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Summary 
We present a design and implementation method to solve an 
elevator scheduling problem using DNA computing in this 
research. DNA sequences of length directly proportional to the 
elevator’s traveling time are encoded to represent all possible 
travel path combinations based on certain initial conditions such 
as present and destination floors, and hall calls from a floor. 
Parallel overlap assembly is employed for initial pool generation 
and polymerase chain reaction for amplification. Gel 
electrophoresis is then performed to separate the sequences 
according to its length and its image is captured to visualize the 
optimal path. Experimental result obtained verifies that this 
approach can be well-suited to solve such real-world problem of 
this nature. 
Key words: 
Elevator scheduling problem, DNA computing, gel 
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Introduction 

The practical possibility of using molecules of 
Deoxyribonucleic Acid or DNA as a medium for 
computation was first demonstrated in 1994 by Leonard M. 
Adleman [1]. Using the tools of biomolecular engineering, 
Adleman successfully solved a directed Hamiltonian Path 
Problem (HPP) in his experiment. 

Instead of the traditional silicon-based computing 
technologies, DNA computing is a form of computing that 
uses DNA and molecular biology. Adleman’s pioneering 
work set the new approach for this new field of bio-
computing research. Computing with DNA generated a 
tremendous amount of excitement by offering a brand new 
paradigm for performing and viewing computations. 
Adleman’s experiment [2] solved a simple instance of the 
Traveling Salesman Problem (TSP) by manipulating the 
DNA molecules.  This marked the first solution of a 
mathematical problem with the tools of biology. 

Computing with DNA offers many advantages over 
traditional silicon-based computing due to several reasons. 
These include massive parallelism and memory capacity. 
The primary advantage offered by most proposed models 
of DNA based computation is the ability to handle 
millions of operation in parallel. DNA computing can 
reach approximately 1020 operations per second compared 

 

 
to today’s teraflop supercomputers. Certain operations in 
DNA computing (for example, hybridization − the 
bonding of two DNA strands to form the double helix) are 
over a billion times more energy efficient as compared to 
conventional computers. Also, DNA stores information at 
a density of about one bit per nm3 − about a trillion times 
as efficiently as videotape. 

DNA computation relies on devising algorithms to 
solve problems using the encoded information in the 
sequence of nucleotides that make up DNA’s double helix 
strand, breaking and making new bonds between them to 
reach the answer. Each strand may be viewed as a chain of 
nucleotides, or bases. An n-letter sequence of consecutive 
bases is known as an n-mer or an oligonucleotide of length 
n. The four DNA nucleotides are adenine (A), guanine (G), 
cytosine (C) and thymine (T). Each strand has, according 
to chemical convention, a 5' and a 3' end, thus any single 
strand has a natural orientation. The classical double helix 
of DNA is formed when two separate strands bond 
together. Bonding occurs by the pairwise attraction of 
bases; A bonds with T and G bonds with C. The pairs (A, 
T) and (G, C) are known as Watson-Crick complementary 
base pairs [3]. 

Research on DNA computing approach to solve 
engineering related problems however has not been very 
well established. Since DNA computing is very suitable to 
solve combinatorial problems, an elevator scheduling 
problem is chosen as a benchmark to be solved using this 
computing technique. The elevator scheduling problem 
involves finding an optimal path, or in other words, 
finding the shortest elevator travel path of a building with 
certain number of elevators and floors. However, this is a 
complex combinatorial problem since certain criteria need 
to be fulfilled for the problem solution such as initial 
elevator position, its destinations and hall calls made for 
an elevator.  

There are several research reports on DNA 
computing techniques for solving shortest path problems 
of a weighted graph. Nayaranan and Zorbalas [4] proposed 
a constant proportional length-based DNA computing 
technique for TSP. Yamamoto et al. [5] proposed a 
concentration-controlled DNA computing to accomplish 
local search for solving shortest path problem. Lee et al. 
[6] proposed a DNA computing technique based on 
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temperature gradient to solve the TSP problem. Ibrahim et 
al. [7] on the other hand proposed a direct-proportional 
length-based DNA computing for shortest path problem. 

All the methods proposed for computing weighted 
graph have not been well applied to solve a real word 
problem. Previously, ideas and implementation methods 
for solving elevator scheduling problem using DNA 
computing method had been proposed [8, 9]. In this paper, 
the DNA computing techniques for solving shortest path 
problems of a weighted graph have been utilized to solve 
the elevator scheduling problem. Here, the elevator’s 
traveled paths and traveling time are represented by DNA 
sequences of specific length designed based on certain 
initial conditions such as elevator’s present and destination 
floors, and hall calls for an elevator from a floor. 
Constraints such as node position in the graph, initial pool 
generation method, sequence amplification and computing 
output representation are investigated and discussed in 
detail. Results of an in vitro experiment to realize the 
computing output are presented showing the feasibility 
and applicability of the computing technique proposed. 

2. Elevator Scheduling Problem Overview 

Let us consider a typical situation of a building with M 
elevators and N floors. The present elevator positions, its 
destinations and hall calls from a floor at a particular 
instance can be illustrated as shown in Table I.  

Table 1: Elevator Situation at a Particular Instance 
Floor 
No 

Elevator 
1 

Elevator 
2 … Elevator 

M − 1 
Elevator

M 
Hall 
Call 

N       
N−1  7, 4    ↑ 

N−2    N−4, 5, 2  ↓ 
: : : : : :  
3     5, 8, 9 ↓ 
2      ↑ 
1 3, 5, N−2       

 
These elevator travel paths can be represented using a 

weighted graph by representing each elevator position at 
floors 1, 2, 3, … , N – 2, N – 1, N with nodes V1, V2, V3, 
… , VN–2, VN–1, VN respectively. The weight between each 
node representing the elevator’s travel time between each 
floor can be formulated as 

     SCij TTij +−=− |)(|||ω  (1)

 
 
where 
    i  −  elevator’s present floor position 
    j  −  elevator’s destination floor position 
| j − i| − total number of floors of elevator’s  

    movement 
TC  − elevator’s traveling time between two 

consecutive floors 
   TS  −  elevator’s stopping time at a floor 
 

The weighted graph of all possible travel path 
combinations of one of the elevator can be constructed as 
shown in Fig. 1. 
 

 

Fig. 1  Weighted graph of all possible travel path combinations of an 
elevator. 

The output of the graph, given by sum of the graph 
weights thus represents the total traveling time of the 
elevator, i.e. 

∑ −= ||)( ijxEG ω  (2)

 
For a building with M elevators, M similar graphs as 

shown in Fig. 1 can be duplicated representing all M 
elevators travel paths. The total traveling time of all the 
elevators can now be calculated by summing up each of 
the elevator’s traveling time, i.e. 
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The minimum total traveling time of all the elevators 

with all initial conditions and requirements satisfied thus 
gives the optimal elevator travel path, i.e. 

     Optimal Travel Path = 
               G (E1, E2, … , EM–1, EM ) min 

(4)

Let us now consider a particular example of a 
building with 2 elevators and 6 floors. Elevator A is 
presently at 1st floor and its destinations are 3rd and 5th 
floors, and elevator B is presently at 6th floor and its 
destinations are 3rd and 2nd floors. There is a hall call at 4th 
floor going up, and a hall call at 3rd floor going down, as 
illustrated in Table 2. 
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Table 2: Elevator Scheduling Problem Example 

Floor No Elevator A Elevator B Hall Call 

6  (3 , 2)  
5    

4   ↑ 
3   ↓ 
2    
1 (3 , 5)   

  
Since the building is 6 floors high, the maximum 

number of floors that the elevator can travel is (6 – 1) = 5 
floors. Now, assume that TC = 5 s, TS = 15 s, and 
representing 5 s of time with 10 units we have from (1) 

 
ω 1 = 1 (5) + 15 = 20 s = 40 
ω 2 = 2 (5) + 15 = 25 s = 50 
ω 3 = 3 (5) + 15 = 30 s = 60 
ω 4 = 4 (5) + 15 = 35 s = 70 
ω 5 = 5 (5) + 15 = 40 s = 80 

 
A weighted graph representing all possible travel 

path combinations of elevators A and B with either 
elevator answering one or both of the hall calls can now be 
constructed as shown in Fig. 2. Note that all possible end 
paths of elevator A are joined with the start paths of 
elevator B.   This is done in order that the total output of 
the graph G (A, B) representing the travel path 
combinations of the elevators can be calculated. 

 

 

Fig. 2  Weighted graph of all possible travel path combinations. 

Since there are two hall calls with two available 
elevators, it is clearly seen that there are 22 = 4 possible 
travel path combinations for both of the elevators as 
tabulated in Table 3. The required solution for the elevator 
scheduling problem is thus the optimal path weight G(A, 
B)3  = 230 = 115 s. 

 
 
 
 

Table 3:  Total Graph Output Of All Travel Path Combinations 

Elevator
No 

Hall 
Calls Elevator Travel Paths Total Graph Output 

A − VA1 → VA3 → VA5 G(A, B)1 = 100 + 150 
B 3 , 4 VB6 → VB3 → VB2 → VB4               = 250 
A 3 VA1 → VA3 → VA5 → VA3 → G(A, B)2 = 150 + 150 
B 4 VB6 → VB3 → VB2 → VB4               = 300 
A 4 VA1 → VA3 → VA4 → VA5 → G(A, B)3 = 130 + 100 
B 3 VB6 → VB3 → VB2               = 230 
A 3 , 4 VA1 → VA3 → VA4 → VA5 G(A, B)4 = 180 + 100 
B − → VA3 → VB6 → VB3 → VB2               = 280 

3. DNA Computing Approach Design Solution 

In order to solve this type of elevator scheduling problem 
using DNA computing approach, several computing steps 
are performed that are discussed below. 
 
Step 1.  Reconstruct the weighted graph shown in Fig. 2 in 
order to distinguish between start, intermediate and end 
nodes, and also to differentiate the nodes of different 
travel path combinations as depicted in Fig. 3. 

 

 

Fig. 3  Weighted graph for DNA computing approach solution showing 
different node locations and paths. 

Note that S, I and E denote start, intermediate and end 
nodes respectively, while J and K denotes the different 
travel paths combinations. This is an important design step 
since every different node location and path in the graph 
will be represented with different DNA sequences in order 
to obtain all the possible travel path combinations that 
fulfill all the initial conditions and requirements stated. 
 
Step 2.  Generate a unique DNA sequence for every node 
of the graph where each start, intermediate and end node 
of different travel path combination is assigned with a 
specific DNA sequence. Using this rule, every DNA 
sequence assigned to each node will therefore identify its 
location and travel path in the graph. The sequences are 
generated using available software for DNA sequence 
design named DNASequenceGenerator [10], and is shown 
in Table 4. The GC contents (GC%), melting temperature 
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(Tm) are also shown in the table, and the sequence 
complements are shown in Table 5. 

Table 4: DNA Sequences for Nodes 

Node Vi 20-mer sequences (5’ – 3’) GC % Tm (°C)

V1SJ CGGCGGTCCACTAAATACTA 50 60.0 
V3IJ CACTCTTTGTGAACGCCTTC 50 60.8 
V5IJ TGAACCGGCCCTTTATATCT 45 60.7 
V3EJ TCATTCGAGTTATTCCTGGG 45 59.9 
V5EJ CTATAAGGCCAAAGCAGTCG 50 59.9 
V6SJ GGACCTGCATCATACCAGTT 50 59.8 
V2IJ AAAGCCCGTCGGTTAAGTTA 45 60.8 
V4EJ GGAATCCATTGATCGCTTTA 40 59.9 
V4IK GTGGGTTAGAGGTAGTCCGG 60 60.8 
V5IK CCGCTGATCCTTGCTAAGTA 50 60.4 
V3EK AAATGACCTTTTTAACGGCA 35 59.4 
V5EK ATGCCTGGCTAAAGTGAGAC 50 59.3 
V6SK TGCACGCAAAACTATTTCAT 35 59.2 
V3IK TCTGCACTGTTAATGAGCCA 45 60.4 
V2EK CTAATTTTAGAAATGGCGCG 40 59.7 

Table 5: Complement of DNA Sequences For Nodes 

Node iV  20-mer sequences (5’ – 3’) 

SJV1  TAGTATTTAGTGGACCGCCG 

IJV3  GAAGGCGTTCACAAAGAGTG 

IJV5  AGATATAAAGGGCCGGTTCA 

EJV3  CCCAGGAATAACTCGAATGA 

EJV5  CGACTGCTTTGGCCTTATAG 

SJV6  AACTGGTATGATGCAGGTCC 

IJV2  TAACTTAACCGACGGGCTTT 

EJV4  TAAAGCGATCAATGGATTCC 

IKV4  CCGGACTACCTCTAACCCAC 

IKV5  TACTTAGCAAGGATCAGCGG 

EKV3  TGCCGTTAAAAAGGTCATTT 

EKV5  GTCTCACTTTAGCCAGGCAT 

SKV6  ATGAAATAGTTTTGCGTGCA 

IKV3  TGGCTCATTAACAGTGCAGA 

EKV2  CGCGCCATTTCTAAAATTAG 

 
Step 3.  Synthesize the DNA sequence for every node path 
of the graph according to the following rules so that the 
sequence length will directly represent the weight between 
the nodes: 
 (i)   If i is a start node and j is an intermediate node, 
synthesize the sequence as 
     V i (20) + W ij (ω ij − 30) + V j (20) 
 (ii)  If i is an intermediate node and j is an end node, 
synthesize the sequence as 
     V i (20) + W ij (ω ij − 30) + V j (20) 

 (iii) If i and j are both intermediate nodes, synthesize 
the sequence as 
     V i (20) + W ij (ω ij − 20) + V j (20) 

 

where V denotes the DNA sequence for node, W 
denotes the DNA sequence for weight, ω denotes the 
weight value, and ‘+’ denotes a ‘join’ between the DNA 
sequence. All the synthesized sequences based on the 
stated rules are shown in Table 6 where capital letters 
denote the nodes and small letters denote the weight 
between nodes. 

Table 6: Synthesized DNA Sequences for Node Paths 

Node Vi 20-mer sequences (5’ – 3’) 

V1SJ → V3IJ
CGGCGGTCCACTAAATACTAaggtcgtttaaggaagta

cgCACTCTTTGTGAACGCCTTC 

V3IJ → V4IK
CACTCTTTGTGAACGCCTTCacgtcgtgtaacgaagtcc

tGTGGGTTAGAGGTAGTCCGG 

V3IJ → V5IJ
CACTCTTTGTGAACGCCTTCccgtcggttaagcaagtaa

tgtactatgctTGAACCGGCCCTTTATATCT 

V3IJ → V5EJ
CACTCTTTGTGAACGCCTTCgcgtcgcttaccgaagca

cgCTATAAGGCCAAAGCAGTCG 

V4IK → V5IK
GTGGGTTAGAGGTAGTCCGGcgctcgttgaagccagt

accCCGCTGATCCTTGCTAAGTA 

V4IK → V5EK
GTGGGTTAGAGGTAGTCCGGgcgtcttttaATGCC

TGGCTAAAGTGAGAC 

V5SJ → V3EJ
TGAACCGGCCCTTTATATCTacgtgttttacccaagtca

gTCATTCGAGTTATTCCTGGG 

V5IK → V3EK
CCGCTGATCCTTGCTAAGTAgcggcgtgtcacgaacta

cgAAATGACCTTTTTAACGGCA 

V3EJ → V6SJ
TCATTCGAGTTATTCCTGGGGGACCTGCATC

ATACCAGTT 

V5EJ → V6SJ
CTATAAGGCCAAAGCAGTCGGGACCTGCATC

ATACCAGTT 

V3EK → V6SK
AAATGACCTTTTTAACGGCATGCACGCAAAA

CTATTTCAT 

V5EK → V6SK
ATGCCTGGCTAAAGTGAGACTGCACGCAAA

ACTATTTCAT 

V6SJ → V3IJ
GGACCTGCATCATACCAGTTacgtggtttaaggaagta

cggtactatgctCACTCTTTGTGAACGCCTTC 

V6SK → V3IK
TGCACGCAAAACTATTTCATccgtgggttaaagaagtc

ctgtactctcctTCTGCACTGTTAATGAGCCA 

V2IJ → V4EJ
AAAGCCCGTCGGTTAAGTTAggtcttttaatcaactaat

gGGAATCCATTGATCGCTTTA 

V3IJ → V2IJ
CACTCTTTGTGAACGCCTTCacgtcgctgcaagaacta

cgAAAGCCCGTCGGTTAAGTTA 

V3IK → V2EK
TCTGCACTGTTAATGAGCCAacgtcttgtcCTACG

GATAGGTGTCTGGGA 

 
Step 4.  Combine all the synthesized DNA sequences in a 
test tube for initial pool generation. The initial pool 
generation uses parallel overlap assembly (POA) method 
[11] as suggested by Lee et al. [12] who demonstrated that 
POA is a more efficient and economical method for 
weighted graph problems. Basically, POA operation 
consists of three steps: hybridization, extension, and 
denaturation. During the annealing step, the temperature is 
decreased slowly so that partial hybridization is allowed to 
occur at respective locations. The extension on the other 
hand is applied with the presence of polymerase enzyme 
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and the polymerization can be done from 5’ to 3’ direction. 
The generated double stranded DNA molecules are then 
separated during denaturation step in which the 
temperature is increased until the double stranded DNA 
molecules are separated to become single stranded DNA 
molecules. An example of the POA process showing the 
generation of optimal path combination for this elevator 
scheduling problem is depicted in Fig. 4. 
 

 

Fig. 4  POA for elevator’s optimal path. The continuous arrows represent 
the synthesized DNA sequence and dotted arrows represent the elongated 

part during polymerization. The arrowhead indicates the 3’ end. 

 
Step 5.  The optimal path combinations among many other 
alternative path combinations have to be filtered from the 
initial pool solution. This filtering process copies the 
target DNA duplex exponentially using polymerase chain 
reaction (PCR) process [13]. PCR proceeds in cycles of 3 
steps at different temperatures: denaturation (95°C), 
involves separation of the double strand DNA molecules, 
annealing (55°C) where primers are ‘annealed’ to both the 
single strands ends and extension (75°C) process where 
polymerase enzymes are used to extend the primers into 
replicas of the DNA molecules. This sequence is repeated 
causing an exponential growth in the number of target 
DNA molecules. For this problem, all the DNA molecules 
containing start node V1SJ and end node V2EK are amplified 
exponentially. Numerous amounts of DNA strands that 
represents the start node V1SJ and end node V4EJ and V2EK 
passing through all possible travel path combinations will 
be presented once the PCR operation is accomplished. 
 
Step 6.  Finally, gel electrophoresis [14], [15] is 
performed onto the output solution of the PCR in order to 

separate all the possible travel path combinations 
according to its length. The gel electrophoresis image is 
then captured, where the DNA duplex representing the 
shortest path starting from V1SJ and end node V4EJ and V2EK 
could be visualized representing the required optimal path 
solution of the problem. 

4. In Vitro Experiment Setup and Result 

An in vitro experiment is carried out in order to verify the 
designed DNA computing approach to solve the elevator 
scheduling problem. This experiment involves POA for 
initial pool generation, PCR for DNA sequence 
amplification and gel electrophoresis to visualize the 
computation output. 

The POA for initial pool generation is performed in a 
100 µl solution consisting of 64.0 µl distilled water 
(Maxim Biotech), 15.5µl oligos (Proligo Primers & Probes, 
USA), 10 µl dNTP (TOYOBO, Japan), 10 µl 10× KOD 
dash buffer (TOYOBO, Japan), and 0.5 µl KOD dash 
polymerase (TOYOBO, Japan). The solution is then 
subjected to POA reaction of 25 cycles where the different 
temperatures for each cycle are 94ºC for 30 s, 55ºC for 30 
s, and 74ºC for 10 s respectively. 

PCR is then performed onto the POA solution for 
DNA amplification in order to select the paths that begin 
with node V1SJ and end at nodes V4EJ, and V2EK. PCR is 
performed in a 25 µl solution consisting of 17.875 µl 
distilled water (Maxim Biotech), primers V1SJ, EJV4 , and 

EKV2 of 0.5 µl each, 1 µl POA template, 2.5 µl dNTP 
(TOYOBO, Japan), 2.5 µl 10× KOD dash buffer 
(TOYOBO, Japan), and 0.125 µl KOD dash polymerase 
(TOYOBO, Japan). The solution is subjected to PCR 
reaction of 25 cycles where the different temperatures for 
each cycle are 94ºC for 30 s, 55ºC for 30 s, and 74ºC for 
10 s respectively, the same as POA process. 

Finally, the resulting PCR solution is subjected to gel 
electrophoresis for 30 minutes in order to visualize the 
computation result. SYBR Gold (Molecular Probes) is 
used to stain the gel after gel electrophoresis process 
before the gel image is captured. 

The captured image for the POA and PCR process is 
shown in Fig. 5. Here, lane M denotes 20bp ladder while 
lanes 1 and 2 denote POA and PCR product respectively. 
It is clearly seen from the POA gel image that the band is 
blur denoting that all possible travel path combinations are 
successfully generated. The PCR gel image shows 4 bands 
indicating all the four possible travel paths, i.e. G(A, B)3 = 
230bp,  G(A, B)1 = 250bp, G(A, B)4 = 280bp and G(A, B)2 
= 300bp. This confirms the expected result that the 
optimal elevator’s travel path is given by G(A, B)3 = 
230bp = 115 s. 
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Fig. 5  Captured image of gel electrophoresis showing computing output. 

5. Conclusions 

A new method to solve an elevator scheduling problem 
using DNA computing approach has been presented and 
discussed in detail in this paper. An in vitro experiment to 
verify the expected result has successfully been carried out. 
The design methodology and experimental implementation 
procedures presented as summarized in Fig. 6 shows that 
this type of engineering problem is applicable and 
achievable to be solved using the DNA computing 
approach. For a larger problem with M elevators, N floors 
and Y hall calls, all the M Y travel path combinations can be 
represented by specific DNA sequences synthesized using 
the rule stated. POA and PCR can thus be performed to 
extract the required computing output from the gel 
electrophoresis image. With this successful design and 
implementation, the applicability and feasibility of DNA 
computing approach could therefore be extended into 
many more complex problems of this type of nature. 

 

 

Fig. 6.  DNA computing approach algorithm for solving elevator 
scheduling problem. 

Acknowledgments 

The first author is very grateful to Universiti Malaysia 
Sarawak (UNIMAS), Malaysia for granting a study leave 
at Meiji University, Japan.  
 
References 
[1] L.M. Adleman, “Molecular computation of solutions to 

combinatorial problems,” Science, vol. 266, pp. 1021-1024, 
1994. 

[2] L.M. Adleman, “Computing with DNA,” Scientific 
American, pp. 34-41, 1998. 

[3] J.D. Watson, and F.H.C. Crick, “A Structure for 
Deoxyribose Nucleic Acid”, Nature, Vol. 171, pp. 737-738, 
1953. 

[4] A. Narayanan, and S. Zorbalas, “DNA algorithms for 
computing shortest paths,” Proceedings of Genetic 
Programming, pp. 718-723, 1998. 

[5] Y. Yamamoto, A. Kameda, N. Matsuura, T. Shiba, Y. 
Kawazoe, and A. Ahochi, “Local search by concentration-
controlled DNA computing,” International Journal of 
Computational Intelligence and Applications, vol. 2, pp. 
447-455, 2002. 

[6] J.Y. Lee, S.Y. Shin, S.J. Augh, T.H. Park, and B.T. Zhang, 
“Temperature gradient-based DNA computing for graph 
problems with weighted edges,” Lecture Notes in Computer 
Science, Springer-Verlag, vol. 2568, pp. 73-84, 2003. 

[7] Z. Ibrahim, Y. Tsuboi, O. Ono, and M. Khalid, “Direct-
proportional length-based DNA computing for shortest path 
problem,” International Journal of Computer Science and 
Applications, vol. 1, issue 1, pp. 46-60, 2004. 

[8] M. S. Muhammad, S. Ueda, O. Ono, and M. Khalid, “DNA-
based computing for solving elevator scheduling problem”, 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006 
 
 

 

84 

3rd International Conference on Computer Applications 
(ICCA2005), pp. 507-514, 2005 

[9] M. S. Muhammad, S. Ueda, O. Ono, J. Watada, and M. 
Khalid, “Solving Elevator Scheduling Problem Using DNA 
Computing Approach”, Advances in Soft Computing, 
Springer, pp. 359-370, 2005 

[10] F. Udo, S. Sam, B. Wolfgang, and R. Hilmar, “DNA 
sequence generator: A program for the construction of DNA 
sequences,” Proceedings of the Seventh International 
Workshop on DNA Based Computers, pp. 23-32, 2001. 

[11] P.D. Kaplan, Q. Ouyang, D.S. Thaler, and A. Libchaber, 
“Parallel overlap assembly for the construction of 
computational DNA libraries,” Journal of Theoretical 
Biology, vol. 188, issue 3, pp. 333-341, 1997. 

[12] J.Y. Lee, H.W. Lim, S.I. Yoo, B.T. Zhang, and T.H. Park, 
“Efficient initial pool generation for weighted graph 
problems using parallel overlap assembly,” Preliminary 
Proceeding of the 10th International Meeting on DNA 
Computing, pp. 357-364, 2004. 

[13] J. P. Fitch, Engineering Introduction to Biotechnology, 
SPIE Press, 2001. 

[14] G. Paun, G. Rozenberg, and A. Salomaa, “DNA computing: 
New computing paradigms,” Lecture Notes in Computer 
Science, Springer-Verlag, vol. 1644, pp. 106-118, 1998. 

[15] Y. Yamamoto, A. Kameda, N. Matsuura, T. Shiba, Y. 
Kawazoe, and A. Ahochi, “A separation method for DNA 
computing based on concentration control,” New 
Generation Computing, vol. 20, no. 3, pp. 251-262, 2002.  

 
 
 

 

Mohd Saufee Muhammad received his B.Eng 
(Electronic Computer Systems) from 
University of Salford, UK in 1996 and MSc in 
Engineering (Electrical) from Western 
Michigan University, USA in 2000. He is a 
staff member of  Department  of  Electronics, 
Faculty  of  Engineering,  Universiti Malaysia 

Sarawak, Malaysia since 2000. He is currently on a study leave 
pursuing his PhD at the Institute   of Applied DNA Computing, 
Meiji University, Kanagawa, Japan. His research interests 
include DNA computing and its applications, artificial 
intelligence and image processing. He is a student member of 
Institute of Electrical and Electronics Engineers (IEEE), IEEE 
Computational Intelligence Society (ICIS), and IEEE Signal 
Processing Society (ISPC). 
  

 

Osamu Ono received his B.Sc., M.Sc. and 
Ph.D. degrees in electrical engineering from 
Waseda University, Japan, in 1974, 1976, and 
1979, respectively. He was previously a 
Visiting Professor of the Institute of  
Automatic  Control  Technology,  Technical 
University  of  Munich,   Germany,  and  also

a  Visiting Professor of National University of Singapore, and 
Malaysia University of Technology. He is currently a Professor 
of Electrical and Electronic Engineering at Meiji University, 
Tokyo, Japan. He is also the Director of Institute of Applied 
DNA Computing of Meiji University and Chairman of 
Department of Electrical and Electronic Engineering, Meiji 

University (2001-2004). He is a Dean and an Editor of Japan 
Society for Simulation Technology (JSST). His research interests 
include biocomputing and artificial intelligence, evolutional and 
unconventional computing, biorobotics vision, neural image, 
signal processing, and humanoid mobile robotics. Currently, his 
research interest is mainly in the nanobioscience and applications 
of molecular or DNA computing. He is the Tokyo branch 
Director of Japan Institute of Electrical Engineers (JIEE). He is 
also the President of Advanced High Speed Image Processing 
Technology Inc. of Meiji University Technology Licensing 
Organization (TLO) Incubation Centre. 
 


