
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

44

Manuscript received June 5, 2006.
Manuscript revised June 25, 2006.

The FPGA implementation of the RC-DBA algorithm
in the EPON network

Jong-wook Jang, Hyun-jin Kang, and Hyoung-goo Jeon,

University of Dong-eui, Korea

Summary
In the upstream link of the EPON network, numerous ONUs
receive the privileges to use the optical medium from the
scheduler of the OLT, but not through the competition with
others. Therefore, it is very important to select a proper DBA
algorithm to allocate the band to each ONU in an effectively and
fair manner. In our preceding study, we proposed the RC-DBA
algorithm that complements many problems in existing DBA
algorithms. In this paper, we designed the MAC scheduler for the
OLT, which the proposed algorithm was applied to and
implement it in the FPGA. In addition, in order to verify the
operation of the scheduler, we developed the embedded Linux
based testbed.
Key words:
EPON, RC-DBA algorithm, FPGA, Embedded Linux system

Introduction

The EPON network employs a point-to-multipoints
architecture where many ONUs share the same optical
medium while they are all connected to the same OLT. So,
as shown in Figure 1, when the ONU transmits the data to
the OLT, no collisions should occur between each ONU
and every ONU should be given an equal privilege to
access the medium.

In IEEE802.3ah EFM, the MPCP is standardized as a
MAC protocol for the EPON but the packet scheduling
algorithm, which is the essence of the dynamic frequency
band allocation is excluded from the standardization, so
that it can provide more flexibility for the EPON service
provider. Many types of packet scheduling algorithms that
have been previously proposed have problems as they do
not guarantee the QoS that considers the traffic priority or
support the fairness between each ONU. Hence, in the
article [1], we proposed a new scheduling algorithm called
RC-DBA that complements such shortcomings.

This study is an extensive research effort stretched out
from [1]. Its purpose is to design the MAC scheduler in
the OLT by applying the proposed RC-DBA algorithm to
it and to develop the device driver and the test application
program to verify the proposed algorithm. The design of
the RC-DBA based scheduler is implemented in the LDS-

2000 FPGA ver1.0 system by Corebell, which is
composed of the embedded board equipped with the Intel
PXA255 processor and the board with the built-in Cyclone
EP1C12F324C8 FPGA chip.

Fig. 1 The transmission of upstream in the EPON

The organization of this paper is as follows. In Chapter 2,
we will describe the RC-DBA algorithm, which is the
essence of the MAC scheduler as we wish to summarize
the progress of our study up until now. In Chapter 3, we
will begin to deal with the design of the scheduler more
aggressively and in Chapter 4, we will investigate the
implementation of the CPU interface logic used to
interconnect with the test program and to implement the
FPGA. In Chapter 5, we will examine the development
and the execution of the device driver and the application
program used to verify the operation of the scheduler.
Finally, in Chapter 6, we will draw the conclusion in this
paper.

2. Request Counter-DBA algorithm

In general, the DBA algorithm must satisfy the functions
including the capability to control many priority queues
for supporting the QoS, and to fairly allocate the
bandwidth to each ONU as well as providing the compact
algorithm to minimize the delay of the frame. The existing
DBA algorithms[2, 3, 4, 5, 6] show excellent performance
in supporting many priority queues and minimizing the
frame delay but they do not support the function for the
fair band allocation between each ONU. Therefore, in this
study, we pointed out the problems in the existing ETRI’s
DBA algorithm[2] and proposed the new algorithm to
supplement it.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

45

The ETRI’s DBA algorithm provides each ONU with the
bandwidth in proportional to net bandwidth for the
upstream link according to the traffic priority. In this case,
if a certain ONU is requesting the bandwidth larger than
what is requested by other ONUs, then other ONUs may
not receive the sufficient bandwidth. In order to resolve
such a problem, the RC-DBA algorithm assigns a weight
to each ONU having the same priority and allocates the
upstream link bandwidth to each ONU in the increasing
order of the its weighted priority[7].

The scheduler in this paper assigns weights based on the
following two criteria. First, it adds the total number of
ONUs to the weight of each ONU that requested the
bandwidth. Second, it assigns the weights to ONUs in the
increasing order of the amount of bandwidth that they
requested. For example, if a total of 16 ONUs exist and
only 10 of them requested the bandwidth, then the ONU,
which requested the largest amount of bandwidth,
increases its weight by 10. Similarly, the remaining 9
ONUs add 9, 8, 7 … and 1 to their weights. As described
above, in the first stage, the total number of ONUs is
added to the weight. If a ONU requested the upstream link
bandwidth but did not receive it, then it should be given a
higher priority than other ONUs that did not request the
bandwidth. So, if its weight is just increased by 1, then not
every ONU can receive a fair amount of bandwidth that it
deserves[8].

3. Design of the MAC Scheduler

In this paper, in order to make the hardware, we used a
design method using the hardware technical language
rather than the circuit diagram. In general, the techniques
for a digital system design are achieved through the
technology of the design specification, the ASM chart, the
data path design and the ASM chart changed by control
logic[9]. From now on, we would like to show you how
to design the MAC scheduler based on these procedures.

3.1 Specification

In order to design a digital system, first you need to
determine the basic design specification for the hardware
to be manufactured. Especially, the input/output data
format of communication systems is the most important
factor determining the system performance. Basically,
since the MAC scheduler in the OLT allocates the
bandwidth using the status information of the priority
queues of ONU and it has to send the allocation
information for the bandwidth to the ONU again, it uses
the report and gate message in the MPCP MAC control
frame. The MPCP protocol in an actual EPON employs a
64 byte frame[10] structure. In this paper, for the

convenient implementation, the field not related to the
operation of the scheduler is eliminated. Figure 2
represents a reduced format of the report and gate message
and its size is 48 bits.

Fig.2 Format of the gate and report frame

3.2. Design by ASM chart

When the report message sent by the ONU arrives at the
OLT, then the internal scheduler allocates the upstream
link bandwidth to each ONU according to the RC-DBA
algorithm. Once the grant information is calculated, it will
be added to the gate message and then transmitted to each
ONU. If the overall operation of the scheduler is defined
as above, the corresponding operation of the module to be
implemented can be divided into the following four
categories. They include the input of the report message,
the weight calculation according to the request for the
priority queue, the bandwidth allocation and finally, the
gate message output. When the start signal is turned on in
the initial status, the report message input to the system
will be initiated and when the outputs from the ONU are
completed, the control circuit will apply the value of 1 to
the done signal to terminate the operation of the system.
Now, let’s take a close look at the operation of each part
through the ASM chart.

Fig.3 Input of the report message

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

46

3.2.1. Input of the Report frame

Figure 3 represents the ASM chart corresponding to the
report message input. When the start signal is received in
the initial status(T0), it receives as many report message as
the number of ONU supported by the OLT. It sorts out the
request information for each priority queue in the report
message and stores it in a separated register called
“length”

3.2.2. Computation of the weight

Figure 4 is the ASM chart corresponding to the weight
calculation in the RC-DBA algorithm. The weight of the
ONU increases depending on whether the request
information from T9 to T10 exists. When the update_cnt
signal is generated, the weight is increased by the total
number of ONUs. T11 through T14 increases the weight
of ONUs in the increasing order of the requested amount.
The m_to_tl signal is used to search for the ONU with the
largest requested amount and the ccts signal is used to
increase the weight.

The weight is calculated for each ONU with respect to its
traffic priority queue. The use of weight is not necessarily
applied to the high priority corresponding to the fixed and
assured bandwidth, but in this paper, it is applied to every
level of priority.

Fig.4 Computation of the weight

3.2.3. Allocation of the bandwidth and Gate frame
When the weight calculation is completed, the bandwidth
allocation in proportional to the result from the weight
calculation will be performed. Figure 5 is the ASM chart
corresponding to such channel allocation. The bandwidth
allocation will start with the queue with the highest
priority and the entire amount requested by this queue will
be permitted. The middle and low priority allocates the

half of the remaining bandwidth to each ONU and this
also guarantees the best effort bandwidth request. When
the bandwidth allocation is completed, the gate message is
created by the make_grant signal.

Fig.5 Allocation of the bandwidth

4. The implementation of the FPGA

When the ASM chart is prepared, the hardware should be
designed based on the ASM chart using verilogHDL. The
designed module creates the test vector and verifies the
function in the simulation tool. After that, the module
synthesizes it into the gate level using the synthesizer tool.

4.1. Simulation

In the simulation, the following conditions are used.
① The total number of ONUs : 5 units
② The number of priority queues that can be supported

: 3 units
③ The number of time slots than can be allocated each

 time : 15 units.

As shown in Table 1, when the report message is entered
into the test vector, the gate message as shown in Table 3
should be generated by the RC-DBA algorithm. If you
calculate the weight, then you will have the result as
shown in Table 2. The method for assigning the weight is
applied to the queues with the same priority. For the high
priority queues, the total number of ONUs (that is 5) is
added to

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

47

Fig.6 Results of gate messages

ONU1, ONU2 and ONU5 depending on whether they
made a request or not. And, the queues with lower
priorities, namely, ONU2, ONU1 and ONU5 are increased
by 3, 2 and 1, respectively. For the middle and low
priorities, the same method is used to calculate the weight.
Figure 6 is the resulting waveform corresponding to the
case when the input for the test vector in Table 2 is used in
Modelsim EE/Plus 5.2c and the result is same as given in
Table 3.

Table.1 Number of the request for timeslot

Table.2 Weight values

Table.3 Results of timeslot allocation

4.2. Design of the CPU interface logic and hardware
synthesis

The accurate operation of the scheduler designed using
verilogHDL has been verified. In this paper, we will
examine whether the same result is obtained in the actual
hardware by implementing it on the FPGA chip.

As mentioned in introduction, the scheduler module in the
FPGA is controlled by the embedded Linux based device
driver and the application program. For this purpose, the
CPU interface logic has been added. The interface logic is
a group of registers storing the data received from the
CPU. The scheduler uses the report and gate messages
with the size of 48 bits. Since the input/output bus
between the LDS2000 embedded system and the FPGA
board is 32 bits, in order to receive one report message
with the size of 48 bits, the device driver partitions into
three 16bit data and sends each of them to the interface
logic. The interface logic combines them into the 48bits
report data to be used by the scheduler module. The
similar procedure is applied to the gate message and the
CPU, which is the receiving end, combines the received
data. Figure 7 illustrates the interface control signals
necessary for the input and output data between the
PXA255 CPU and the FPGA.

The MAC scheduler of the OLT that includes the CPU
interface logic synthesized into the gate level using
Quartus II, a synthesizer tool exclusively for the FPGA.
The synthesized scheduler is configured and wired as a
logic cell using 24% (2,938/12,060) of the Cyclone
EP1C12F324C8 FPGA and the register uses
10%(1,349/12,795) while the actual value of fmax is
62.03MHz.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

48

Fig.7 Interface control signals between the PXA255 and the FPGA

5. The development of the embedded linux
based testbed

If a user wishes to handle the desired task using a specific
device, he should first manufacture the device driver
related to the equipment and then prepare the allocation
program to perform the desired task. That is, the device
driver should execute the data input/output process and the
allocation program should specify the processing task that
the user desires eventually[11].

Fig.8 Operational procedure

Figure 8 illustrates the operational procedure from
compiling of the application program to its execution.
Since the embedded system, due to its limited
characteristic, may not support the development
environment for the program by itself, the program should
be written and complied on a general Linux PC. The
interior of the hard disk in the figure represents the
procedure where the device driver, olt_dd.c and the
application program olt_app.c are written on a general
Linux PC and the object and execution files for the
embedded Linux are created through the cross compiler.
The module and the execution file that are created are sent
to the embedded system which will be used by the user. In
order to use the scheduler device in the FPGA chip, first,
the module should be loaded into the kernel memory of
the embedded Linux system using the insmod command
and then registered in the OLT scheduler (device) using
the mknod command. Then, the user may test the OLT
scheduler device through the application program.

5.1. Device Driver

The device driver provides the function to control devices
and it is provided from the kernel perspective. Depending
on the type of device to control, it is divided into the block
device driver, the network device driver, and the character
device driver[11]. In this paper, the FPGA board is
controlled by the character device driver.

struct file_operations OLT_fops = {
 open : OLT_open,
 release : OLT_release,
 ioctl : OLT_ioctl,
 write : OLT_write,
 read : OLT_read,
};

The essential parts of the device driver are as follows. The
functions, init_module() and cleanup_module() are for
loading and deleting of the modules. The functions,
OLT_virtual_memory_allocate() and OLT_virtual_memo
ry_free() are for obtaining and deleting the virtual
addresses of the registers in the CPU interface logic.

ssize_t OLT_write(struct file *filp, const char *buf, size_t
length, loff_t *f_pos)
{

char data[30];
unsigned short temp;

copy_from_user(&data, buf, length);

unsigned int *R_reg0_L =
(unsigned int *)(Virtual_BasePtr + 0x3c);

………………
temp = data[0]; temp = (temp<<8);
temp = temp + data[1]; temp = temp & 0xffff;
*R_reg0_H = temp; user_wait(500000);

………………
}
ssize_t OLT_read(struct file *filp, char *buf, size_t length,
loff_t *f_pos)
{

char data[30];
unsigned short temp = 0;
unsigned int *G_reg0_L =
(unsigned int *)(Virtual_BasePtr + 0x78);

………………
temp = inw(G_reg0_H);
data[0] = (temp & 0xff00) >> 8;

data[1] = (temp & 0x00ff);
………………

copy_to_user(buf, &data, sizeof(data));
}

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

49

The struct, OLT_fops is constructed based on the type of
struct, file_operations provided by the kernel. The left side
separated by a colon is the control operation that the
module will process and the actual processing function
corresponding to each control operation is given in the
right side.

The function, OLT_write() moves the repost message sent
from the application program to the device driver, using
copy_from_user(&data, buf, length). Then it partitions it
into 16bit data and writes it to the virtual address allocated
to the report register in the CPU interface logic. The
function, OLT_read() reads in the data in the address
corresponding to the gate register of the FPGA and stores
in the variable in the device driver.Then, it sends the data
to the application program, using copy_to_user(buf, &data,
sizeof(data)).

5.2. Application

The application program writes the report message, using
the file descriptor returned by opening the OLT device and
reads in the gate message sent from the device to generate
the output.

fd = open("/dev/olt_dd", O_RDWR | O_SYNC);

while((key = main_menu()) != 0)
{

switch(key) {
 case '1':
 printf("start OLT's Scheduler\n");
 ioctl(fd, 1, flag); break;

 case 'w':
 printf("Put 5 Report packets\n\n");
 write(fd, buf_write, 30); break;
 case 'r':
 printf("Get 5 Grant packets\n");
 read(fd, buf_read, 30);
 Display(buf_read); break;
 case 'q':
 printf("exit\n"); exit(0); break;
 }
}

 5.3. Results

Figure 9 illustrates a LDS2000 system. Since it uses the
LDS2000 system combining ① the embedded board and
② the FPGA board as one, its experimental environment
is very simple. The test application program is a console
based program and its operation was verified using

minicom on a host Linux PC. Figure 10 represents the
entire procedure covering from loading the olt_dd.o
module to executing the application program and deleting
the olt_dd module. As shown below, it provides the same
result as obtained from the simulation in Chapter 4.

Fig.9 LDS2000 system

① ②

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

50

Fig.10 Execution of the verify program

6. Conclusion

Since the bandwidth allocation policy is excluded from the
standardization in IEEE802.3ah EFM, it may create some
problems in compatibility between the equipments
provided by different manufacturers. On the other hand,
the manufacturers are given opportunities to distinguish
the performance of their products over other
manufacturer’s products. The RC-DBA algorithm was
designed using the MPCP to support the QoS and to
resolve the shortcoming of the existing DBA algorithms
that can not support the fair bandwidth allocation between
every ONU.

In this paper, we implemented the scheduler for the
channel allocation on the FPGA chip in the OLT which
the RC-DBA algorithm is applied to and we also verified
its performance by using the embedded Linux based
device driver and the application program. This can be
extended to the development of the MAC chip in the OLT
in the future.

The ultimate goal of this study is to verify the operation of
the RC-DBA algorithm by implementing the ONU module,
which can transmit the report message to the scheduler
and receive the gate message, on the FPGA chip and
communicating with the actual OLT. For this purpose, we
are currently engaged in designing the ONU module that
can perform the operation related to the scheduler.

Acknowledgments

This work was supported by the Korea Industrial
Technology Foundation and the Brain Busan 21 Project in
2006.

References
[1] Jang seong-ho, "Design and Performance evaluation of a

RC-DBA algorithm Supporting fairness among ONUs for

EPON“, Department of computer engineering, graduate
school, a thesis for a doctorate, 2004

[2] S.Choi and J. Huh, "Dynamic Bandwidth Allocation
Algorithm for Multimedia Services over Ethernet PONs,"
ETRI Journal, Vol. 24, No. 6, pp. 465-468, Dec. 2002.

[3] H. Shimonishi, I. Maki, T. Murase, and M. Murata,

"Dynamic Fair Bandwidth Allocation for Diffserv Classes,"
Proceeding of IEEE ICC, Vol. 4, pp. 2348-2352 Apr.-May
2002.

[4] Chadi M. Assi, Yinghua Ye, Sudhir Dixit and Mohamed A.

Ali, "Dynamic Bandwidth Allocation for Quality-of-Service
Over Ethernet PONs," IEEE Journal on Selected Areas in
Communications, Vol. 21, No. 9, Nov. 2003.

[5] J. Moon, J. Park, and M. Lee, "Hybrid Bandwidth

Allocation Algorithm To Support Multiple Services in
Ethernet PON," Proceeding of ICACT 2003, pp. 692-696,
Jan. 2003.

[6] Fu-Tai An, Yu-Li Hsueh, Kyeong Soo Kim, Ian M. White,

and Leonid G. Kazovsky, "A New Dynamic Bandwidth
Allocation Protocol with Quality of Service in Ethernet-
based Passive Optical Networks," Proceeding of IASTED
WOC 2003, pp. 383-135, Jul. 2003.

[7] Seng-Ho Jang and Jong-Wook Jang, "New DBA Algorithm

Supporting QoS for EPON", The CS&CE International
Multiconference on CIC 2004, Las Vegas, USA, Jul. 2004.

[8] Seong-Ho Jang and Jong-Wook Jang, "Performance

Evaluation of a New DBA Algorithm Supporting Fairness
and Priority for Ethernet-PON", the IASTED International
Conference on OCSN 2004, Banff, Canada, Jul. 2004.

[9] Choi Byeong-yoon, “The design of the control logic for

digital system by ASM Chart ,
http://hyomin.deu.ac.kr/~bychoi/system_lsi_2004.html

[10] 802.3 draft document - MPCP Message Format,

http://www.ieee802.org/3/efm/baseline/hirth_1_0302.pdf

[11] Corebell Co., “The practical use of the Linux Device

Driver”, pp. 105-140, 2003

Jong Wook Jang received the M.S.
degree in Computer science from
Chungnam national university in 1991 and
the PhD. Degree in Computer Engineering
from Busan national university in 1995. He
has been a Professor in the Department of
Computer engineering, Dongeui University,
Busan, Korea. His research interests
include Ethernet-PON, Mobile MAC

Protocol and low-power consumption Cross-layer Protocol.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

51

Hyun Jin Kang received the B.S.
degree in Computer Engineering from
Dongeui University in 2005. She is now
with the Department of Computer and
Software Engineering, Dongeui University.
Her research interests are in the areas of
data communications and Embedded
system.

Hyoung Goo Jeon received the B.S
degree from Inha University, Incheon,
Korea, in 1987 and the M.S. and PhD.
Degrees from Yonsei University, Seoul,
Korea, in 1992 and 2000, all in electronic
engineering. From 1987 to 2000, he was
with Electronic and Telecommunication
Research Institute, Daejeon, Korea. Since
2001, he has been a Professor in the

Information communication Engineering Department of Dongeui
University, Busan, Korea. His research interests include WLAN,
CDMA modems and digital communications

