
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

130

Manuscript revised June 23, 2006.

Design of a Uni-Directional MultiRing Switch

Xiangjian He†, and Hamid Arabnia††

†Department of Computer Systems, University of Technology, Sydney, PO Box 123, Broadway 2007,Australia
††Department of Computer Science, University of Georgia, Athens, GA 30602, USA

Summary
MultiRing is a network of 2n nodes which can be configured into
different ring networks of n different configurations. It supports a
wide variety of algorithms, such as algorithms for parallel image
processing. In this paper, a MultiRing is implemented using a
star topology with a MultiRing switch at the centre. We present a
hierarchical design of the MultiRing switch. We demonstrate that
the construction of the switch is economical in terms of gate
count and port numbers. Our design preserves the need that all
nodes can communicate simultaneously and independently in a
ring configuration. We show that our design is scalable.
Key words:
MultiRing, Network Scalability, Switch Organization, Network
Control.

1. Introduction

MultiRing described in [1] is a network containing
different rings of processors (or nodes). A MultiRing
network consists of 2n processors physically connected as
a star or other topologies. The effectiveness of a
MultiRing system is its reconfigurability. The MultiRing
has the capacity to be configured into R rings of D nodes
each, where R = 2i and D=2n-i for any i ∈ {0, 1, …, n-1}.
As an illustration, a MultiRing network of 8=23 nodes is
displayed in Figure 1. Figure 1 shows all three
configurations in the MultiRing, that are 1 ring of 8 nodes,
2 rings of 4 nodes and 4 rings of 2 nodes.

Because providing a direct link between any two nodes on
a MultiRing is expensive, the MultiRing network
consisting of 2n processors can be physically
interconnected through a MultiRing switch. Figure 2
shows the physical interconnection of a MultiRing of 8
processors. Through the MultiRing switch, nodes can
connect with other nodes for a given configuration. Each
node in a configured ring has two connections: one to its
left node (the first node found in counter clockwise
direction) and one to its right node (the first node found in
clockwise direction) in the ring. Hence, each node has 2(n-
1) possible connections in the 2n-node MultiRing, of
which only two connections are active at one time. With a
given configuration, all nodes in the configured ring can
send and receive messages simultaneously.

Fig. 1. Configurations of an 8-node MultiRing.

Fig. 2. Physical topology of an 8-node MultiRing.

There are many applications of MultiRing. Many
algorithms requesting massive computation can be
implemented on a MultiRing. For example, its application

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, Jun 2006

131

to the areas of computer vision and image processing is
found in [2] and [3] for pipelining message passing and
for distributed and parallel processing.

There are many ways for configuring MultiRing
depending on the needs. These require different designs
for MultiRing switch. We list various ideas for MultiRing
configuration as follows.

1). Automatic switch reconfiguration

The MultiRing switch automatically cycles through all of
the configurations, starting with 20 ring of 2n nodes down
to 2n-1 rings of 2 nodes. The switch does not open
messages. It just provides a path for a message to go
through from a node to its next node for a given
configuration. The switch will remain at a configuration
for a set time to allow messages to go through. As an
enhancement, the switch may maintain a cache of recently
used configurations and increase the time it spends on the
preferred configurations. Switching to a new
configuration happens really quickly, so even if only one
configuration is needed for an algorithm, the time spent on
cycling through the unused configurations is negligible.

With automatic switch reconfiguration, an algorithm
designer can think of the network as fully connected and
not worry about requiring a certain configuration.

2). Manual switch reconfiguration

A MultiRing may be designed with a switch that waits
until all nodes agree on a certain configuration before
reconfiguring the network. Most of the algorithms
implemented on the MultiRing require the nodes to
operate in barrier synchronized fashion so that the other
nodes that have data to send will eventually require the
same configuration. Only after the switch receives all
expected requests for a configuration, does the switch
reconfigure the network.

A manual switch may also be useful when the MultiRing
needs to maintain its configuration for a long time such as
when implementing a ring of nodes as a pipeline where
each node in the ring represents one processing phase.
When one node is finished processing data, it will send its
results to the next node in the ring. The configuration
remains the same until all data has passed through all
nodes in the ring.

3). Smart switch

When a smart switch is used, each node just sends a
message to the switch without waiting for a particular

configuration. The switch maintains a composite routing
table that specifies the required configurations necessary
to establish communication between all nodes in the
MultiRing. The switch reads the messages and determines
the expected configuration and direction from the
composite routing table. The network is reconfigured and
the message is sent along the correct path.

In this paper, we will concentrate on the design of
MultiRing switch for automatic switch configuration. For
message passing on the MultiRing, the source node must
know the ring needed and the path for sending the
message to the destination node. This require two tables,
called neighbour table and routing table [3] respectively,
to be maintained on each node. In addition, data link layer
message frame must be formatted for the MultiRing to
include the information that is needed by the next node in
the configured ring for making the forwarding decision.

In [4], Arabnia and Smith designed a switch for MultiRing
network. The design was based on the techniques called
perfect shuffle [5] and barrel shifting [6]. Though many
properties such as scalability, hierarchy and ability for
parallel processing may also be found in this design, it
requests a lot of more hardware and much larger count of
Boolean operation gates for implementation than the
MultiRing switch to be presented in this paper. Each
switch element takes three inputs excluding the control
input. The inputs of an element are not absolutely
independent from those of other elements. This forces the
design to use more hardware and more gates the switch
implementation.

In this paper, we present a different approach for the
design of MultiRing switch. Each switch element in our
approach needs only two inputs. Furthermore, the inputs
of any switch element are totally independent from the
inputs of the other elements. Therefore, the gate count and
hardware for switch implementation greatly decreases,
which is important in VLSI design. This new design
simplifies the switch implementation.

The context of this paper is arranged as follows. We
propose the structure and organization of a MultiRing
switch in Section 2. In Section 3, the detailed
implementation of the MultiRing switch with link control
is presented. This is followed by the discussion on
scalability of the MultiRing switch in Section 4. In Section
5, a comparison is made between our new switch design
and the one shown in [4]. We conclude in Section 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

132

2. MultiRing Switch

A MultiRing switch allows communication directly from
source to destination, without going through intermediate
nodes. It also allows simultaneous communications
between nodes under a MultiRing configuration.

2.1. Popular Switch Organizations

There are two popular switch organizations. A fully
connected, or crossbar, interconnection allows any node
to communicate with any other node in one pass through
the interconnection as shown in Figure 3 [7]. An Omega
interconnection as shown in Figure 4 [7] uses less
hardware than crossbar interconnection. In crossbar
organization, the outputs of AND gates in each column of
switches as shown in Figure 3 are ORed to get a single
input to a corresponding node. The implementation of the
OR operation may have to use many OR gates when
number of nodes (2n) is big because the number of inputs
allowed on a gate is limited by the electronic technology
used to build the gate [8]. For a 2n-node MultiRing,
crossbar organization needs 22n interior switches each
implemented using an AND gate with a separate control
input. These internal switches are shown as black circles
with node shown as squares in Figure 3. Because of the
huge amount of internal switches and the corresponding
control inputs, this organization is impractical for scalable
MultiRing network. However, Omega organization needs
only 2n-1n switch boxes shown as rectangles in Figure 4.
Each switch box has 4 switches shown as black circles in
Figure 5 [7].

Fig. 3. Crossbar organization of a switch connected with 8 nodes.

2.2. Characteristics of Omega Organization

One of the advantages of Omega organization is the less
number of switches required for the interconnection. This
is important when a MultiRing has a large number of
nodes and when the scalability of an interconnection has
to be considered. However, Omega organization has the
following two disadvantages.

1) Communication between any two nodes with
Omega organization has to go through many
passes (or many switch boxes). For example, in
Figure 4, P1 communicates with P2 by going
through 3 passes.

2) Contention between messages is more likely to
occur in Omega interconnection. For example, in
Figure 4, a message from P1 to P2 blocks at a
switch box in the middle column while waiting
for a message from P0 to P1. Of cause, if two
nodes are sending messages to the same
destination, there will be contention in both
Omega and crossbar interconnections.

Fig. 4. Omega organization of a switch connected with 8 nodes.

Fig. 5. Omega switch box.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, Jun 2006

133

2.3. Switch Organization for MultiRing

In order to take the advantages of Omega organization and
to bypass the disadvantages of Omega organization, we
present a new switch organization for MultiRing network.
The new organization for 8-node MultiRing is displayed
in Figure 6. The interior construction of this new switch is
similar to the butterfly structure for network connection
but not identical to it. The exterior connections to
processors are particular for MultiRing network. Let us
call this new organization MultiRing switch organization.

Fig. 6. MultiRing Switch Organization.

In Figure 6, the dashed rectangle represents the MultiRing
switch. The solid rectangles represent switch boxes inside
the MultiRing switch. Each switch box has four switches
with two inputs and two outputs similar to Figure 5. Sij
denotes a switch box for each i ∈ {1, 2, 3, 4} and j ∈ {1, 2,
3}.

The MultiRing switch organization uses the same amount
of switch boxes inside the switch as Omega organization.
It meets the needs of MultiRing network. Unlike Omega
organization, MultiRing organization does not have the
disadvantages mentioned in Subsection 2.2.

The first disadvantage of Omega organization does not
really affect the MultiRing network performance. The
simple reason is that more passes does not necessarily
mean more Boolean gates that communication between
two nodes has to go through. The number of passes (n) is
getting exponentially smaller and smaller than the number
of nodes as n increases. Hence, for a large MultiRing
network, n or the number of passes can be really neglected.
The second disadvantage of Omega organization is no
longer a problem in the MultiRing switch organization.

For each ring configuration on a MultiRing, each node
will be using a completely different path to communicate
with its next node as shown in Figure 6. So there is no
contention on any configured ring. Tables 1, 2 and 3
below show the paths from source nodes to destination
nodes corresponding to the configurations of 1 ring of 8
nodes, 2 rings of 4 nodes and 4 rings of 2 nodes
respectively. One will find that the paths from two
different source nodes to two different destination nodes
in the same configuration are not sharing any links
between switch boxes. For example, in the configuration
of 1 ring of 8 nodes, the path from P1 to P2 is going
through S00, S01 and S32, the path from P0 to P1 is going
through S00, S11 and S12.

Table 1: Communication path for 1 ring of 8 nodes configuration
Source Destination Path
P0 P1 S00-S11-S12
P1 P2 S00-S01-S22
P2 P3 S10-S11-S32
P3 P4 S10-S01-S02
P4 P5 S20-S31-S12
P5 P6 S20-S21-S22
P6 P7 S30-S31-S32
P7 P0 S30-S21-S02

Table 2. Communication path for 2 rings of 4 nodes configuration
Source Destination Path
P0 P2 S00-S01-S22
P1 P3 S00-S11-S32
P2 P4 S10-S01-S02
P3 P5 S10-S11-S12
P4 P6 S20-S21-S22
P5 P7 S20-S31-S32
P6 P0 S30-S21-S02
P7 P1 S30-S31-S12

Table 3. Communication path for 4 ring of 2 nodes configuration
Source Destination Path
P0 P4 S00-S01-S02
P1 P5 S00-S11-S12
P2 P6 S10-S01-S22
P3 P7 S10-S11-S32
P4 P0 S20-S21-S02
P5 P1 S20-S31-S12
P6 P2 S30-S21-S22
P7 P3 S30-S31-S32

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

134

3. Control Data Flow in MultiRing Switch

The path for data going through the MultiRing switch is
selected according to the control signals.

3.1. Control Data in a Switch Box

Each switch box in the MultiRing switch takes two data
inputs and a control input, and produces two data outputs.
Let denote two inputs by I0 and I1, two outputs by O0 and
O1, and the control signal by C. The switch box can be
implemented using four AND gates, two OR gates and one
NOT gate as shown in Figure 7. From this figure, it is
easy to see that I0 is connected to O0 and I1 is connected to
O1 when C = 0, and I0 is connected to O1 and I1 is
connected to O0 otherwise.

Figure 8 shows an alternative approach to implementation
of the switch box. In Figure 8, two AND gates, two XOR
gates, one OR gate and one NOT gate are used. Hence the
gate count has been decreased by 1 in this approach. It is
reduced from seven in Figure 7 to six in Figure 8.

Fig. 7. Switch box implementation.

Fig. 8. Alternative implementation of switch box.

3.2. Control Inputs of MultiRing

Given a MultiRing of 2n nodes, we need n control bits for
the n different ring configurations. Let us denote the n
control bits by C0, C1, …, Cn-1. Define

Cij = Ci OR Ci+1 OR Ci+2 OR, …, OR Cj ; i.e.,
Cij = Ci + Ci+1 + Ci+2 +, …, + Cj

for i, j ∈ {0, 1, 2, …, n-1}and i≤j. Cij defined here are
used as control inputs to the switch boxes in a MultiRing
switch.
Hence, there are

n + (n-1) + … + 1 = n(n+1)/2

control inputs for a MultiRing of 2n nodes. However, there
is only a single control input for each switch box. If we
denote the switch box in the rth row and the sth column by
S(r-1)(s-1) for r ∈ {1, 2, …, 2n-1} and s ∈ {1, 2, …, n} (refer
to Figure 6), then assignment of inputs to the switch boxes
is shown in the following.

Control Input of Srs = C0s if 0 ≤ r mod 2s < 1; and
Control Input of Srs = Cis if 2i-1 ≤ r mod 2s < 2i and i ∈ {1,

2, …, n}

As an illustration, let us consider the MultiRing switch for
a MultiRing of 8 nodes. The 12 switch boxes as shown in
Figure 6 are organized into 4 rows and 3 columns. Using
the formula defined above for control inputs of switch
boxes, the control input for the switch box Srs (where r ∈
{0, 1, 2, 3} and s ∈ {0, 1, 2}) is displayed in Table 4.

Table 4. Control inputs of 8-node MultiRing
s for columns Control input for

each Srs 0 1 2

0 C00 C01 C02

1 C00 C11 C12

2 C00 C01 C22

3 C00 C11 C22

3.3. Control Unit

The control unit on a MultiRing of 2n nodes creates
control signals (Ci, where i ∈ {0, 1, n-1}), and forms
controls inputs (Cij, where i, j ∈ {0, 1, 2, …, n-1}and i≤j)

r for row
s

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, Jun 2006

135

for switch boxes. As an illustration, Figure 9 shows the
organization of the control unit for an 8-node MultiRing.

Fig. 9. Control unit for 8-node MultiRing.

It is easy to see that the number of OR gates needed in the
control unit of a 2n-node MultiRing is

Number of control inputs – n.

Hence, the number of gates in the control unit equals to

n(n+1)/2 – n = n(n-1)/2.

Fig. 10. Data flow in 8-node switch.

3.4. Sample Data Flow in a Switch

Figure 10 shows the data flow with control inputs in an 8-
node MultiRing switch. The control inputs are the outputs
of the control box displayed in Figure 9.

3.5. Configuration Signal

The signal sequence C0, C1, …, Cn-1 of a 2n-node
MultiRing can be easily set as follows for different ring
configurations.

If the configuration is for 2i rings of 2n-i nodes, where i ∈
{0, 1, 2, …, n-1}, then we set Ci = 1 and Cj = 0 for any j ≠
i and j ∈ {0, 1, 2, …, n-1}.

As an illustration, let us again consider an 8-node
MultiRing. Based on the method for signal setting
described above, we have that

1) if the configuration is for 1 ring of 8 nodes, then
C0 = 1, C1 = C2 = 0;

2) if the configuration is for 2 rings of 4 nodes, then
C1 = 1, C0 = C2 = 0;

3) if the configuration is for 4 rings of 2 nodes, then
C2 = 1, C0 = C1 = 0.

Hence, using the control inputs defined in Subsection 3.2,
we obtain the inputs of Srs (r ∈ {0, 1, 2, 3} and s ∈ {0, 1,
2}) in Table 4 for different ring configurations. The results
are shown in Tables 5, 6 and 7 with respect to 1 ring of 8
nodes, 2 rings of 4 nodes and 4 rings of 2 nodes
respectively.

Table 5. Control inputs of 1 ring of 8 nodes
s for columns Control input for

each Srs 0 1 2

0 1 1 1

1 1 0 0

2 1 1 0

3 1 0 0

Table 6. Control inputs of 2 rings of 4 nodes
s for columns Control input for

each Srs 0 1 2

0 0 1 1

1 0 1 1

2 0 1 0

3 0 1 0

r for row
s

r for row
s

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

136

Table 7. Control inputs of 4 rings of 2 nodes
s for columns Control input for

each Srs 0 1 2

0 0 0 1

1 0 0 1

2 0 0 1

3 0 0 1

Referring to Figure 10, the paths between adjacent nodes
in different ring configurations as shown in Tables 1, 2
and 3 can be easily obtained and found using the results in
Tables 5, 6 and 7. For example, looking at the path from
P0 to P1 in the configuration of 1 ring of 8 nodes, the bit
(or data) from P0 goes to S00. S00 switches the bit because
its control input is 1. The bit is then sent to S11. S11 does
not switch the bit because its control input is 0. The bit is
then forwarded to S12. S12 does not switch the bit either
because its control input is 0 too. Hence the bit will arrive
at P1 as expected.

Fig. 11. MultiRing switch organization for 16 nodes.

4. Scalability of MultiRing Switch

MultiRing switch organization proposed in Section 2 is
scalable. It can be easily scaled up for a MultiRing
containing more nodes. Figure 11 shows the organization
for 16 nodes. It is constructed from two 8-node switches
and eight switch boxes each having two input ports and
two output ports. Inside each dotted rectangle in Figure
11, a MultiRing switch organization for 8 nodes is found.

4.1. 2n-node MultiRing Switch Organization

Let us now generalize the MultiRing organization. For a
2n-node MultiRing, the MultiRing switch contains 2n-1n
switch boxes organized in 2n-1 rows and n columns (see,
for example, Figure 6 when n=3 and Figure 11 when n=4).
It can be constructed using two switches of 2n-1-node
MultiRing and 2n-1 switch boxes.

The organization of the switch boxes in the left n-1
columns and the top 2n-2 rows is the same as that for a 2n-1-
node switch. Similarly, the organization of the switch
boxes in the left n-1 columns and the bottom 2n-2 rows is
the same as that for a 2n-1-node switch. Number the input
ports (ports on the left hand side of switch boxes) from the
top down to the bottom of the switch boxes in the last
(right) column as 0, 1, …, 2n-1. Similarly, number the
output ports (ports on the right hand side of switch boxes)
from the top to the bottom of the 2nd last column as 0, 1,
…, 2n-1. The output port j in the 2nd last column is
connected to input port k at the last column for j ∈ {0, 1, 2,
…, 2n-1} in according to the following.

1) When 0 ≤ j < 2n-1,
if j is even, then k := j;
else k := j + 2n-1 - 1.

2) When 2n-1 ≤ j < 2n,
if j is odd, then k := j;
else k := j - 2n-1 + 1.

Table 8 shows relationship between the values of k and
their corresponding values of j for a 16-node switch as
shown in Figure 11 using the formula defined above.

Table 8. j-k values for scaling up MultiRing from 8 nodes to 16 nodes

4.2. I/O of MultiRing Switch

Similar to the previous subsection, let us number the input
ports of the switch boxes in the first (left) column as 0, 1,
…, 2n-1. We call these ports the input ports of the
MultiRing switch. Furthermore, let us number the output

r for row
s

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, Jun 2006

137

ports of switch boxes in the last column (right) from the
top to the bottom as 0, 1, …, 2n-1 as well. These output
ports are called the output ports of the MultiRing switch. If
we denote the 2n nodes on the MultiRing by Pi for i = 0, 1,
…, 2n-1, then we have the following assignment of inputs
and outputs on the MultiRing switch.

1) The output from Pi is connected to input port i of
the MultiRing switch for each i ∈ {0, 1, …, 2n-1);

2) The input to Pk is connected to the output port j
of the MultiRing switch for each j ∈ {0, 1, …, 2n-
1} in according to a perfect shuffle [5] as follows.

If j is odd then k:= 2n-1 + (j-1)/2,

 else k:= j/2.

Table 9 shows relationship between the node index values
of k and their corresponding output values of j of a 16-
node MultiRing switch as shown in Figure 11 using the
formula for perfect shuffle described above.

Table 9. j-k values for connecting output ports of a 16-node MultiRing
switch to nodes

5. Comparison

Arabnia and Smith designed a switch for the scalable
MultiRing network in their paper [4]. We compare their
design with our new design presented in this paper.

5.1. Switch Boxes

For a 2n-node MultiRing, both of designs use 2n-1n switch
boxes.

Each switch box for the old design contains two
multiplexers, which need at least four AND gates, one OR
gate and two OR gates for implementation. So in total,
there are

(4+1+2) × 2n-1n = 7n2n-1

gates needed for switch implementation.

On the other hand, our new switch design requires
maximum six gates only for switch box implementation as
shown in Figure 8. This gives a total of 6n2n-1 gates for all
switch boxes in the MultiRing switch.

Hence, the old design needs n2n-1 more gates than the new
design for all switch boxes.

In additional to the gate count, each switch box in the old
design takes three inputs excluding the control input
compared to the two inputs only in the new design. If we
call each input interface on a switch box an input port,
then the old design again needs n2n-1 more input ports than
the new design.

As n2n-1 is significantly large even when n is not very big,
the old design needs a lot more hardware for
implementation. This can be a big disadvantage in VLSI
chip design.

5.2. Control Units

The old design does not have any gate count in the control
unit as a single control bit is used for all switch boxes in
the same column.

Our new design needs additional n(n-1)/2 gates in the
control unit. But his amount is really small compared to
the total number of gates needed in the switch design,
which is

n(n-1)/2 + 6n2n-1.

Hence, the additional gate count is negligible.

5.3. Wiring for Scaling

Without modification, re-wiring is needed in the old
design if more nodes are added to the MultiRing. For
example, when two existing 8-node MultiRings are to be
combined to form a 16-node MultiRing, the nodes
previously plugged into the switches must be unplugged
and then be re-plugged in order to function properly.

In our new design, to combine two MultiRing into a
bigger MultiRing, it is no longer necessary to unplug the
connections of nodes to the switches. All we need to do is
to plug the ports (output ports) on the back plane of the
switches to a set of switch boxes without shutting down
the nodes (see Figure 11 for illustration).

Similarly, when separating an existing MultiRing into two
smaller MultiRings, the new design does not need the
connections to the nodes to be unplugged.

As it may not be practical to plug and unplug the
connections when the node count is large, our new design
is a more realistic and more efficient.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006

138

6. Conclusion

In this paper, we have proposed a new design of
MultiRing switch. It is scalable, efficient, realistic, doable
and practical.

The switched has been designed for uni-directional
MultiRing, which has many applications. One may find an
application of uni-directional MultiRing to Machine
Vision in [3].

For a bi-directional MultiRing, the switch organization is
the same. An acceptable mount of gates must be added to
the control unit. We will show the detailed design of
switch for bi-directional MultiRing in another paper. One
other alternative is to interchange the inputs and outputs in
the old switch design, and keeps the same amount of gate
count as the old design.

The next step following the switch design is the research
work for message passing through the MultiRing switch.
Various methods for message passing have been proposed.
We will present a technique for efficient message passing
in a paper following this one.

References
[1] H. R. Arabnia and M. A. A. Oliver, A Transputer Network

for Fast Operations on Digitised Images, International
Journal of Eurographics Association (Computer Graphics
Forum), Vol. 8, No. 1, 1987, pp.3-12.

[2] Hamid Arabnia and Xiangjian He, Edge Detection Using
MultiRing on Spiral Architecture, Proc. International
Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, 2004, pp.413-419.

[3] Xiangjian He and Hamid Arabnia, Parallel Edge Detection
Using Uni-Directional MultiRing on Spiral Architecture,
Proc. International Conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, 2004,
pp.420-426.

[4] Hamid Arabnia and Jeffrey Smith, A Reconfigurable
Interconnection Network For Imaging Operations And Its
Implementation Using A Multi-Stage Switching Box, The
Proceedings of the seventh annual international high
performance computing conference. The 1993 High
Performance Computing: New Horizons, Supercomputing
Symposium. Calgary, Alberta, Canada, June, 1993, pp. 349-
357.

[5] H. S. Stone, High Performance Computer Architecture,
Addison-Wesley, 1990.

[6] C. Mead and L. Conway, VLSI Systems Design, Addison-
Wesley, 1980.

[7] John. L. Hennessy and David A. Patterson, Computer
Architecture, Morgan Kaufmann, 2003.

[8] Sajjan G. Shiva, Computer Design and Architecture, Harper
Collins, 1991.

Xiangjian He received his PhD degree
in Computing Sciences from the
University of Technology, Sydney
(UTS) in 1999. Dr He is currently an
Associate Professor at UTS. He is the
Deputy Director of the UTS university-
level Computer Vision Research Group,
and a Senior Member of IEEE. His
research interests are in the areas of
Computer Vision, Image Processing,
Computer Networks, and Parallel and

Distributed Computing. He is the chair of the 3rd IEEE
Sponsored International Conference on Information Technology
and Applications (ICITA2005), and the chief editor of the
conference proceedings published by IEEE CS Society. He has
received many research grants including four Australian national
(ARC) grants. He has had over 100 research refereed
publications.

Hamid R. Arabnia received a Ph.D.
degree in Computer Science from the
University of Kent (Canterbury,
England) in 1987. Dr. Arabnia is
currently a Professor of Computer
Science at University of Georgia
(Georgia, USA), where he has been
since late 1987. His research interests
include parallel algorithms, recon-
figurable machines, interconnection
networks, and applications of parallel

processing in remote sensing and imaging science. Prof. Arabnia
has chaired many national and international conferences and
technical sessions in these areas. He is Editor-in-Chief of The
Journal of Supercomputing (Springer) and is on the editorial
boards of 13 other journals. Prof. Arabnia is the recipient of
William F. Rockwell, Jr. Medal for promotion of multi-
disciplinary research (Rockwell Medal is International
Technology Institute's highest honor). In 2000, Prof. Arabnia
was indicted to the World Level of the Hall of Fame for
Engineering, Science and Technology (The World Level is the
highest possible level for a living person - there are two higher
levels which are posthumous.) Prof. Arabnia has published
extensively in journals and refereed conference proceedings; he
has over 220 publications (including edited and co-authored
books). Prof. Arabnia has been the PI/Co-PI of over $4M of
grant fundings.

