
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

78

Manuscript received June 5, 2006.
Manuscript revised June 25 , 2006.

A Design and Implementation Method for Elevator Scheduling
Problem Using DNA Computing Approach

Mohd Saufee Muhammad, and Osamu Ono

Meiji University, Kanagawa, JAPAN 214-8571

Summary
We present a design and implementation method to solve an
elevator scheduling problem using DNA computing in this
research. DNA sequences of length directly proportional to the
elevator’s traveling time are encoded to represent all possible
travel path combinations based on certain initial conditions such
as present and destination floors, and hall calls from a floor.
Parallel overlap assembly is employed for initial pool generation
and polymerase chain reaction for amplification. Gel
electrophoresis is then performed to separate the sequences
according to its length and its image is captured to visualize the
optimal path. Experimental result obtained verifies that this
approach can be well-suited to solve such real-world problem of
this nature.
Key words:
Elevator scheduling problem, DNA computing, gel
electrophoresis, optimal path.

Introduction

The practical possibility of using molecules of
Deoxyribonucleic Acid or DNA as a medium for
computation was first demonstrated in 1994 by Leonard M.
Adleman [1]. Using the tools of biomolecular engineering,
Adleman successfully solved a directed Hamiltonian Path
Problem (HPP) in his experiment.

Instead of the traditional silicon-based computing
technologies, DNA computing is a form of computing that
uses DNA and molecular biology. Adleman’s pioneering
work set the new approach for this new field of bio-
computing research. Computing with DNA generated a
tremendous amount of excitement by offering a brand new
paradigm for performing and viewing computations.
Adleman’s experiment [2] solved a simple instance of the
Traveling Salesman Problem (TSP) by manipulating the
DNA molecules. This marked the first solution of a
mathematical problem with the tools of biology.

Computing with DNA offers many advantages over
traditional silicon-based computing due to several reasons.
These include massive parallelism and memory capacity.
The primary advantage offered by most proposed models
of DNA based computation is the ability to handle
millions of operation in parallel. DNA computing can
reach approximately 1020 operations per second compared

to today’s teraflop supercomputers. Certain operations in
DNA computing (for example, hybridization − the
bonding of two DNA strands to form the double helix) are
over a billion times more energy efficient as compared to
conventional computers. Also, DNA stores information at
a density of about one bit per nm3 − about a trillion times
as efficiently as videotape.

DNA computation relies on devising algorithms to
solve problems using the encoded information in the
sequence of nucleotides that make up DNA’s double helix
strand, breaking and making new bonds between them to
reach the answer. Each strand may be viewed as a chain of
nucleotides, or bases. An n-letter sequence of consecutive
bases is known as an n-mer or an oligonucleotide of length
n. The four DNA nucleotides are adenine (A), guanine (G),
cytosine (C) and thymine (T). Each strand has, according
to chemical convention, a 5' and a 3' end, thus any single
strand has a natural orientation. The classical double helix
of DNA is formed when two separate strands bond
together. Bonding occurs by the pairwise attraction of
bases; A bonds with T and G bonds with C. The pairs (A,
T) and (G, C) are known as Watson-Crick complementary
base pairs [3].

Research on DNA computing approach to solve
engineering related problems however has not been very
well established. Since DNA computing is very suitable to
solve combinatorial problems, an elevator scheduling
problem is chosen as a benchmark to be solved using this
computing technique. The elevator scheduling problem
involves finding an optimal path, or in other words,
finding the shortest elevator travel path of a building with
certain number of elevators and floors. However, this is a
complex combinatorial problem since certain criteria need
to be fulfilled for the problem solution such as initial
elevator position, its destinations and hall calls made for
an elevator.

There are several research reports on DNA
computing techniques for solving shortest path problems
of a weighted graph. Nayaranan and Zorbalas [4] proposed
a constant proportional length-based DNA computing
technique for TSP. Yamamoto et al. [5] proposed a
concentration-controlled DNA computing to accomplish
local search for solving shortest path problem. Lee et al.
[6] proposed a DNA computing technique based on

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

79

temperature gradient to solve the TSP problem. Ibrahim et
al. [7] on the other hand proposed a direct-proportional
length-based DNA computing for shortest path problem.

All the methods proposed for computing weighted
graph have not been well applied to solve a real word
problem. Previously, ideas and implementation methods
for solving elevator scheduling problem using DNA
computing method had been proposed [8, 9]. In this paper,
the DNA computing techniques for solving shortest path
problems of a weighted graph have been utilized to solve
the elevator scheduling problem. Here, the elevator’s
traveled paths and traveling time are represented by DNA
sequences of specific length designed based on certain
initial conditions such as elevator’s present and destination
floors, and hall calls for an elevator from a floor.
Constraints such as node position in the graph, initial pool
generation method, sequence amplification and computing
output representation are investigated and discussed in
detail. Results of an in vitro experiment to realize the
computing output are presented showing the feasibility
and applicability of the computing technique proposed.

2. Elevator Scheduling Problem Overview

Let us consider a typical situation of a building with M
elevators and N floors. The present elevator positions, its
destinations and hall calls from a floor at a particular
instance can be illustrated as shown in Table I.

Table 1: Elevator Situation at a Particular Instance
Floor
No

Elevator
1

Elevator
2 … Elevator

M − 1
Elevator

M
Hall
Call

N
N−1 7, 4 ↑

N−2 N−4, 5, 2 ↓
: : : : : :
3 5, 8, 9 ↓
2 ↑
1 3, 5, N−2

These elevator travel paths can be represented using a

weighted graph by representing each elevator position at
floors 1, 2, 3, … , N – 2, N – 1, N with nodes V1, V2, V3,
… , VN–2, VN–1, VN respectively. The weight between each
node representing the elevator’s travel time between each
floor can be formulated as

 SCij TTij +−=− |)(|||ω (1)

where
 i − elevator’s present floor position
 j − elevator’s destination floor position
| j − i| − total number of floors of elevator’s

 movement
TC − elevator’s traveling time between two

consecutive floors
 TS − elevator’s stopping time at a floor

The weighted graph of all possible travel path
combinations of one of the elevator can be constructed as
shown in Fig. 1.

Fig. 1 Weighted graph of all possible travel path combinations of an
elevator.

The output of the graph, given by sum of the graph
weights thus represents the total traveling time of the
elevator, i.e.

∑ −= ||)(ijxEG ω (2)

For a building with M elevators, M similar graphs as

shown in Fig. 1 can be duplicated representing all M
elevators travel paths. The total traveling time of all the
elevators can now be calculated by summing up each of
the elevator’s traveling time, i.e.

)()()()(
),,,,(

121

121

MM

MM

EGEGEGEG
EEEEG

++++
=

−

−

L

L
 (3)

The minimum total traveling time of all the elevators

with all initial conditions and requirements satisfied thus
gives the optimal elevator travel path, i.e.

 Optimal Travel Path =
 G (E1, E2, … , EM–1, EM) min

(4)

Let us now consider a particular example of a
building with 2 elevators and 6 floors. Elevator A is
presently at 1st floor and its destinations are 3rd and 5th
floors, and elevator B is presently at 6th floor and its
destinations are 3rd and 2nd floors. There is a hall call at 4th
floor going up, and a hall call at 3rd floor going down, as
illustrated in Table 2.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

80

Table 2: Elevator Scheduling Problem Example

Floor No Elevator A Elevator B Hall Call

6 (3 , 2)
5

4 ↑
3 ↓
2
1 (3 , 5)

Since the building is 6 floors high, the maximum

number of floors that the elevator can travel is (6 – 1) = 5
floors. Now, assume that TC = 5 s, TS = 15 s, and
representing 5 s of time with 10 units we have from (1)

ω 1 = 1 (5) + 15 = 20 s = 40
ω 2 = 2 (5) + 15 = 25 s = 50
ω 3 = 3 (5) + 15 = 30 s = 60
ω 4 = 4 (5) + 15 = 35 s = 70
ω 5 = 5 (5) + 15 = 40 s = 80

A weighted graph representing all possible travel

path combinations of elevators A and B with either
elevator answering one or both of the hall calls can now be
constructed as shown in Fig. 2. Note that all possible end
paths of elevator A are joined with the start paths of
elevator B. This is done in order that the total output of
the graph G (A, B) representing the travel path
combinations of the elevators can be calculated.

Fig. 2 Weighted graph of all possible travel path combinations.

Since there are two hall calls with two available
elevators, it is clearly seen that there are 22 = 4 possible
travel path combinations for both of the elevators as
tabulated in Table 3. The required solution for the elevator
scheduling problem is thus the optimal path weight G(A,
B)3 = 230 = 115 s.

Table 3: Total Graph Output Of All Travel Path Combinations

Elevator
No

Hall
Calls Elevator Travel Paths Total Graph Output

A − VA1 → VA3 → VA5 G(A, B)1 = 100 + 150
B 3 , 4 VB6 → VB3 → VB2 → VB4 = 250
A 3 VA1 → VA3 → VA5 → VA3 → G(A, B)2 = 150 + 150
B 4 VB6 → VB3 → VB2 → VB4 = 300
A 4 VA1 → VA3 → VA4 → VA5 → G(A, B)3 = 130 + 100
B 3 VB6 → VB3 → VB2 = 230
A 3 , 4 VA1 → VA3 → VA4 → VA5 G(A, B)4 = 180 + 100
B − → VA3 → VB6 → VB3 → VB2 = 280

3. DNA Computing Approach Design Solution

In order to solve this type of elevator scheduling problem
using DNA computing approach, several computing steps
are performed that are discussed below.

Step 1. Reconstruct the weighted graph shown in Fig. 2 in
order to distinguish between start, intermediate and end
nodes, and also to differentiate the nodes of different
travel path combinations as depicted in Fig. 3.

Fig. 3 Weighted graph for DNA computing approach solution showing
different node locations and paths.

Note that S, I and E denote start, intermediate and end
nodes respectively, while J and K denotes the different
travel paths combinations. This is an important design step
since every different node location and path in the graph
will be represented with different DNA sequences in order
to obtain all the possible travel path combinations that
fulfill all the initial conditions and requirements stated.

Step 2. Generate a unique DNA sequence for every node
of the graph where each start, intermediate and end node
of different travel path combination is assigned with a
specific DNA sequence. Using this rule, every DNA
sequence assigned to each node will therefore identify its
location and travel path in the graph. The sequences are
generated using available software for DNA sequence
design named DNASequenceGenerator [10], and is shown
in Table 4. The GC contents (GC%), melting temperature

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

81

(Tm) are also shown in the table, and the sequence
complements are shown in Table 5.

Table 4: DNA Sequences for Nodes

Node Vi 20-mer sequences (5’ – 3’) GC % Tm (°C)

V1SJ CGGCGGTCCACTAAATACTA 50 60.0
V3IJ CACTCTTTGTGAACGCCTTC 50 60.8
V5IJ TGAACCGGCCCTTTATATCT 45 60.7
V3EJ TCATTCGAGTTATTCCTGGG 45 59.9
V5EJ CTATAAGGCCAAAGCAGTCG 50 59.9
V6SJ GGACCTGCATCATACCAGTT 50 59.8
V2IJ AAAGCCCGTCGGTTAAGTTA 45 60.8
V4EJ GGAATCCATTGATCGCTTTA 40 59.9
V4IK GTGGGTTAGAGGTAGTCCGG 60 60.8
V5IK CCGCTGATCCTTGCTAAGTA 50 60.4
V3EK AAATGACCTTTTTAACGGCA 35 59.4
V5EK ATGCCTGGCTAAAGTGAGAC 50 59.3
V6SK TGCACGCAAAACTATTTCAT 35 59.2
V3IK TCTGCACTGTTAATGAGCCA 45 60.4
V2EK CTAATTTTAGAAATGGCGCG 40 59.7

Table 5: Complement of DNA Sequences For Nodes

Node iV 20-mer sequences (5’ – 3’)

SJV1 TAGTATTTAGTGGACCGCCG

IJV3 GAAGGCGTTCACAAAGAGTG

IJV5 AGATATAAAGGGCCGGTTCA

EJV3 CCCAGGAATAACTCGAATGA

EJV5 CGACTGCTTTGGCCTTATAG

SJV6 AACTGGTATGATGCAGGTCC

IJV2 TAACTTAACCGACGGGCTTT

EJV4 TAAAGCGATCAATGGATTCC

IKV4 CCGGACTACCTCTAACCCAC

IKV5 TACTTAGCAAGGATCAGCGG

EKV3 TGCCGTTAAAAAGGTCATTT

EKV5 GTCTCACTTTAGCCAGGCAT

SKV6 ATGAAATAGTTTTGCGTGCA

IKV3 TGGCTCATTAACAGTGCAGA

EKV2 CGCGCCATTTCTAAAATTAG

Step 3. Synthesize the DNA sequence for every node path
of the graph according to the following rules so that the
sequence length will directly represent the weight between
the nodes:
 (i) If i is a start node and j is an intermediate node,
synthesize the sequence as
 V i (20) + W ij (ω ij − 30) + V j (20)
 (ii) If i is an intermediate node and j is an end node,
synthesize the sequence as
 V i (20) + W ij (ω ij − 30) + V j (20)

 (iii) If i and j are both intermediate nodes, synthesize
the sequence as
 V i (20) + W ij (ω ij − 20) + V j (20)

where V denotes the DNA sequence for node, W
denotes the DNA sequence for weight, ω denotes the
weight value, and ‘+’ denotes a ‘join’ between the DNA
sequence. All the synthesized sequences based on the
stated rules are shown in Table 6 where capital letters
denote the nodes and small letters denote the weight
between nodes.

Table 6: Synthesized DNA Sequences for Node Paths

Node Vi 20-mer sequences (5’ – 3’)

V1SJ → V3IJ
CGGCGGTCCACTAAATACTAaggtcgtttaaggaagta

cgCACTCTTTGTGAACGCCTTC

V3IJ → V4IK
CACTCTTTGTGAACGCCTTCacgtcgtgtaacgaagtcc

tGTGGGTTAGAGGTAGTCCGG

V3IJ → V5IJ
CACTCTTTGTGAACGCCTTCccgtcggttaagcaagtaa

tgtactatgctTGAACCGGCCCTTTATATCT

V3IJ → V5EJ
CACTCTTTGTGAACGCCTTCgcgtcgcttaccgaagca

cgCTATAAGGCCAAAGCAGTCG

V4IK → V5IK
GTGGGTTAGAGGTAGTCCGGcgctcgttgaagccagt

accCCGCTGATCCTTGCTAAGTA

V4IK → V5EK
GTGGGTTAGAGGTAGTCCGGgcgtcttttaATGCC

TGGCTAAAGTGAGAC

V5SJ → V3EJ
TGAACCGGCCCTTTATATCTacgtgttttacccaagtca

gTCATTCGAGTTATTCCTGGG

V5IK → V3EK
CCGCTGATCCTTGCTAAGTAgcggcgtgtcacgaacta

cgAAATGACCTTTTTAACGGCA

V3EJ → V6SJ
TCATTCGAGTTATTCCTGGGGGACCTGCATC

ATACCAGTT

V5EJ → V6SJ
CTATAAGGCCAAAGCAGTCGGGACCTGCATC

ATACCAGTT

V3EK → V6SK
AAATGACCTTTTTAACGGCATGCACGCAAAA

CTATTTCAT

V5EK → V6SK
ATGCCTGGCTAAAGTGAGACTGCACGCAAA

ACTATTTCAT

V6SJ → V3IJ
GGACCTGCATCATACCAGTTacgtggtttaaggaagta

cggtactatgctCACTCTTTGTGAACGCCTTC

V6SK → V3IK
TGCACGCAAAACTATTTCATccgtgggttaaagaagtc

ctgtactctcctTCTGCACTGTTAATGAGCCA

V2IJ → V4EJ
AAAGCCCGTCGGTTAAGTTAggtcttttaatcaactaat

gGGAATCCATTGATCGCTTTA

V3IJ → V2IJ
CACTCTTTGTGAACGCCTTCacgtcgctgcaagaacta

cgAAAGCCCGTCGGTTAAGTTA

V3IK → V2EK
TCTGCACTGTTAATGAGCCAacgtcttgtcCTACG

GATAGGTGTCTGGGA

Step 4. Combine all the synthesized DNA sequences in a
test tube for initial pool generation. The initial pool
generation uses parallel overlap assembly (POA) method
[11] as suggested by Lee et al. [12] who demonstrated that
POA is a more efficient and economical method for
weighted graph problems. Basically, POA operation
consists of three steps: hybridization, extension, and
denaturation. During the annealing step, the temperature is
decreased slowly so that partial hybridization is allowed to
occur at respective locations. The extension on the other
hand is applied with the presence of polymerase enzyme

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

82

and the polymerization can be done from 5’ to 3’ direction.
The generated double stranded DNA molecules are then
separated during denaturation step in which the
temperature is increased until the double stranded DNA
molecules are separated to become single stranded DNA
molecules. An example of the POA process showing the
generation of optimal path combination for this elevator
scheduling problem is depicted in Fig. 4.

Fig. 4 POA for elevator’s optimal path. The continuous arrows represent
the synthesized DNA sequence and dotted arrows represent the elongated

part during polymerization. The arrowhead indicates the 3’ end.

Step 5. The optimal path combinations among many other
alternative path combinations have to be filtered from the
initial pool solution. This filtering process copies the
target DNA duplex exponentially using polymerase chain
reaction (PCR) process [13]. PCR proceeds in cycles of 3
steps at different temperatures: denaturation (95°C),
involves separation of the double strand DNA molecules,
annealing (55°C) where primers are ‘annealed’ to both the
single strands ends and extension (75°C) process where
polymerase enzymes are used to extend the primers into
replicas of the DNA molecules. This sequence is repeated
causing an exponential growth in the number of target
DNA molecules. For this problem, all the DNA molecules
containing start node V1SJ and end node V2EK are amplified
exponentially. Numerous amounts of DNA strands that
represents the start node V1SJ and end node V4EJ and V2EK
passing through all possible travel path combinations will
be presented once the PCR operation is accomplished.

Step 6. Finally, gel electrophoresis [14], [15] is
performed onto the output solution of the PCR in order to

separate all the possible travel path combinations
according to its length. The gel electrophoresis image is
then captured, where the DNA duplex representing the
shortest path starting from V1SJ and end node V4EJ and V2EK
could be visualized representing the required optimal path
solution of the problem.

4. In Vitro Experiment Setup and Result

An in vitro experiment is carried out in order to verify the
designed DNA computing approach to solve the elevator
scheduling problem. This experiment involves POA for
initial pool generation, PCR for DNA sequence
amplification and gel electrophoresis to visualize the
computation output.

The POA for initial pool generation is performed in a
100 µl solution consisting of 64.0 µl distilled water
(Maxim Biotech), 15.5µl oligos (Proligo Primers & Probes,
USA), 10 µl dNTP (TOYOBO, Japan), 10 µl 10× KOD
dash buffer (TOYOBO, Japan), and 0.5 µl KOD dash
polymerase (TOYOBO, Japan). The solution is then
subjected to POA reaction of 25 cycles where the different
temperatures for each cycle are 94ºC for 30 s, 55ºC for 30
s, and 74ºC for 10 s respectively.

PCR is then performed onto the POA solution for
DNA amplification in order to select the paths that begin
with node V1SJ and end at nodes V4EJ, and V2EK. PCR is
performed in a 25 µl solution consisting of 17.875 µl
distilled water (Maxim Biotech), primers V1SJ, EJV4 , and

EKV2 of 0.5 µl each, 1 µl POA template, 2.5 µl dNTP
(TOYOBO, Japan), 2.5 µl 10× KOD dash buffer
(TOYOBO, Japan), and 0.125 µl KOD dash polymerase
(TOYOBO, Japan). The solution is subjected to PCR
reaction of 25 cycles where the different temperatures for
each cycle are 94ºC for 30 s, 55ºC for 30 s, and 74ºC for
10 s respectively, the same as POA process.

Finally, the resulting PCR solution is subjected to gel
electrophoresis for 30 minutes in order to visualize the
computation result. SYBR Gold (Molecular Probes) is
used to stain the gel after gel electrophoresis process
before the gel image is captured.

The captured image for the POA and PCR process is
shown in Fig. 5. Here, lane M denotes 20bp ladder while
lanes 1 and 2 denote POA and PCR product respectively.
It is clearly seen from the POA gel image that the band is
blur denoting that all possible travel path combinations are
successfully generated. The PCR gel image shows 4 bands
indicating all the four possible travel paths, i.e. G(A, B)3 =
230bp, G(A, B)1 = 250bp, G(A, B)4 = 280bp and G(A, B)2
= 300bp. This confirms the expected result that the
optimal elevator’s travel path is given by G(A, B)3 =
230bp = 115 s.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

83

Fig. 5 Captured image of gel electrophoresis showing computing output.

5. Conclusions

A new method to solve an elevator scheduling problem
using DNA computing approach has been presented and
discussed in detail in this paper. An in vitro experiment to
verify the expected result has successfully been carried out.
The design methodology and experimental implementation
procedures presented as summarized in Fig. 6 shows that
this type of engineering problem is applicable and
achievable to be solved using the DNA computing
approach. For a larger problem with M elevators, N floors
and Y hall calls, all the M Y travel path combinations can be
represented by specific DNA sequences synthesized using
the rule stated. POA and PCR can thus be performed to
extract the required computing output from the gel
electrophoresis image. With this successful design and
implementation, the applicability and feasibility of DNA
computing approach could therefore be extended into
many more complex problems of this type of nature.

Fig. 6. DNA computing approach algorithm for solving elevator
scheduling problem.

Acknowledgments

The first author is very grateful to Universiti Malaysia
Sarawak (UNIMAS), Malaysia for granting a study leave
at Meiji University, Japan.

References
[1] L.M. Adleman, “Molecular computation of solutions to

combinatorial problems,” Science, vol. 266, pp. 1021-1024,
1994.

[2] L.M. Adleman, “Computing with DNA,” Scientific
American, pp. 34-41, 1998.

[3] J.D. Watson, and F.H.C. Crick, “A Structure for
Deoxyribose Nucleic Acid”, Nature, Vol. 171, pp. 737-738,
1953.

[4] A. Narayanan, and S. Zorbalas, “DNA algorithms for
computing shortest paths,” Proceedings of Genetic
Programming, pp. 718-723, 1998.

[5] Y. Yamamoto, A. Kameda, N. Matsuura, T. Shiba, Y.
Kawazoe, and A. Ahochi, “Local search by concentration-
controlled DNA computing,” International Journal of
Computational Intelligence and Applications, vol. 2, pp.
447-455, 2002.

[6] J.Y. Lee, S.Y. Shin, S.J. Augh, T.H. Park, and B.T. Zhang,
“Temperature gradient-based DNA computing for graph
problems with weighted edges,” Lecture Notes in Computer
Science, Springer-Verlag, vol. 2568, pp. 73-84, 2003.

[7] Z. Ibrahim, Y. Tsuboi, O. Ono, and M. Khalid, “Direct-
proportional length-based DNA computing for shortest path
problem,” International Journal of Computer Science and
Applications, vol. 1, issue 1, pp. 46-60, 2004.

[8] M. S. Muhammad, S. Ueda, O. Ono, and M. Khalid, “DNA-
based computing for solving elevator scheduling problem”,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

84

3rd International Conference on Computer Applications
(ICCA2005), pp. 507-514, 2005

[9] M. S. Muhammad, S. Ueda, O. Ono, J. Watada, and M.
Khalid, “Solving Elevator Scheduling Problem Using DNA
Computing Approach”, Advances in Soft Computing,
Springer, pp. 359-370, 2005

[10] F. Udo, S. Sam, B. Wolfgang, and R. Hilmar, “DNA
sequence generator: A program for the construction of DNA
sequences,” Proceedings of the Seventh International
Workshop on DNA Based Computers, pp. 23-32, 2001.

[11] P.D. Kaplan, Q. Ouyang, D.S. Thaler, and A. Libchaber,
“Parallel overlap assembly for the construction of
computational DNA libraries,” Journal of Theoretical
Biology, vol. 188, issue 3, pp. 333-341, 1997.

[12] J.Y. Lee, H.W. Lim, S.I. Yoo, B.T. Zhang, and T.H. Park,
“Efficient initial pool generation for weighted graph
problems using parallel overlap assembly,” Preliminary
Proceeding of the 10th International Meeting on DNA
Computing, pp. 357-364, 2004.

[13] J. P. Fitch, Engineering Introduction to Biotechnology,
SPIE Press, 2001.

[14] G. Paun, G. Rozenberg, and A. Salomaa, “DNA computing:
New computing paradigms,” Lecture Notes in Computer
Science, Springer-Verlag, vol. 1644, pp. 106-118, 1998.

[15] Y. Yamamoto, A. Kameda, N. Matsuura, T. Shiba, Y.
Kawazoe, and A. Ahochi, “A separation method for DNA
computing based on concentration control,” New
Generation Computing, vol. 20, no. 3, pp. 251-262, 2002.

Mohd Saufee Muhammad received his B.Eng
(Electronic Computer Systems) from
University of Salford, UK in 1996 and MSc in
Engineering (Electrical) from Western
Michigan University, USA in 2000. He is a
staff member of Department of Electronics,
Faculty of Engineering, Universiti Malaysia

Sarawak, Malaysia since 2000. He is currently on a study leave
pursuing his PhD at the Institute of Applied DNA Computing,
Meiji University, Kanagawa, Japan. His research interests
include DNA computing and its applications, artificial
intelligence and image processing. He is a student member of
Institute of Electrical and Electronics Engineers (IEEE), IEEE
Computational Intelligence Society (ICIS), and IEEE Signal
Processing Society (ISPC).

Osamu Ono received his B.Sc., M.Sc. and
Ph.D. degrees in electrical engineering from
Waseda University, Japan, in 1974, 1976, and
1979, respectively. He was previously a
Visiting Professor of the Institute of
Automatic Control Technology, Technical
University of Munich, Germany, and also

a Visiting Professor of National University of Singapore, and
Malaysia University of Technology. He is currently a Professor
of Electrical and Electronic Engineering at Meiji University,
Tokyo, Japan. He is also the Director of Institute of Applied
DNA Computing of Meiji University and Chairman of
Department of Electrical and Electronic Engineering, Meiji

University (2001-2004). He is a Dean and an Editor of Japan
Society for Simulation Technology (JSST). His research interests
include biocomputing and artificial intelligence, evolutional and
unconventional computing, biorobotics vision, neural image,
signal processing, and humanoid mobile robotics. Currently, his
research interest is mainly in the nanobioscience and applications
of molecular or DNA computing. He is the Tokyo branch
Director of Japan Institute of Electrical Engineers (JIEE). He is
also the President of Advanced High Speed Image Processing
Technology Inc. of Meiji University Technology Licensing
Organization (TLO) Incubation Centre.

