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Summary 
MultiRing is a network of 2n nodes which can be configured into 
different ring networks of n different configurations. It supports a 
wide variety of algorithms, such as algorithms for parallel image 
processing. In this paper, a MultiRing is implemented using a 
star topology with a MultiRing switch at the centre. We present a 
hierarchical design of the MultiRing switch. We demonstrate that 
the construction of the switch is economical in terms of gate 
count and port numbers. Our design preserves the need that all 
nodes can communicate simultaneously and independently in a 
ring configuration. We show that our design is scalable. 
Key words: 
MultiRing, Network Scalability, Switch Organization, Network 
Control. 

1. Introduction 

MultiRing described in [1] is a network containing 
different rings of processors (or nodes). A MultiRing 
network consists of 2n processors physically connected as 
a star or other topologies. The effectiveness of a 
MultiRing system is its reconfigurability. The MultiRing 
has the capacity to be configured into R rings of D nodes 
each, where R = 2i and D=2n-i for any i ∈ {0, 1, …, n-1}. 
As an illustration, a MultiRing network of 8=23 nodes is 
displayed in Figure 1. Figure 1 shows all three 
configurations in the MultiRing, that are 1 ring of 8 nodes, 
2 rings of 4 nodes and 4 rings of 2 nodes.  
 
Because providing a direct link between any two nodes on 
a MultiRing is expensive, the MultiRing network 
consisting of 2n processors can be physically 
interconnected through a MultiRing switch. Figure 2 
shows the physical interconnection of a MultiRing of 8 
processors. Through the MultiRing switch, nodes can 
connect with other nodes for a given configuration.  Each 
node in a configured ring has two connections: one to its 
left node (the first node found in counter clockwise 
direction) and one to its right node (the first node found in 
clockwise direction) in the ring. Hence, each node has 2(n-
1) possible connections in the 2n-node MultiRing, of 
which only two connections are active at one time. With a 
given configuration, all nodes in the configured ring can 
send and receive messages simultaneously. 

 

Fig. 1.  Configurations of an 8-node MultiRing. 

 

 

Fig. 2. Physical topology of an 8-node MultiRing. 

 
There are many applications of MultiRing. Many 
algorithms requesting massive computation can be 
implemented on a MultiRing. For example, its application 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, Jun 2006 
 

 

131

to the areas of computer vision and image processing is 
found in [2] and [3] for pipelining message passing and 
for distributed and parallel processing. 
 
There are many ways for configuring MultiRing 
depending on the needs. These require different designs 
for MultiRing switch. We list various ideas for MultiRing 
configuration as follows. 
 
1). Automatic switch reconfiguration 
 
The MultiRing switch automatically cycles through all of 
the configurations, starting with 20 ring of 2n nodes down 
to 2n-1 rings of 2 nodes.  The switch does not open 
messages. It just provides a path for a message to go 
through from a node to its next node for a given 
configuration.  The switch will remain at a configuration 
for a set time to allow messages to go through. As an 
enhancement, the switch may maintain a cache of recently 
used configurations and increase the time it spends on the 
preferred configurations.  Switching to a new 
configuration happens really quickly, so even if only one 
configuration is needed for an algorithm, the time spent on 
cycling through the unused configurations is negligible.  
 
With automatic switch reconfiguration, an algorithm 
designer can think of the network as fully connected and 
not worry about requiring a certain configuration. 
 
2). Manual switch reconfiguration 
 
A MultiRing may be designed with a switch that waits 
until all nodes agree on a certain configuration before 
reconfiguring the network. Most of the algorithms 
implemented on the MultiRing require the nodes to 
operate in barrier synchronized fashion so that the other 
nodes that have data to send will eventually require the 
same configuration.  Only after the switch receives all 
expected requests for a configuration, does the switch 
reconfigure the network.   
 
A manual switch may also be useful when the MultiRing 
needs to maintain its configuration for a long time such as 
when implementing a ring of nodes as a pipeline where 
each node in the ring represents one processing phase. 
When one node is finished processing data, it will send its 
results to the next node in the ring.  The configuration 
remains the same until all data has passed through all 
nodes in the ring.    
 
3). Smart switch 
 
When a smart switch is used, each node just sends a 
message to the switch without waiting for a particular 

configuration.  The switch maintains a composite routing 
table that specifies the required configurations necessary 
to establish communication between all nodes in the 
MultiRing. The switch reads the messages and determines 
the expected configuration and direction from the 
composite routing table.  The network is reconfigured and 
the message is sent along the correct path. 
 
In this paper, we will concentrate on the design of 
MultiRing switch for automatic switch configuration. For 
message passing on the MultiRing, the source node must 
know the ring needed and the path for sending the 
message to the destination node. This require two tables, 
called neighbour table and routing table [3] respectively, 
to be maintained on each node.  In addition, data link layer 
message frame must be formatted for the MultiRing to 
include the information that is needed by the next node in 
the configured ring for making the forwarding decision. 
 
In [4], Arabnia and Smith designed a switch for MultiRing 
network. The design was based on the techniques called 
perfect shuffle [5] and barrel shifting [6]. Though many 
properties such as scalability, hierarchy and ability for 
parallel processing may also be found in this design, it 
requests a lot of more hardware and much larger count of 
Boolean operation gates for implementation than the 
MultiRing switch to be presented in this paper. Each 
switch element takes three inputs excluding the control 
input. The inputs of an element are not absolutely 
independent from those of other elements. This forces the 
design to use more hardware and more gates the switch 
implementation.  
 
In this paper, we present a different approach for the 
design of MultiRing switch. Each switch element in our 
approach needs only two inputs. Furthermore, the inputs 
of any switch element are totally independent from the 
inputs of the other elements.  Therefore, the gate count and 
hardware for switch implementation greatly decreases, 
which is important in VLSI design. This new design 
simplifies the switch implementation. 
 
The context of this paper is arranged as follows. We 
propose the structure and organization of a MultiRing 
switch in Section 2. In Section 3, the detailed 
implementation of the MultiRing switch with link control 
is presented. This is followed by the discussion on 
scalability of the MultiRing switch in Section 4. In Section 
5, a comparison is made between our new switch design 
and the one shown in [4]. We conclude in Section 6. 
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2. MultiRing Switch 

A MultiRing switch allows communication directly from 
source to destination, without going through intermediate 
nodes.  It also allows simultaneous communications 
between nodes under a MultiRing configuration. 

2.1. Popular Switch Organizations 

There are two popular switch organizations.  A fully 
connected, or crossbar, interconnection allows any node 
to communicate with any other node in one pass through 
the interconnection as shown in Figure 3 [7]. An Omega 
interconnection as shown in Figure 4 [7] uses less 
hardware than crossbar interconnection. In crossbar 
organization, the outputs of AND gates in each column of 
switches as shown in Figure 3 are ORed to get a single 
input to a corresponding node. The implementation of the 
OR operation may have to use many OR gates when 
number of nodes (2n) is big because the number of inputs 
allowed on a gate is limited by the electronic technology 
used to build the gate [8]. For a 2n-node MultiRing, 
crossbar organization needs 22n interior switches each 
implemented using an AND gate with a separate control 
input. These internal switches are shown as black circles 
with node shown as squares in Figure 3. Because of the 
huge amount of internal switches and the corresponding 
control inputs, this organization is impractical for scalable 
MultiRing network. However, Omega organization needs 
only 2n-1n switch boxes shown as rectangles in Figure 4. 
Each switch box has 4 switches shown as black circles in 
Figure 5 [7].  
 
 

 

Fig. 3. Crossbar organization of a switch connected with 8 nodes. 

2.2. Characteristics of Omega Organization 

One of the advantages of Omega organization is the less 
number of switches required for the interconnection. This 
is important when a MultiRing has a large number of 
nodes and when the scalability of an interconnection has 
to be considered. However, Omega organization has the 
following two disadvantages.  
 

1) Communication between any two nodes with 
Omega organization has to go through many 
passes (or many switch boxes). For example, in 
Figure 4, P1 communicates with P2 by going 
through 3 passes. 

2) Contention between messages is more likely to 
occur in Omega interconnection. For example, in 
Figure 4, a message from P1 to P2 blocks at a 
switch box in the middle column while waiting 
for a message from P0 to P1. Of cause, if two 
nodes are sending messages to the same 
destination, there will be contention in both 
Omega and crossbar interconnections.  

 
 

 

Fig. 4. Omega organization of a switch connected with 8 nodes. 

 
 

 

Fig. 5. Omega switch box. 
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2.3. Switch Organization for MultiRing  

In order to take the advantages of Omega organization and 
to bypass the disadvantages of Omega organization, we 
present a new switch organization for MultiRing network. 
The new organization for 8-node MultiRing is displayed 
in Figure 6. The interior construction of this new switch is 
similar to the butterfly structure for network connection 
but not identical to it. The exterior connections to 
processors are particular for MultiRing network. Let us 
call this new organization MultiRing switch organization. 
 
 

 

Fig. 6. MultiRing Switch Organization. 

 
In Figure 6, the dashed rectangle represents the MultiRing 
switch. The solid rectangles represent switch boxes inside 
the MultiRing switch. Each switch box has four switches 
with two inputs and two outputs similar to Figure 5. Sij 
denotes a switch box for each i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 
3}.  
 
The MultiRing switch organization uses the same amount 
of switch boxes inside the switch as Omega organization. 
It meets the needs of MultiRing network. Unlike Omega 
organization, MultiRing organization does not have the 
disadvantages mentioned in Subsection 2.2. 
 
The first disadvantage of Omega organization does not 
really affect the MultiRing network performance. The 
simple reason is that more passes does not necessarily 
mean more Boolean gates that communication between 
two nodes has to go through. The number of passes (n) is 
getting exponentially smaller and smaller than the number 
of nodes as n increases. Hence, for a large MultiRing 
network, n or the number of passes can be really neglected.  
The second disadvantage of Omega organization is no 
longer a problem in the MultiRing switch organization. 

For each ring configuration on a MultiRing, each node 
will be using a completely different path to communicate 
with its next node as shown in Figure 6. So there is no 
contention on any configured ring. Tables 1, 2 and 3 
below show the paths from source nodes to destination 
nodes corresponding to the configurations of 1 ring of 8 
nodes, 2 rings of 4 nodes and 4 rings of 2 nodes 
respectively. One will find that the paths from two 
different source nodes to two different destination nodes 
in the same configuration are not sharing any links 
between switch boxes. For example, in the configuration 
of 1 ring of 8 nodes, the path from P1 to P2 is going 
through S00, S01 and S32, the path from P0 to P1 is going 
through S00, S11 and S12.  
 

Table 1: Communication path for 1 ring of 8 nodes configuration 
Source Destination Path 
P0 P1 S00-S11-S12 
P1 P2 S00-S01-S22 
P2 P3 S10-S11-S32 
P3 P4 S10-S01-S02 
P4 P5 S20-S31-S12 
P5 P6 S20-S21-S22 
P6 P7 S30-S31-S32 
P7 P0 S30-S21-S02 

 

 

Table 2. Communication path for 2 rings of 4 nodes configuration 
Source Destination Path 
P0 P2 S00-S01-S22 
P1 P3 S00-S11-S32 
P2 P4 S10-S01-S02 
P3 P5 S10-S11-S12 
P4 P6 S20-S21-S22 
P5 P7 S20-S31-S32 
P6 P0 S30-S21-S02 
P7 P1 S30-S31-S12 

 

 

Table 3. Communication path for 4 ring of 2 nodes configuration 
Source Destination Path 
P0 P4 S00-S01-S02 
P1 P5 S00-S11-S12 
P2 P6 S10-S01-S22 
P3 P7 S10-S11-S32 
P4 P0 S20-S21-S02 
P5 P1 S20-S31-S12 
P6 P2 S30-S21-S22 
P7 P3 S30-S31-S32 
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3. Control Data Flow in MultiRing Switch  

The path for data going through the MultiRing switch is 
selected according to the control signals. 

3.1. Control Data in a Switch Box 

Each switch box in the MultiRing switch takes two data 
inputs and a control input, and produces two data outputs. 
Let denote two inputs by I0 and I1, two outputs by O0 and 
O1, and the control signal by C. The switch box can be 
implemented using four AND gates, two OR gates and one 
NOT gate as shown in Figure 7.  From this figure, it is 
easy to see that I0 is connected to O0 and I1 is connected to 
O1 when C = 0, and I0 is connected to O1 and I1 is 
connected to O0 otherwise. 
 
Figure 8 shows an alternative approach to implementation 
of the switch box. In Figure 8, two AND gates, two XOR 
gates, one OR gate and one NOT gate are used. Hence the 
gate count has been decreased by 1 in this approach. It is 
reduced from seven in Figure 7 to six in Figure 8. 
 

 

Fig. 7. Switch box implementation. 

 

Fig. 8. Alternative implementation of switch box. 

3.2. Control Inputs of MultiRing 

Given a MultiRing of 2n nodes, we need n control bits for 
the n different ring configurations.  Let us denote the n 
control bits by C0, C1, …, Cn-1. Define 
 

Cij = Ci OR Ci+1 OR Ci+2 OR, …, OR Cj ;  i.e., 
Cij = Ci + Ci+1 + Ci+2 +, …, + Cj 

 

for i, j ∈ {0, 1, 2, …, n-1}and i≤j. Cij defined here are 
used as control inputs to the switch boxes in a MultiRing 
switch. 
Hence, there are  
 

n + (n-1) + … + 1 = n(n+1)/2 
 

control inputs for a MultiRing of 2n nodes. However, there 
is only a single control input for each switch box. If we 
denote the switch box in the rth row and the sth column by 
S(r-1)(s-1) for r ∈ {1, 2, …, 2n-1} and s ∈ {1, 2, …, n} (refer 
to Figure 6), then assignment of inputs to the switch boxes 
is shown in the following. 
 

Control Input of Srs = C0s if 0 ≤ r mod 2s < 1; and 
Control Input of Srs = Cis if 2i-1 ≤ r mod 2s < 2i and i ∈ {1, 

2, …, n} 
 

As an illustration, let us consider the MultiRing switch for 
a MultiRing of 8 nodes. The 12 switch boxes as shown in 
Figure 6 are organized into 4 rows and 3 columns.  Using 
the formula defined above for control inputs of switch 
boxes, the control input for the switch box Srs (where r ∈ 
{0, 1, 2, 3} and s ∈ {0, 1, 2}) is displayed in Table 4.  
 

Table 4. Control inputs of 8-node MultiRing 
s for columns Control input for 

each Srs 0 1 2 

0 C00 C01 C02 

1 C00 C11 C12 

2 C00 C01 C22 

  

3 C00 C11 C22 

 

3.3. Control Unit 

The control unit on a MultiRing of 2n nodes creates 
control signals (Ci, where i ∈ {0, 1, n-1}), and forms 
controls inputs (Cij, where i, j ∈ {0, 1, 2, …, n-1}and i≤j) 

r for row
s 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, Jun 2006 
 

 

135

for switch boxes. As an illustration, Figure 9 shows the 
organization of the control unit for an 8-node MultiRing. 
 
 

 

Fig. 9. Control unit for 8-node MultiRing. 

 
It is easy to see that the number of OR gates needed in the 
control unit of a 2n-node MultiRing is  
 

Number of control inputs – n. 
 

Hence, the number of gates in the control unit equals to 
 

n(n+1)/2 – n = n(n-1)/2. 
 

 

Fig. 10. Data flow in 8-node switch. 

3.4. Sample Data Flow in a Switch 

Figure 10 shows the data flow with control inputs in an 8-
node MultiRing switch. The control inputs are the outputs 
of the control box displayed in Figure 9. 

3.5. Configuration Signal 

The signal sequence C0, C1, …, Cn-1 of a 2n-node 
MultiRing can be easily set as follows for different ring 
configurations. 
 
If the configuration is for 2i rings of 2n-i nodes, where i ∈ 
{0, 1, 2, …, n-1}, then we set Ci = 1 and Cj = 0 for any j ≠ 
i and j ∈ {0, 1, 2, …, n-1}.  
 
As an illustration, let us again consider an 8-node 
MultiRing. Based on the method for signal setting 
described above, we have that  
 

1) if the configuration is for 1 ring of 8 nodes, then 
C0 = 1, C1 = C2 = 0; 

2) if the configuration is for 2 rings of 4 nodes, then 
C1 = 1, C0 = C2 = 0; 

3) if the configuration is for 4 rings of 2 nodes, then 
C2 = 1, C0 = C1 = 0. 

 
Hence, using the control inputs defined in Subsection 3.2, 
we obtain the inputs of Srs  (r ∈ {0, 1, 2, 3} and s ∈ {0, 1, 
2}) in Table 4 for different ring configurations. The results 
are shown in Tables 5, 6 and 7 with respect to 1 ring of 8 
nodes, 2 rings of 4 nodes and 4 rings of 2 nodes 
respectively. 
 

Table 5. Control inputs of 1 ring of 8 nodes 
s for columns Control input for 

each Srs 0 1 2 

0 1 1 1 

1 1 0 0 

2 1 1 0 

  

3 1 0 0 

 

 

Table 6. Control inputs of 2 rings of 4 nodes 
s for columns Control input for 

each Srs 0 1 2 

0 0 1 1 

1 0 1 1 

2 0 1 0 

  

3 0 1 0 

 

r for row
s 

r for row
s 
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Table 7. Control inputs of 4 rings of 2 nodes 
s for columns Control input for 

each Srs 0 1 2 

0 0 0 1 

1 0 0 1 

2 0 0 1 

  

3 0 0 1 

 
 
Referring to Figure 10, the paths between adjacent nodes 
in different ring configurations as shown in Tables 1, 2 
and 3 can be easily obtained and found using the results in 
Tables 5, 6 and 7. For example, looking at the path from 
P0 to P1 in the configuration of 1 ring of 8 nodes, the bit 
(or data) from P0 goes to S00. S00 switches the bit because 
its control input is 1. The bit is then sent to S11. S11 does 
not switch the bit because its control input is 0. The bit is 
then forwarded to S12. S12 does not switch the bit either 
because its control input is 0 too. Hence the bit will arrive 
at P1 as expected.  
 
 

 

Fig. 11. MultiRing switch organization for 16 nodes. 

4. Scalability of MultiRing Switch 

MultiRing switch organization proposed in Section 2 is 
scalable. It can be easily scaled up for a MultiRing 
containing more nodes.  Figure 11 shows the organization 
for 16 nodes. It is constructed from two 8-node switches 
and eight switch boxes each having two input ports and 
two output ports.  Inside each dotted rectangle in Figure 
11, a MultiRing switch organization for 8 nodes is found. 

4.1. 2n-node MultiRing Switch Organization 

Let us now generalize the MultiRing organization. For a 
2n-node MultiRing, the MultiRing switch contains 2n-1n 
switch boxes organized in 2n-1 rows and n columns (see, 
for example, Figure 6 when n=3 and Figure 11 when n=4). 
It can be constructed using two switches of 2n-1-node 
MultiRing and 2n-1 switch boxes.  
 
The organization of the switch boxes in the left n-1 
columns and the top 2n-2 rows is the same as that for a 2n-1-
node switch. Similarly, the organization of the switch 
boxes in the left n-1 columns and the bottom 2n-2 rows is 
the same as that for a 2n-1-node switch. Number the input 
ports (ports on the left hand side of switch boxes) from the 
top down to the bottom of the switch boxes in the last 
(right) column as 0, 1, …, 2n-1. Similarly, number the 
output ports (ports on the right hand side of switch boxes) 
from the top to the bottom of the 2nd last column as 0, 1, 
…, 2n-1. The output port j in the 2nd last column is 
connected to input port k at the last column for j ∈ {0, 1, 2, 
…, 2n-1} in according to the following. 
 

1) When 0 ≤ j < 2n-1,  
if j is even, then k := j; 
else k := j + 2n-1 - 1. 

2) When 2n-1 ≤ j < 2n,  
if j is odd, then k := j; 
else k := j - 2n-1 + 1. 
 

Table 8 shows relationship between the values of k and 
their corresponding values of j for a 16-node switch as 
shown in Figure 11 using the formula defined above.  

Table 8. j-k values for scaling up MultiRing from 8 nodes to 16 nodes  

 
 

4.2. I/O of MultiRing Switch 

Similar to the previous subsection, let us number the input 
ports of the switch boxes in the first (left) column as 0, 1, 
…, 2n-1. We call these ports the input ports of the 
MultiRing switch. Furthermore, let us number the output 

r for row
s 
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ports of switch boxes in the last column (right) from the 
top to the bottom as 0, 1, …, 2n-1 as well. These output 
ports are called the output ports of the MultiRing switch. If 
we denote the 2n nodes on the MultiRing by Pi for i = 0, 1, 
…, 2n-1, then we have the following assignment of inputs 
and outputs on the MultiRing switch. 
 

1) The output from Pi is connected to input port i of 
the MultiRing switch for each i ∈ {0, 1, …, 2n-1); 

2) The input to Pk is connected to the output port j 
of the MultiRing switch for each j ∈ {0, 1, …, 2n-
1} in according to a perfect shuffle [5] as follows. 

 
If j is odd then k:= 2n-1 + (j-1)/2, 

  else k:= j/2. 
 
Table 9 shows relationship between the node index values 
of k and their corresponding output values of j of a 16-
node MultiRing switch as shown in Figure 11 using the 
formula for perfect shuffle described above. 

Table 9. j-k values for connecting output ports of a 16-node MultiRing 
switch to nodes  

 

5. Comparison  

Arabnia and Smith designed a switch for the scalable 
MultiRing network in their paper [4]. We compare their 
design with our new design presented in this paper. 

5.1. Switch Boxes 

For a 2n-node MultiRing, both of designs use 2n-1n switch 
boxes. 
 
Each switch box for the old design contains two 
multiplexers, which need at least four AND gates, one OR 
gate and two OR gates for implementation. So in total, 
there are  
 

(4+1+2) × 2n-1n = 7n2n-1 
 
gates needed for switch implementation. 
 
On the other hand, our new switch design requires 
maximum six gates only for switch box implementation as 
shown in Figure 8. This gives a total of 6n2n-1 gates for all 
switch boxes in the MultiRing switch.   
 
Hence, the old design needs n2n-1 more gates than the new 
design for all switch boxes. 

In additional to the gate count, each switch box in the old 
design takes three inputs excluding the control input 
compared to the two inputs only in the new design. If we 
call each input interface on a switch box an input port, 
then the old design again needs n2n-1 more input ports than 
the new design. 
 
As n2n-1 is significantly large even when n is not very big, 
the old design needs a lot more hardware for 
implementation. This can be a big disadvantage in VLSI 
chip design.  

5.2. Control Units 

The old design does not have any gate count in the control 
unit as a single control bit is used for all switch boxes in 
the same column.  
 
Our new design needs additional n(n-1)/2 gates in the 
control unit. But his amount is really small compared to 
the total number of gates needed in the switch design, 
which is 
 

n(n-1)/2 + 6n2n-1. 
 

Hence, the additional gate count is negligible.  

5.3. Wiring for Scaling 

Without modification, re-wiring is needed in the old 
design if more nodes are added to the MultiRing. For 
example, when two existing 8-node MultiRings are to be 
combined to form a 16-node MultiRing, the nodes 
previously plugged into the switches must be unplugged 
and then be re-plugged in order to function properly. 
 
In our new design, to combine two MultiRing into a 
bigger MultiRing, it is no longer necessary to unplug the 
connections of nodes to the switches. All we need to do is 
to plug the ports (output ports) on the back plane of the 
switches to a set of switch boxes without shutting down 
the nodes (see Figure 11 for illustration).  
 
Similarly, when separating an existing MultiRing into two 
smaller MultiRings, the new design does not need the 
connections to the nodes to be unplugged.  
 
As it may not be practical to plug and unplug the 
connections when the node count is large, our new design 
is a more realistic and more efficient. 
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6. Conclusion 

In this paper, we have proposed a new design of 
MultiRing switch. It is scalable, efficient, realistic, doable 
and practical.  
 
The switched has been designed for uni-directional 
MultiRing, which has many applications. One may find an 
application of uni-directional MultiRing to Machine 
Vision in [3].  
 
For a bi-directional MultiRing, the switch organization is 
the same. An acceptable mount of gates must be added to 
the control unit. We will show the detailed design of 
switch for bi-directional MultiRing in another paper. One 
other alternative is to interchange the inputs and outputs in 
the old switch design, and keeps the same amount of gate 
count as the old design.  
 
The next step following the switch design is the research 
work for message passing through the MultiRing switch. 
Various methods for message passing have been proposed. 
We will present a technique for efficient message passing 
in a paper following this one. 
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