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Summary 
Gas concentration, which is a chaotic time series in essence, is a 
key factor of the coal mine safety. An accurate forecast of gas 
concentration is required to guarantee safety and has very highly 
social and economic benefits. Least squares support vector 
machine (LS-SVM) has been receiving increasing interest in 
areas ranging from its original application in pattern recognition 
to other applications such as regression estimation due to its 
remarkable generalization performance. In this paper, LS-SVM 
is a promising method for the forecasting of gas concentration 
because it uses a risk function consisting of the empirical error 
and a regularized term which is derived from the structural risk 
minimization principle. The variability in performance of LS-
SVM with respect to the free parameters is investigated 
experimentally. In addition, this study examines the feasibility of 
applying LS-SVM in gas concentration forecasting by comparing 
it with the multilayer back-propagation neural network (BPNN) 
and the regularized radial basis function neural network 
(RBFNN). The experimental results show that among the three 
methods, LS-SVM outperforms the BPNN gas concentration 
forecasting, and there are comparable generalization 
performance between LS-SVM and RBFNN, but LS-SVM 
converges faster than the RBFNN. Finally, LS-SVM provides a 
promising alternative for gas concentration forecasting. 
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Introduction 

The gas concentration, which is a chaotic time series in 
essence, is a key factor that endangers the produce in coal 
mine, so the forecasting of gas concentration is very 
important for mine safety. Chaotic time series forecasting 
is to approximate the unknown nonlinear functional 
mapping of a chaotic signal that is gas concentration in 
this study [1]. However, most practical time series are of 
nonlinear and chaotic nature that makes conventional, 
linear forecasting methods inapplicable. Hence, a number 
of nonlinear forecasting methods have been developed 
including neural network exceed conventional methods by 
orders of magnitude in accuracy [2]. The common neural 
networks are the multilayer back-propagation neural 
network (BPNN) and the regularized radial basis function 
neural network (RBFNN). However, neural network itself, 
based on the empirical risk minimization principle, is 

characterized by the pitfalls difficult to overcome. When 
the number of training data set is small, the precision can 
not be guaranteed; When the number of training data set is 
large, this method is significantly limited because of the 
slow rate of learning and poor generalization [3]. 
Recently, Support vector machine (SVM), as a novel 
learning machine developed by Vapnik and his coworkers 
in 1995 [4], has been proposed as a novel technique in 
time series forecasting [5]. SVM is a new approach of 
pattern recognition established on the unique theory of the 
structural risk minimization principle to estimate a 
function by minimizing an upper bound of the 
generalization error via the kernel functions and the 
sparsity of the solution [6]. SVM usually achieves higher 
generalization performance than traditional neural network 
in solving many machine learning problems. Another key 
characteristic of SVM is that training SVM is equivalent 
to solving a linearly constrained quadratic programming 
problem so that the solution of SVM is always unique and 
globally optimal [7]. 
SVM has demonstrated its success in chaotic time series 
analysis. However, little work has been done in coal mine 
gas concentration forecasting. Least squares support 
vector machine (LS-SVM) [8], as a new kind of SVM, is 
easier to use than usual SVM. The objective of this paper 
is to propose a LS-SVM method for gas concentration 
forecasting in coal mine. 
This paper is structured as follows: Section 2 provides a 
brief introduction to LS-SVM for regression. The phase 
space reconstruction and nonlinear function approximation 
are given in Section 3. Section 4 presents the results and 
discussions on the experimental validation. Finally, some 
concluding remarks are drawn in Section 5. 

2. LS-SVM for Regression 

The regression problem in SVM is formulated and 
represented as a convex quadratic programming problem 
[7]. Basically, the SVM estimator maps the inputs into a 
higher dimensional feature space in which a linear 
estimator is constructed by minimizing an appropriate cost 
function. Using Mercer’s theorem, the estimator is 
obtained by solving a finite dimensional quadratic 
programming problem in the dual space avoiding explicit 
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knowledge of the high dimensional mapping and using 
only the related kernel function. A nonlinear SVM has the 
advantage of solving regression problems by convex 
quadratic programming on the one hand. On the other 
hand, only support vectors, which usually consist of a 
small number of training data points, are used. How much 
the SVM formulation may be simplified without losing 
any of its advantages? 
Motivated by the above idea, Suykens [8] originally 
proposed a modification to the Vapnik’s SVM regression 
formulation. This method, which adopts the least squares 
linear equations, this method is easier to use than quadratic 
programming solvers in SVM method. This new kind of 
SVM is so-called least squares support vector machine 
(LS-SVM). LS-SVM uses equality constraints instead of 
inequality constraints as a least square error term instead 
of the standard error term. 
Given a training data set of N samples { }N

kkk yx 1, =  with 

input data n
k Rx ∈  and output data Ryk ∈ , one considers 

the following optimization problem in primal weight 
space: 
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With knR:)(⋅ϕ  a function which maps the input space into 

a higher dimensional feature space, weight vector knRw∈  
in primal weight space, error variables Rek ∈  and bias 
term b. Note that the cost function J consists of a sum 
squared fitting error and a regularization term, which is 
also a standard procedure for the training of multilayer 
perceptrons’s and is related to ridge regression. The 
relative importance of these terms is determined by the 
positive real constant γ . In the case of noisy data one 
avoids over-fitting by taking a smaller γ  value. 
In primal weight space one has the model 

bxwxy T += )()( ϕ                                                 (3) 
The weight vector w can be infinite dimensional, which 
makes a calculation of w from Eq. (3) impossible in 
general. 
Therefore, one computes the model in dual space instead 
of the primal space. One defines the Lagrangian 
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With Lagrangian multiplier Rk ∈α , called support values. 
The conditions for optimality are given by 
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These conditions are similar to standard SVM optimality 
conditions, expect for the condition kk e⋅= γα . At this 
point one loose the sparseness property in LS-SVM. 
After elimination of w, e one obtains the solution 
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Where [ ]Nyyy ,,1 L= , [ ]1,,11 L=v , [ ]Nααα ,,1 L= . 
According to the Mercer’s condition, there exists a 
mapping )(⋅ϕ  and an expansion 

n

i
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If and only if, for any )(xg  such that ∫ dxxg 2)(  is finite, 

one has 
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As a result, one can choose a kernel ),( ⋅⋅K  such that 

)()(),( l
T

klk xxxxK ϕϕ= , Nlk ,,1, L= . The resulting LS-
SVM model for function estimation becomes 
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Where kα , b are the solution to the linear system, ),( ⋅⋅K  
represents the high dimensional feature spaces that is 
nonlinear mapped from the input space. The LS-SVM 
approximates the function using the Eq. (9). In this study, 
the Gaussian function is used as kernel function 

)exp(),( 2σkk xxxxK −−=                              (10) 
Where σ  is a positive real constant. Note that in the case 
of the Gaussian kernel function, one has only two 
additional tuning parameters 2σ  and γ  in Eq. (10) and  in 
Eq. (1) respectively. 

3. The Phase Space Reconstruction and 
Nonlinear Function Approximation 

Chaos occurs as a feature of orbits )(tx arising from 
systems of differential equations of ))(()( txFdttdx =  
with three or more degrees of freedom or invertible maps 
of ))(()1( txFtx =+ . As a class of observable signals 

)(tx , chaos lies logically between the well-studied domain 
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of predictable, regular, or quasi-periodic signal and the 
totally irregular stochastic signals [9]. In many systems the 
interaction between the underlying physical processes that 
are responsible for the evolution of system behavior are 
unknown. In addition, it is seldom that one has 
information about all the relevant dynamic variables. 
Instead, one usually tries to construct a multivariate phase 
space in which the dynamics unfold using system output 
measurements of a single time series by converting the 
time series to a multidimensional phase space. In phase 
space reconstruction, a scalar time series { }tx , Nt ,,1 L= , 
with sampling time tΔ , is converted to its phase space 
using the method of delays: 

],,,[ )1(1 −++= dtttt xxxX L                                    (11) 
Where tTdNt Δ−−= )1(,,2,1 L , d is the embedding 
dimension, and T  is the delay time. In other words, phase 
space reconstruction techniques convert a single scalar 
time series to a state-vector representation using the 
embedding dimension (d) and delay time (T). This 
reconstruction is required for both characterization and 
forecasting. In this study, LS-SVM will be employed to 
capture the dynamics depicted in Eq.(11) with the purpose 
of producing reliable predictions: )( tTt XfX =+ , 

),,,(),,,(: )1(1)1(1 TdtTtTtdttt Xxxxxxf +−++++−++ → LL  (12) 
so ),,,(ˆ )1(1)1( −+++−+ == dtttTdt xxxgXy L . The training 

data consists of a d-dimensional vector, dRx∈ , and the 
response or output, Ry∈ . The goal of the learning 
machine, then, is to estimate an unknown continuous, real-
valued function )(xg  that is capable of making accurate 
predictions of an output  y, for previously unseen values of 
x, thus utilizing information about the dynamics of system 
behavior in the phase space representation to make 
forecasts of future system states in observation space. T is 
the prediction step. In this paper, we try applying LS-SVM 
to estimate the unknown function )(xg . 

4. Results and Discussion 

The research data used in this study is sampled from a gas 
sensor in coal mine. This study selects 1700 samples from 
the industrial field, and the phase space is reconstructed, in 
which d and T are, respectively, fixed at 10 and 5. The 
first 1000 samples are used for training the model, and 200 
samples are used for validating the model, while the 
remaining 500 samples are used for testing the identified 
model only. Through the industrial field empirical 
knowledge and several trials,  the phase space parameters 
are selected as following: the embedding dimension d=4, 
and the prediction step T=6. 

The learning ability and the generalization of the model 
can be evaluated by the root mean squared error (RMSE): 
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2ˆ1                                  (13) 

where N is the number of sample data; iy  and iŷ  are the i-
th real sample value and model predicted value. The 
smaller the values of RMSE, the closer the predicted value 
to the actual value (a smaller value suggests a better 
predictor). 
When applying LS-SVM to gas concentration forecasting, 
the first thing that needs to be considered is what kernel 
function is to be used. As the dynamics of gas 
concentration time series are strongly nonlinear, it is 
intuitively believed that using nonlinear kernel functions 
could achieve better performance than the linear kernel. In 
this investigation, the Gaussian kernel functions trend to 
give good performance under general smoothness 
assumptions.  The second thing that needs to be 
considered is what values of the kernel parameters 
( γ and 2σ ) are to be used. As there is no structured way to 
choose the optimal parameters of LS-SVM, the values of 
the parameters that produce the best result in the 
validation set are used for LS-SVM. Fig.1 and Fig.2 give 
the RMSE of LS-SVM at various γ and 2σ  on training set 
and validation set, respectively. 

 

Fig. 1 The behavior of RMSE in LS-SVM on the training set. 

The Fig.1 shows that the RMSE on the training set 
increases with γ and decreases with 2σ . On the other 
hand, the RMSE on the validation set decreases initially 
but subsequently increases as 2σ  and γ  increase, as 
shown in Fig.2. This indicates that too small a value of  

2σ (0.001-0.01) and too large a value of γ (10-100) cause 
LS-SVM to overfit the training data while too large a 
value of  2σ (0. 5-10) and too small a value of γ (0.1-0.5) 
cause LS-SVM to underfit the training data, respectively. 
An appropriate value for 2σ  would be between 0.01 and 
0.5, and an appropriate value for γ  would be between 0.5 
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and 10. In this respect, it can be get that 2σ and γ  play an 
important role on the generalization performance of LS-
SVM, so 2σ and γ are, respectively, fixed at 0.05 and 5 
for following experiments. 

 

Fig. 2 The behavior of RMSE in LS-SVM on the validation set. 

A standard three-layer BPNN is used as a benchmark. 
There are nine nodes in the input layer according to the 
number of phase space dimension. The output node is 
equal to 1, and the number of hidden nodes is equal to 10 
which is determined based on the validation set. The 
hidden nodes use the sigmoid transfer function and the 
output node uses the linear transfer function. The 
Levenberg-Marquardt learning algorithm is adopted for 
training the BPNN as it is a kind of improved BP 
algorithm which has rapid training rate and good 
performance [2]. 
In the regularized RBFNN which is also used as the 
benchmark, the centers, the variances, and the output 
weights are all adjusted [10]. The number of hidden nodes 
and the regularization parameters are chosen based on the 
validation set.  
The results are collated and the averages of the best five 
records obtained in 20 trials on the training and testing 
data set are given in Table 1. From the table, it can be 
observed that in all the data points, the largest values of 
training and testing RMSE are in the BFNN. Among the 
three models, the smallest values of training and testing 
RMSE occurred in LS-SVM, followed by the RBFNN. 
The training and testing RMSE are comparable among the 
RBFNN and LS-SVM, but CPU time of LS-SVM is 
1.594s that is the smallest among three models, meanwhile, 
the largest CPU time is 25.203s in the RBFNN. The 
results show that LS-SVM outperform both BPNN and 
RBFNN with training RMSE=0.0187 and testing 
RMSE=0.0194, and the time spent to find the solution is 
largely less for in LS-SVM than both BPNN and RBFNN 
with CPU time is equal 1.594s. 
 
 

Table 1: The results in gas concentration time series 

Models Performance 
BPNN RBFNN LS-SVM

Training 0.0346 0.0203 0.0187 RSME Testing 0.0507 0.0215 0.0194 
CPU time (s) 6.968 25.203 1.594 

 
Fig.3 and Fig.4 illustrate the predicted and actual values of 
the LS-SVM in training and testing set, respectively. The 
solid line is the actual value, and the dotted line is the 
predicted value of the LS-SVM which has best 
performance among three models. Obviously, the LS-
SVM forecast more closely to actual values than both 
BPNN and RBFNN models, and there are correspondingly 
smaller prediction errors in the LS-SVM than the BPNN 
and RBFNN models, as illustrated in Fig. 5 (The solid and 
the dotted line are, respectively,  the predicted errors of the 
LS-SVM and the BPNN model), the predicted error in the 
RBFNN is not shown in Fig.5 as it is close to the predicted 
error in the LS-SVM. 

 

Fig. 3 The predicted and actual values of the LS-SVM in training set. 

 

Fig. 4 The predicted and actual values of the LS-SVM in testing set. 

 

Fig. 5 The prediction errors in the LS-SVM and the BPNN model. 

5. Conclusions 

The application of LS-SVM in gas concentration 
forecasting is studied in this paper, and the effect of the 
value of the kernel parameter ( 2σ and γ ) in the LS-SVM 
was investigated. The experimental result showed that the 
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prediction performances of LS-SVM are sensitive to the 
value of these parameters. Thus, it is important to find the 
optimal value of the parameters. 
In addition, this study compared LS-SVM with BPNN and 
RBFNN. The experimental results show that LS-SVM 
outperformed BPNN and RBFNN. The results may be 
attributable to the following facts: On the one hand,  LS-
SVM implements the structural risk minimization 
principle which minimizes an upper bound of 
generalization error rather than minimizes the training 
error, eventually leading to better generalization 
performance than the BPNN which implements the the 
empirical risk minimization principle. On the other hand, 
BPNN may not converge to global solutions, in the case of 
LS-SVM, training LS-SVM is equivalent to solving a 
linearly constrained quadratic programming, and the 
solution of LS-SVM is always unique, optimal and global. 
The experiment also shows that there is similar 
performance between the regularized RBFNN and LS-
SVM. The reason lies in the fact that both LS-SVM and 
the regularized RBFNN minimize the regularized risk 
function, rather than the empirical risk function as used in 
the BPNN. Finally, this study concluded that LS-SVM 
provides a promising alternative for gas concentration 
forecasting in coal mine. 
There will be other research issues which enhance the 
prediction performance of LS-SVM if they are 
investigated. The prediction performance may be 
increased if the optimum parameters of LS-SVM are 
selected and this remains a very interesting topic for 
further study. Finally, in this paper only the Gaussian 
kernel function is investigated, future work needs to 
explore more useful kernel functions for improving the 
performance of LS-SVM. 
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