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Summary 
This paper presents a novel technique using clustering 
preprocessing for the challenging problem in the field of 
computer graphics, which is to speed up texture synthesis 
without losing of synthesis quality and adding of method 
complexity. An algorithm of rapid texture synthesis based 
on clustering preprocessing is designed to speed up both 
of pixels-based and patch-based local region-growing 
methods maintain original level of texture quality or 
gaining better. Experiments show that efficiency of pixel-
based texture synthesis method with respect to stochastic 
texture sample increases by 80 percent with better 
synthesis quality, and efficiency of patch-based texture 
synthesis method with respect to structured texture sample 
increases by 70 percent. Due to avoiding the step of 
blending the overlap pixels needed by patch-based texture 
synthesis the synthesis quality is more steady than original 
results. 
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1. Introduction 

As one of the key technique of computer graphics, sample-
based texture synthesis has become one of the hottest issue 
in the field with the greatly spreading application of computer 
graphics[1][2][3][4][5][6][7][8][9][10][11][12] [13]. This technique has been 
developing basing on the Markov random field property of the 
given texture samples, which means that the samples satisfy the 
locality and stationarity. Locality implies that the color at a pixel 
is dependent only on the neighbor pixels around it, while 
stationarity implies that this dependency is independent of the 
actual location of the pixel.  In generally, the main texture 
synthesis algorithms can be broadly classified into two 
categories: global optimization-based methods［ 14 ］  and local 
region-growing methods［10］.  

Global methods evolve the entire texture as a whole, based on 
some criteria for evaluating similarity with the input sample. 
Energy of synthesized texture with respect to the texture of input 
samples can be measured by comparing local neighborhoods in 

the two textures and used as a kind of the criteria, which equals 
to the sum of energies of all of individual synthesized 
neighborhood that is defined as its distance to the closest 
neighborhood in the texture of input sample. Powerful 
controllable feature of the synthesis process is the advantage of 
this category of methods, however the disadvantages of the 
methods are brought on by the complexity of energy function 
and its dependency to the shape of neighborhood makes the 
synthesis result unsteady. Furthermore, iterative optimization 
process needed by the methods is a time-consuming process. 

Local region-growing methods, called local matching methods 
also, grow the texture one pixel or one patch at a time with the 
goal of maintaining coherence of grown region with nearby 
pixels. Thus, the key steps of the methods are to find the pixel or 
the patch in the input sample that matches with the neighborhood 
texture in the synthesizing texture. In this paper a strategy based 
on clustering preprocessing is introduced to improve these 
methods on both aspects of quality and speed. The paper is 
constructed as following: PartⅡ  reviewed some work related 
with local region-growing methods and abstract the contribution 
in this paper. Part Ⅲ introduces the clustering preprocessing in 
details. Part Ⅳ  describes the new algorithm supported by 
clustering preprocessing. Part Ⅴ shows the experiments and the 
conclusions is made in the next part. 
For detailed information for authors, please refer to [1]. 

2. Related work 

Local region-growing methods are further classified into two 
categories by the amount of the grown pixels: pixel-based and 
patch-based matching methods. Efros etc.[10] in 1999 proposed 
one of the earliest pixel-based matching method that used a 
region of rectangle shape as the texture neighborhood. It was 
improved in 2000 by Wei and levoy[12] by replacing rectangle 
shape with a ruler of L shape and introducing multi-resolution 
and vector quantifying techniques to speed up matching process. 
These improvements made the method become one of the most 
typical pixel-based synthesis method. After that, many 
achievements including Ashikhmin[11][2001] are reported. In 
general, pixel-based methods are simple and easy to be 
accomplished and suitable to the input sample of stochastic 
texture. However the characteristic of synthesizing only one 
pixel at a time makes them be convinced as inefficient methods; 
moreover the methods are not suitable to the input samples with 
complex or structural details. The methods synthesizing one 
patch of pixels at a time were presented in 2001 by Efors[6] and 
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. 
Fig.1 MNPs (shown as grey pixels )and SP/SPPs(shown as 
red pixels) (a) for stochastic input sample; (b) for non-
stochastic input sample 

 

(a) 
(b) 

Liang etc.[7] respectively, that improved the efficiency of pixel-
based methods and maintained more local property of input by 
using more neighborhood pixels when matching. After that, 
Cohen1[15][2003], Nealen etc.[9][2003] and Nealen etc.16][2004] 
developed the idea and proposed a series of patch-based methods 
that improved the quality of the synthesizing texture and 
increased the speed of the matching process. After all, blending 
of overlap part of two neighbor patches is required by the patch-
based methods and as a result the quality of the synthesizing 
texture is decreased.  

Besides of extending growing region from a pixel to a patch of 
pixels, many others efforts have been done to improve the 
efficiency of synthesis methods, including : Ashikhmin[11] 
introduced the strategy of limiting the area on the input sample 
where the matching neighborhood of pixels was searched to 
speed up matching process, Wei and levoy[12] made use of multi-
resolution and vector coding techniques to speed up synthesis, 
XiaoGang Xu[13] improved Efors［ 10 ］  by searching matched 
patch along a spirality order instead of scan-line order and 
introduced multi-seed strategy to speed up matching, Liang 
etc.[7]combined PCA(Principal Components Analysis), Quad-
Tree Pyramid, and Optimized KD-Tree data structure to speed up 
synthesis, Zelinka etc.［17］[2004] bypassed matching process by 
using a preprocessing skill, Lefebvre etc.［18］[2005]］improved 
pyramid model to accomplish a parallel synthesis algorithm and 
made use of GPU programming technique to further speed up 
synthesis. In general, limiting matching area, optimizing 
matching rulers, simplifying the computing of matching error 
and adopting parallel technique are the current clues to speed up 
texture synthesis. While all of the accelerating skills achieve 
their aims by losing either the accuracy of matching or the 
simplicity of the synthesis algorithm, worse depending on the 
hardware performance.  

This paper presents a novel strategy that speeds up local region-
growing methods without losing of matching accuracy and 
synthesizing simplicity, for which a new idea is introduced that 
the problem of synthesis is reconsidered as a problem related 
with recognizing rather than a problem related with matching. In 
details, the set constructed by all of the individual neighborhood 
of pixels enumerated from the input sample are divided into 
some sub-classes according to the similarities between 
neighborhoods, and this step is called clustering preprocessing. 
After that, to match synthesizing neighborhood of pixels on input 
sample, the key step of local region-growing method, can be 
reconsidered as to recognize a matched element from one of the 
sub-classes. Supposing that the whole set of neighborhood of 
pixels is divided into three sub sets evenly, quantity of matching 
operator needed by original algorithms would be reduced by 
two-third, that means one third quantity of recognizing operator 
would be needed by improved algorithms. In fact, this analysis 
result is powerfully proved by our experiments. 

Compared with the current speedup skills the new strategy 
contributes as following: (ⅰ)The clustering preprocessing can 
be used to accomplish an accurate rapid algorithm that increase 
algorithm efficiency by more than 70 percent without losing 
quality of synthesis. (ⅱ) The clustering preprocessing unifies the 
synthesis process of both pixel- and patch-based synthesis 

methods. (ⅲ) Avoiding the blending of overlap pixels needed by 
patch-based methods and resulting in more steady quality of 
synthesis.  

3. Clustering preprocessing of neighborhood 
of pixels 

For describing the process more accurately, following terms used 
are defined in advance.  

Matched Neighborhood of Pixels (MNPs): a pattern of a group 
of pixels defined according to the feature of the input sample, 
that can be used to recognize the group of pixels in the input 
sample that is similar to the group of pixels in the synthesizing 
texture image. It was represented by the grey pixels in Fig.1. 

Synthesized Pixel /Patch of Pixels (SP/SPPs): a pixel /or a 
patch of pixels in the input sample that is a neighboring pixel (or 
a patch of pixels ) of Matched Neighborhood of Pixels defined 
above, shown as the red pixels in Fig.1. When a MNPs is found 
in the input sample, the SP/SPPs will be rendered on the 
corresponding location in the synthesizing texture image.  

According to the different features of stochastic and non-
stochastic input samples, two kinds of MNPs and the 
corresponding SP/SPPs are defined respectively. For the former a 
SP is defined and a SPPs of size of BH×BW pixels is defined 
for the latter. Both of the MNPs satisfy L shape but with 
different dimensions, shown as Fig.1. 

Initial Space of MNPs (ISMNPs)：according to the define of 
MNPs, individual MNPs can be enumerated in the input sample 
along the scan-line order and all of them constructs a set. When 
every MNPs is represented as a vector of color, the set can be 
considered as a space of vectors, called Initial Space of MNPs. 

Clustered Space of MNPs (CSMNPs)：after clustering with 
respect to MNPs is executed in ISMNPs according to its 
similarity, some sub-spaces come into being. Supposing the 
amount of the sub-spaces is R, the group of the sup-spaces is 
called R-Clustered Space of MNPs.  

Supported by the above terms, a clustering preprocessing of 
neighborhood of pixels can be described as following three steps. 
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i） To define the MNPs and corresponding SP/SPPs 
according to the feature of input sample. 

ii） To construct the ISMNPs. 

iii） To cluster MNPs in ISMNPs and construct CSMNPs. 
In this paper RGB based Euclidean distance is used 
to measure the similarity between MNPss and K-
means clustering strategy is chosen to compute the R-
CSMNPs and the kernel vectors of R sub-spaces.  

The function of clustering preprocessing is effectively reducing 
the domain where MNPs is searched and absolutely maintaining 
the matching accuracy in the meantime. Thus a rapid synthesis 
algorithm can be expected with losing neither matching accuracy 
nor synthesis simplicity. Fig.2 shows the result images of texture 
synthesized respectively using the algorithms of Wei 和 levoy[12] , 
shown in Fig.2(a), and our algorithms using 3/5/8-CSMNPs 
respectively, shown in Fig.2(b/c/d), where the input is sample (a) 
shown in Fig.4. 

Combined other information summed up in Tab.1 a conclusion 
appears that the algorithms using clustering preprocessing reduce 
more than half synthesizing time under the same synthesizing 
quality with respect to the original algorithm. Furthermore, the 
more sub-spaces are clustered, the more synthesizing time (22 
percent) is reduced and the better synthesizing quality is 
expected. 

 

    
                (a)                                             (b) 

    
(c) (d) 

Fig.2(a) texture image synthesized by Wei and Levoy[12] 
algorithm  Fig.2(b) texture synthesized by our algorithm using 3-
CSMNPs  Fig.2(c) texture synthesized by our algorithm using 5-
CSMNPs  Fig.2(d) texture synthesized by our algorithm using 8-
CSMNPs  

Table.1:  specifications of algorithms applied to synthesize the 
textures in Fig.2 

(the sizes of input and images are measured by pixel) 

Our algorithms using R-CSMNPs 

 

Wei&lev
oy[12] 

Algorith
m 

R＝3 R＝5 R＝8

Size of 
input 

sample
64×64 64×64 64×64 64×64 

Size of 
MNPs 5×5 5×5 5×5 5×5 

SP/SPPs One pixel One pixel One pixel One pixel
Size of 
synthesi

zing 
image 

124×124 124×124 124×124 124×
124 

Synthesi
zing 

quality
norm norm better best 

Synthesi
zing 

time(s)
42.215 19.219 12.47 9.282 

 

More valuable properties of the clustering preprocessing can be 
explored by recursively using it in sub-spaces, consequently 
multi-level CSMNPs are constructed and the efficiency of 
synthesis algorithm can be greatly increased. Besides that, 
simplifying the computing of similarities between MNPs by 
representing the MNPs as a sparse vector that equals the 
difference between it and the kernel of the sub-space is also a 
path to speed up the algorithm. 

When clustering preprocessing is finished, relationship between 
MNPs and SP/SPPs should be recorded to be used in following 
synthesis method. 

4. A rapid texture synthesis algorithm based 
on clustering preprocessing 

Using above clustering preprocessing, existing local region-
growing methods, including both pixel- and patch-based 
algorithm, can be improved. In this part a rapid texture synthesis 
algorithm using R-CSMNPs is described. 

4.1 The algorithm using clustering preprocessing 

The synthesizing process is shown in Fig.3: The grey part in 
Fig.3(a) shows a MNPs that is found in the input sample that 
matches with the current MNPs in synthesizing map shown as 
the same grey part in Fig.3(b). The corresponding SP/SPPs 
shown as red part in Fig.3(a) is then rendered in the synthesizing 
map, which is shown in Fig.3(c). The current MNPs is updated 
progressively to repeat the steps until the synthesizing map is 
finished. The blue part in Fig.3 represents the synthesized part of 
pixels in the synthesizing map. 
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(a) 

       
(b)                                           (c) 

Fig.3 synthesizing process: (a)a MNPs found in the input 
(b)MNPs in the synthesizing map (c) SP/SPPs renderedin 
the synthesizing map 

The steps of the algorithms including: 

Step1:  The clustering preprocessing. After that the R-
CSMNPs and their kernels, Ci(i = 1,2,…,R), are 
computed. In the meantime, relationship between the 
MNPs and its corresponding SP/SPPs is recorded as 
L； 

Step2:  Initializing the synthesizing map as I； 

Step3:  Updating the current MNPs in synthesizing map as P 
along the scan-line order;  

Step4:  Computing the distances between P and Ci(i = 
1,2,…,R) and then, the sub-space whose kernel is 
the nearest vector from the current MNPs is 
recorded as the current CSMNPs, sign as CS. If the 
multi-level CSMNPs was clustered in Step1, then 
this step should be repeated until finding out the 
lowest level of sub-space, still sign as the CS; 

Step5:  Searching out the MNPs in CS matched with P. And 
then using L to find the corresponding SP/SPPs that 
should be rendered on the corresponding location of 
I; 

Step6:  Repeating the Step3~Step6 until the synthesizing map 
is finished. 

Where Step1 can be executed off-line and treated as the same 
input parameters with the input sample. 

4.2 Discussion on the application of the algorithm 

In general, existing pixel-based matching methods expend large 
amount of time to achieve synthesizing map with excellent 
effect; while patch-based methods expend less time but reach 
more bad effect than pixel-based methods. Further more, due to 
using larger size MNPs, patch-based methods encounter barrier 

to speed up greatly. The steps of our algorithm are the same for 
both pixel- and patch-based methods, so the application of 
clustering preprocessing unifies two categories methods and 
speeds up them greatly.  

For pixel-based methods, which is used to stochastic input 
samples, MNPs and SP are defined as the patterns shown in 
Fig.1(a) and the patterns ensure the granularity uniformity of 
CSMNPs. Thus the searching of MNPs in the input sample can 
be executed accurately in one of R-CSMNPs whose dimension is 
much less than the original searching domain, this makes sure the 
coinstantaneous improvement on both effect and speed of 
methods. 

For patch-based methods, MNPs and SPPs are defined as the 
patterns shown in Fig.1(b) and the patterns demonstrate the local 
feature of the samples clearly, which is used to non-stochastic 
input samples. Indeed the granularity of level-one CSMNPs is 
not uniform, then multi-level MNCPs can be applied to solve the 
problem. The similarity between the MNPss ensures that the 
corresponding SPPs produces synthesizing map of better effect 
than patch matching strategy. On the other hand, the dimension 
of the MNPs is less than that of the patch used in patch matching 
methods, so that the searching of MNPs can be executed rapidly, 
especially in the multi-level CSMNPs. 

In one word, our improved algorithm using clustering 
preprocessing unifies the pixel-based and patch-based methods 
without losing the simplicity of methods, and the efficiency of 
the methods is improved on both speed and effect of synthesis. 

5．Results of experiments 

Four input samples (64×64 pixels) used in our experiments are 
shown in Fig.4 and the platform is PC(P4 2.8GHz/512M ). In 
Fig.2 the synthesized maps synthesized by pixel-based methods 
and our improved algorithm are shown and contrasted. 

         

  (a)                         (b)         

     

(c)                        (d) 

Fig.4 The input samples 

In this part one of patch-based methods, Efros［3］ patch matching 
method, is chosen to synthesize maps using the five inputs and the 
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results are shown in Fig.5. The size of the result map is 124×
124pixels. 

In the meantime, its improved form, our algorithm using the 
clustering preprocessing, is contrastively accomplished and the 
results are shown in Fig.6. The size of the result map is 124×
124pixels. 

   
  (a)                                               (b)     

  
  (c)                                               (d)     

Fig.5 Synthesized maps using Efors patch matching method 

   
  (a)                                               (b)     

  
  (c)                                               (d)     

Fig.6 Synthesized maps using our algorithm 

The efficiencies of two algorithms are contrast in Tab.2. A 
conclusion can be reached that under the same effect of 
synthesizing maps, our algorithm increases the speed of 
synthesis by 70 percent than original method. 

Table.2:  Related information of Efors patch matching method and our algorithm (the dimension of patch and MNPs/SPPs is pixel) 

Efors patch matching method Our algorithm 
Input 

sample Dimension 
of patch 

Overla
p pixel 

Time for 
synthesizing(s) MNPs SPPs

Time for 
Clustering(s

) 

 Time for 
synthesizing(s) 

(a) 28×28 4 0.5 4×4 30×30 14.09 0.14 

(b) 28×28 4 0.39 4×4 30×30 9.78 0.14 
(c) 28×28 4 0.406 4×4 30×30 12.35 0.172 
(d) 28×28 4 0.718 10×10 40×40 5.97 0.110 
(e) 28×28 4 0.422 4×4 30×30 10.9 0.125 

 

6. Conclusion 

Increasing the speed of texture synthesis as high as possible 
maintaining the effect of synthesis images is a challenge issue in 
the field of realistic computer graphics in the recent years. The 
strategy of clustering preprocessing and the algorithms using it 
presented in this paper improve the existing local region-growing 
methods, including pixel- and patch-based methods by both 

aspects of speed and effect of texture synthesis. Experiments 
prove that our algorithm can be used to handle both stochastic 
and non- stochastic input samples with the efficiency increase by 
70 percent or more. Furthermore, some skills, such as multi-level 
clustering and sparse vector etc., can be used to extend the 
achievement.  

Experiments also show that the efficiency of texture synthesis 
is related with the definition of MNPs, so exploring the 
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clustering preprocessing to define the MNPs adaptively and 
choose more suitable clustering means are future topics. 
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