is defined as 

2

2

E[(s y) ]MSE
E[s ]
−

=
 

The convergence curve is depicted in figure 3. 
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Fig.3.  Solutions mix the square error margin  

curve diagram of matrix 

When demixture matrix converge, make use of the 
solution of demixture matrix to carry on the EP signal 
separation extraction, the result is shown in figure 4. 
Among them (a) is pure EP signal; (b) is a mixture signal 
of the EP signal and the EEG signal; (c) for according to 
the extraction EP signal of the traditional method; (d) for 
according to the extraction EP signal of this paper 
method. 
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Fig. 4.  EPs and the extraction result of the pulse EEG 

Compared with the conventional method, the EP 
signals extracted method in this paper has more perfect 
stability and convergence as well as more good separated 
results. 

3.2 Experiment two 

Pass a segment of evoked potential signal (period for 
128 points, the sample frequency for 1000 Hz) and 
impulsive EEG signal through the unknown matrix 
admixture. In order to evaluate the extracting results 
quantificationally, we take the correlation coefficient of 
extract signals and resource signals as inspection index, 
where 
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Extract EP signals by using the demixture matrix 
generated in different iterative times by using two kinds 

of method respectively, and get the correlation 
coefficient as figure 5, and table 1 show. 
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Fig.5.  Correlation coefficient and iterative times of EP signals 

Table 1. The EP signal correlation coefficient compare  

Base on different iterative times 

Iterative 
times 

EP correlation 
coefficient 
( L1-norm) 

EP 

EP correlation 
coefficient 
( L2-norm) 

EP 

50 0.1264 0.0044 
100 -0.3450 -0.0050 
150 0.4378 0.1378 
200 0.6469 0.1716 
250 -0.8291 -0.1711 
300 -0.8290 -0.3937 
350 -0.9293 -0.4893 
400 0.9295 0.3945 
450 0.9299 0.2941 
500 -0.9612 -0.2816 

It can be seen that the correlation coefficient based on 
based on L1-norm is clearly bigger than that based on 
based on L2-norm. 

4. Conclusion 
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Alpha stable distribution can be used to describe the 
random signals and noises more perfect in practice, if the 
signals or noises have the prominent impulse character. 
Not as other statistic model, alpha stable distribution do 
not have close identical density function and their 
second-order statistic is not existed. This paper 
introduces the statistic character for stable distribution 
simply, and then presents a novel algorithm based on 
minimum L1-norm which is suitable for EP separation. 
The simulation experiments and theoretical analysis 
show that this algorithm is a good extraction method of 
EP signal with better robustness under the condition of 
Gaussian and fraction low-order alpha stable distribution 
noise，especially suitable for EP signals blind extraction 
under circumstance of stable distribution pulse EEG 
noise and performance good in convergence and 
separation results. 
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