
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006 
 
 

 

150 

Manuscript received  June 25, 2006. 
Manuscript revised  June 30 , 2006. 

Research on Modeling the Nonhomogenous Markov Decision Systems with Dynamic Bayesian 
Network 

Guo Junwen ,Qin zheng, Heng Xingchen, 
  

School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China 
 
Summary 
For the purpose of the further wide application of dynamic 
Bayesian networks (DBNs) to many real complex systems, 
a new approach was presented to improve the modeling of 
the Non time homogenous Markov Decision systems with 
DBNs, in which the extended hidden variables were 
introduced into the evolutional process to build Markov 
models required by the hypothesis conditions, a structure 
learning algorithm of DBNs was given from the 
incomplete data set and when the extended hidden 
variables are existed. The sufficient statistics of the 
subsequent time slices were estimated using Bayesian 
probability statistical method, and then the time-variant 
transition probabilities were learned using both of current 
sufficient statistics and estimated sufficient statistics. The 
theoretical analysis and simulation results show that the 
proposed approach is valid. 
Key words: 
Dynamic Bayesian network, Markov model, hidden 
variables, Bayesian probability statistical method 

Introduction 

Bayesian network is known as probabilistic network, 
Bayesian belief network or causal network. It combines 
graph theory with probability to express complex 
uncertainty among random variables. Bayesian Network 
has been developed well as a kind of uncertain reference 
method. 

While Dynamic Bayesian Networks (DBN) [1,2,3,4] is a 
species of Bayesian networks (BN) designed to model 
stochastic temporal processes, which models the stochastic 
evolution of a set of random variables over time. Owing to 
DBN’s significant advantages in describing nonlinear, 
temporal, evolving and uncertain relationships and strong 
ability of probabilistic inference, studies on modeling, 
learning and inference of DBN have been developed 
widely. And also, DBN have been used for many purposes 
in different fields. The widely used Hidden Markov 
Models (HMMs) [5] and Kalman filters could be looked 
upon as the special forms of DBN. Literature [7] showed 
that DBN could be better than HMMs on standard speech 
recognition tasks. 

However DBN is more complex than BN, and a few 
problems of DBN still need to be researched further. In 
order to simplify the modeling, learning and inference of 
DBN, almost all the studies on DBN share two common 
assumptions. One is Markov assumption [6, 8, 9], which 
assumes that the future is conditionally independent of the 
past given the current state. The other is time-invariant 
assumption, i.e., the transition probabilities and 
dependence relationship among variables are independent 
of time. In many complex systems, such as in 
macroeconomic system, disease diagnosis system etc, 
evolution of the observed partial variables does not accord 
with Markov process, although the underlying model 
maybe accord with Markov process. Thus we could not 
establish Markov models with these partial variables. 
Similarly, the transition probabilities usually vary with 
time and do not meet the time-invariant assumption in the 
above complex systems. These two assumptions, to great 
degree, have constrained the application of DBN in these 
systems.  

Literatures [11, 12] introduced hidden variables to 
primary DBN model as partial state information so as to 
build Markov models, and time-variant transfer 
probability model through polynomial curve-fitting 
method. In 1998 Friedman even extended SEM (Structural 
EM) [10] to the DBN structure learning in the presence of 
hidden variables. However, the introduction of hidden 
variables in literatures[11,12] didn’t involve the change of 
state variable set and qualitative dependence relationship 
between state variables with time , didn’t take advantage 
of Bayesian probability method as the base of DBN 
inference to build transfer probability model, and didn’t 
give out experimental results of modeling the complex 
system. While SEM algorithm still didn’t consider random 
variable set and qualitative dependence relationship 
between state variables with time, and didn’t solve the 
problem of local optimum. At present little research work 
on how to relax these three assumptions has been 
developed 

This paper makes efforts to relax the above two 
assumptions, and applies DBN to modeling complex 
systems in which the two assumptions are not satisfied. 
For this purpose, the paper extends the concept of the 
hidden variables described in literature [11], and studies on 
how to construct Markov models with extended hidden 
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variables, how to learn the structure of DBN with hidden 
nodes, and how to build time-variant transition probability 
models have been developed in the paper. The theoretical 
analysis and experiment demonstrate the validity of the 
methods. 

2. Dynamic Bayesian Network Model 

A BN describes a probability distribution over a fixed set 
of variables. DBN extends this representation to model 
temporal processes. We use capital letters, such as X, Y,Z 
for variable names and lowercase letters x, y, z to denote 
specific values taken by those variables. Sets of variables 
are denoted by boldface capital letters X, Y, Z etc, with 
sets of values denoted by boldface lowercase letters x, y, z 
etc. Assume that changes occur between discrete time 
slices that are indexed by the non-negative integers and 
that X = {X1, X2, …Xn} is a set of attributes that evolves 
with the process changes. Xi[t] is a random variable that 
denotes the value of the attribute Xi at time t, and X[t] is 
the set of random variables Xi[t]. The probability 
distribution over all the random variables can be 
represented as follows: 

])],...,X[t-X[...P(X[t]])X[]])P(X[P(X[
]...X[t])],X[P(X[

11121
21

=
          (1) 

Obviously, such a distribution can be extremely 
complex. For simplicity of DBN’s modeling, learning and 
inference, two assumptions are introduced. One is Markov 
assumption I(X [t + 1], {X [1]… X [t -1]} |X[t]), which 
means that the state variables at each time slice are only 
dependent on the state of the last time slice. Given the 
Markov assumption, the Eq. (2) can be rewritten as:  
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Within a finite interval 0...T, DBN can be notionally 
“unrolled” into a BN over X[0]…X[T].The joint 
distribution over X[0], . . . ,X[t] is: 

∏
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The other assumption introduced is time-invariant 
assumption, i.e., the transition probability P(X [t + 
1]|X[t]) and the dependence relationship among variables 
are independent of t and does not vary with time. Given 
the assumption, a DBN can be simplified further into two 
parts: A prior network B0 that specifies a distribution over 
initial states X[0]; and A transition network B→ over the 
variables X[0]∪X[1] that is taken to specify the transition 
probability for all t. Thus, a DBN can be defined by a pair 
(B0, B→).The transition probability can be computed as 
follows: 

]))1[(1((

01 
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Where pa(Xi[1]) denotes the value of the parent node 
set of Xi[1]. Hence the joint distribution of a DBN over 
X[0], . . . ,X[T] can be simply represented as follows: 

 ])X[] (X[]) P (X[P]...X[T])=P(X[ T
BB 0100

0 →    (5) 
The introduction of the above two assumptions 

makes the DBN’ modeling and learning be very easy. 
Only two very simple networks-prior network and 
transition network have to be handled. There exist many 
real application scenes in which these assumptions are not 
satisfied, so it is necessary to study the modeling problem 
of DBN in these application scenes. The solutions are to 
make the Markov model by adding extended hidden 
variables to the model as for the process that is not 
Markov. Furthermore, as for the transition probabilities 
that vary with time, they are constructed directly from 
dataset time-variant transition probability models. 

3. DBN Model with Hidden Variables 

Because it is not sure that the values of all variables in 
DBN model can be observed in some real applications, 
such as disease diagnose, situation assessment, tracking 
mobile robot and so on. Though the DBN model can 
satisfy the process, partial variables can only be observed 
and these partial variables can’t assure that the variables in 
t time slice are irrelevant with these variables in t+1 time 
slice. So the Markov assumption isn’t satisfied and the 
model which is built with these partial variables will not 
be Markov model. We consider adding hidden variables to 
evolutional process. Here a formal definition is given as 
follows. 
Definition 1 If some accessorial variables are added to the 
DBN model as partial state information the dependence 
relationship of the variable set on the variables in several 
foregoing time slices could be transferred through the 
accessorial variables. So the variable set in each time slice 
is directly dependent on the variables in the last time slice, 
and the Markov assumption is satisfied. The added 
accessorial variables are called hidden variables.[11] 

 

Fig. 1 An example of adding hidden variables to construct Markov model 
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Fig.1 is an example of adding hidden variables to 
construct Markov model. Where A1,A2, . . . , A7 represent 
the evolution sequence of variable A in 7 time slices, and 
the variable Ai (i = 1, 2, . . . , 7) in each time slice is 
directly dependent on the variables in the preceding m 
time slices (Here, m equals to 3.). Hence, the evolution 
sequence does not meet the Markov assumption. Our 
solution to this problem is to add hidden variables, such as 
H1,H2, . . . , H7 in figure1. Then a new evolution 
sequence (A1,H1), (A2,H2), . . . , (A7,H7) is formed, 
which satisfies Markov process and at the same time, can 
represent the dependence relationship among A1,A2, . . . , 
A7 through the hidden variables H1,H2, . . . , H7. 
Theorem 1 After hidden variables are introduced, no 
matter what long original DBN model’s evolution 
sequence is, as long as the evolution process doesn’t 
satisfy the Markov assumption, we can construct Markov 
model through adding hidden variables without increasing 
the complexity of the original DBN model. 
Proof: It is proved that the complexity of the network 
model is the exponential function of the degree of the 
model (the maximal summation of in-degree and out-
degree of each variable in the model) [13]. 

We use the m to represent the degree of model, the 
exponential function f(m) to represent the complexity of 
the network model and the l  to represent the evolution 
sequence length. Suppose that l ≥ 2 n + 1, the original 
DBN’s degree of model m is equal to 2*n. After hidden 
variables are introduced, it is confirmed that the degree of 
model m’ is equal to 4 no matter what value l takes as 
shown in figure1. Therefore, if n > 2 and m >= m’, f(m’) 
<= f(m) can be gotten by the character of exponential 
function. So the original model’s f(m) doesn’t 
increase.( Please notice that n= 2 is the minimal value 
causing that the evolution sequence does not meet the 
Markov assumption). 

Another implied assumption of DBN is that random 
variable set and qualitative dependence relationship 
between state variables don’t vary with time. However, if 
this assumption is followed strictly in some complex 
systems, structure learning of DBN is hard to fit the real 
probability distribution. Hence, the paper extends original 
DBN model shown in Fig. 2. 

 
 
 
 
 
 

 
 
 
 
 

Fig. 2    The Extended DBN Model 

The structure of prior network B0 and transition 
network B-> vary in different time slice. Firstly, the 
numbers and definitions of random variables in every time 
slice are different. For example, there are four variables 
X1[1]，X2[1]，X3[1]，X4[1] in the time slice 1, but these 
variables are substituted by X2[2]，X4[2]，X5[2] in time 
slice 2. Secondly, the dependence relationship between 
X1[1] and X3[1] in time slice 1 doesn’t exist in time slice 2. 
So it is necessary to learn the structure of initial network 
B0 and transition network B-> in every time slice again. To 
adapt to the character of change of DBN structure in 
evolution process, the paper extends the concept of the 
hidden variables described as follows:   
Definition 2 Suppose that a random variable v begins to 
have effect on DBN’s global probability distribution pg or 
have no effect on pg any more, only when DBN’s a local 
probability distribution pl reaches the specified state s or 
the specified evidence e occurs. And before or after that, 
the random variable v isn’t considered and isn’t involved 
in the evidence propagation among nodes. So the random 
variable v is also called hidden variable.     

It is concluded from definition1 and definition2 that 
the hidden variable has two functions: 1) transferring 
dependence relationship between variables. 2) satisfying 
the change of the number of the variable set and the 
qualitative dependence relationship among variables with 
time. For the structure learning of DBN with these hidden 
variables, the paper introduces genetic algorithm to EM 
algorithm, the EM_GA algorithm so as to solve the 
problem of local optimum and speed up the convergence 
of EM algorithm. Furthermore, the changes of DBN 
structure with time are considered through the distribution 
of all random variables on whole time slices given by 
experts in advance and learning the structure iteratively 
over every time slice . 

As soon as a time slice t comes, the structure of DBN 
begins to be updated. At first the variable set in the time 
slice t is updated according to the distribution of variable 
set over all time slices provided by experts. Then, if the 
current sample data of random variable set are complete, 
DBN’s structure is learned using classical BDE algorithm, 
otherwise using SEM_GA algorithm. After that, if the 
time slice t doesn’t end up, these sample data and prior 
information of next time slice will be supplemented and 
necessary sampling initialization will be processed ahead. 
When the next time slice comes, the structure learning 
continues again. 

The learning of DBN composes of two parts. One is 
learning the structure of B0; the other is learning the 
structure of B->.The whole process of learning the B0 using 
SEM-GA algorithm is as follows: 
Step1 Build initial network structure group Q, complete 
the incomplete dataset D using the current network B0

c 
and EM algorithm, and get the complete dataset Dc. 

X2[0

X3[0

X1[1

X2[1

X4[1

X3[1

X2[2

X4[2

X5[2

X2[3

X4[3

X5[3

X6[3

X1[0
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Step2 As for the current evolutional group Q, do the 
crossover or mutation operations according to the 
crossover probability Pc and mutation probability Pm, and 
get the evolved group Q’. 
Step3 As for each network B0 in Q’, examine if network 
B0 is a directed acyclic graph. If it is not, network B0  is 
assigned a smaller fitness; otherwise calculate the fitness 
FB0 according to the following formula: FB0 =MDL 
score(B0 : Dc),  where MDL score (B0: Dc) is the Minimal 
Description Length (MDL) score of network B0 and 
dataset Dc. 
Step4 Choose from Q’ λ individuals have the highest 
fitness to form the next generation Q, where λ represents 
the size of the evolutionary group. 
Step5 Select B0’, make F B0’’_ = Max arg(F B0). If F B0’> 
F B0

c, then B0
c = B0’_. 

Step6 If the terminative condition of the algorithm is 
satisfied, then quit; otherwise, go to Step 1 and continue 
the above process. 

The process of learning the B-> resembles the process 
of learning the B0.Because we can consider DBN’s 
structure learning as combination optimization problem of 
random variables in DBN model with a score metric and 
this problem resembles TSP, the paper introduces 
operators used in TSP to SEM_GA algorithm and good 
effect is gotten in final simulation experiment. 

4. Time-variant Transition Probability 
Models 

As the structure of the transition network B-> varies with 
time slices, transition probabilities vary with them. All of 
those do not meet the time-invariant assumption. Learning 
DBN will become much more difficult. As we have 
known, the probabilistic learning of BN or DBN is in 
essence the compromise of the prior belief and the 
sufficient statistics from dataset. Since the prior belief 
could be given by users or field experts, the key to learn 
time-variant transition probabilities is to obtain the time 
variant sufficient statistics from dataset [14]. 

The time-variant sufficient statistics can be 
decomposed into two sets. One includes the sufficient 
statistics of current time slices in the dataset, which could 
be directly computed from the dataset. The other contains 
the sufficient statistics of posterior time slices not existing 
in the dataset, which could not be directly computed from 
the dataset. Our solution is to estimate the sufficient 
statistics of posterior time slices from the sufficient 
statistics of the current time slices using Bayesian 
probability statistics method. At last, we can learn the time 
variant transition probabilities with both current sufficient 
statistics and estimated sufficient statistics. The process of 

learning time-variant transition probabilities is shown in 
Fig. 3. 

The sufficient statistics of the discrete random 
variables can be stored in conditional frequency matrix S. 
All the conditional frequency matrixes comprise a matrix 
sequence S0, S1,…, ST , where St(t = 0, 1, . . . , T) 
represents the conditional frequency matrix at the time 
slice t. The element Sijt(i, j = 0, 1, . . .,N; t = 0, 1, . . . , T) in 
the matrixes denotes the times of that X[t + 1] takes the ith

 
value in the dataset given X[t] being in the jth state. For 
each position (i, j) in the matrixes, the elements Sijt(i, j = 0, 
1, . . .,N; t = 0, 1, . . . , T) also form a value sequences. So 
we must consider the problem of how to estimate theses 
values of the elements Sijt in the subsequent slices (t > T) 
that do not exist in the current value sequence. 

The paper expends the general process of Bayesian 
probability statistical method to estimating the value of 
element Sijt in posterior time slice t (t>T). Now the above 
problem can be transformed into estimating the value of 
element Sijt in the (T+1) th time slice through these values 
of elements Sijt in foregoing T time slices. Some 
definitions are defined as follows: 
Definition 3 The elements sequence Sij0,…SijT which is 
composed of elements Sijt of matrix S in T time slices is 
represented by the variables set X=(X1,…….XT).It is 
assumed that a stochastic sample D={ X1,…….XT } can be 
gotten from the physical joint probability distribution of X. 
D’s a element X i denotes sample’s an observed value. X i 
is called a case. 
Definition 4   If random variable set X’s m kinds of states 
correspond to m kinds of model structure, and according 
to assumptions of m kinds of model structure decomposed 
X’s physical joint probability distribution is expressed by 
mh , p(m) is called as probability distribution of  m kinds 
of model structure. 
Definition 5  If there is a variableΘm which takes vector 
value corresponding to a parameter vector θm for every 
kind of model structure m ,uncertainty of θm is expressed 
by a prior probability density function p(θm|m). 

Given a stochastic sample set D, the posterior 
distribution of m and θm will be computed with Bayesian 
probability statistics method as follows: 

∑
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It is assumed that the physical joint probability 
distribution of variables set X=(X1,…….XT) can be applied 
to certain model structure m. 

∏
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=
n

i
iiim mpaxpmxp
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),,(),( θθ           (8) 

Where p(xi|pai , θ i ,m) is the power series. The pai 
represents the modeling of the corresponding variable xi’s 
parent variables. The θ i represents local possible 
parameter of variable xi. When every Xi∈X is discrete 
variable, it has ri possible values xi

1,…. xi
ri, and every kind 

of local possibility is a polynomial collection. A joint 
distribution of X to each modeling pai is: 
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For convenient description, the following definition is 
made: 
θij =(θij1，θij2，…，θ

iijr )  

 (i=1, 2,…，T; j = 1，2，…，qi ) 
After the above local distribution function is given, two 
assumptions are needed so that the posterior distribution 
p(θm| D, m) can be computed in closed form. They are 
described as follows: 
(1) The stochastic sample set D is complete. 
(2) Each parameter vectors θi j is independent of others. 
So every parameter vector θ ij can be updated 
independently. It is assumed that every parameter θij has 
prior the Dirichlet distribution Dir（θi j |αi j1, αi j2,…,αi 

jri）. So posterior distribution can be gotten as follows: 

),...,(),( 21 ii
ijrijrijijijij NDirmDp +++= αααθθ      (10)                           

Where Nijk is the number of cases in D when Xi=xi
k and 

Pai=pai
j. 

Now some important predications can be gotten using the 
mean of θm. For example, we estimate the value of the 
element Sijt  in the (T+1)t h  time slice as follows: 
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The mathematics expectation can be computed as follows 
by use of the parameter θm which is independent of D: 
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The final result is: 
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Because unconstraint multinomial distribution belongs to 
the family of index, the computation of the equation (13) 
is simple. So the value of the element Sijt  in the (T+1)th 
time slice can be gotten, and then the complete condition 
frequency matrix St of the (T+1)th time slice can be gotten 
through collecting all estimated values of these elements 
Sijt (i,j=0,1…N,t=T+1) .At last, we can learn the time variant 
transition probabilities with both current sufficient 
statistics and estimated sufficient statistics. 

5. Experimental Analysis 

For validating the effect of the new methods, a preliminary 
simulation experiment for the battlefield situation 
assessment has been made. The battlefield situation 
simulated by using the battlefield scenario editor software 
which is developed by us is shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 The simulation scenario for battlefield situation 

In Fig. 3 the blue rhombic frame represents enemy air 
fleet, the red star represents the target which we need to 
protect from being assaulted, and the black bold line 
represents the sea route of the enemy naval ship. For 
recognizing the tactics intention of enemy in emulation 
environment, the dynamic Bayesian network model for 
situation assessment is constructed by using the improved 
method proposed in the paper, which composes of the two 
kinds of state variables: character events and classified 
assumptions of battlefield situation, and then the DBN’s 
approximate reference mechanism is applied to identify 
the situation classified assumption with the most posterior 
probability. The part of this situation assessment model is 
shown in Fig. 4, in which the node E represents the 
character event and the node S, P and R represent three 

Target A 

Air fleet 1

Air fleet 2
Sea route

Sea route 
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different situation assumptions: assault, feint and recovery 
respectively. Here, the change of the character event node 
E’s states are caused by the change of the hidden nodes’ 
states, and there is not direct relationship among these 
character event nodes that are all conditionally dependent 
on three situation classified assumptions nodes above 
respectively. 
 

 

Fig. 4 The dynamic Bayesian network model for situation assessment 

We choose two random variables S(joint assault), 
P(feint), which have important value for assessing the 
whole battlefield situation, to be made the error analysis. 
As is shown in figure5 and figure 6, the random variable S 
means the enemy air fleet 1 and 2 will assault target A or 
B simultaneously; the random variable P means an enemy 
air fleet pretends to assault our target A., after puzzling 
our commanders, the enemy air fleet tries to assault target 
B together with the other air fleet. The random variable S 
has three states: assaulting target A simultaneously, 
assaulting target B simultaneously and assaulting target A 
and target B simultaneously respectively; The random 
variable P has two states: assaulting target A but 
pretending to assault target B and assaulting target B but 
pretending to assault target A. The results of the two 
variables’ error analysis are shown in Fig. 5.   

 

 
Time Segment（second） 
(a) 100 situation samples 

 
Time Segment（second） 
(b) 500 situation samples 

Fig. 5  The average relative errors of state variable S and P 

Fig. 5(a) shows the average relative errors of the 
edge probabilities of variable S and P using the above 
algorithms when 100 situation samples are chosen. Fig. 
5(b) shows the average relative error of the edge 
probabilities of variable S and P when 500 situation 
samples are chosen. This experiment shows that when the 
more samples are chosen, the better effect of the new 
methods is obtained and the errors in every time segment 
can be endured in principle. Meanwhile the wavy scope of 
errors becomes smaller and smaller with time running and 
the speed of convergence becomes faster when more 
samples are chosen. This indicate exactly that when our 
commanders know more and more information of enemy 
air fleets with evolvement of the battlefield situation, they 
can recognize enemy intention more accurately. 

The experiment shows that extended DBN can model 
effectively complex battlefield situation, which builds 
stability for the application of DBN in other complex 
system. But some problems are also found in experiment, 
including that how to speed up the convergence of average 
relative error to predict enemy intention with less time, 
how to solve the problem of the large errors with only a 
few samples, and whether a general multiple linear 
regression model exists, which describes the relationship 
of the number of sample, average relative errors and time 
slices. 

6. Experimental Analysis 

Almost all the current studies on DBN share the two 
common assumptions, Markov assumption and time 
invariant transition probability assumption. The paper 
proposes the solution to modeling the complex system 
with DBN when the two assumptions are not satisfied. 
These two assumptions, to great degree, have constrained 
the application scenes of DBN. This paper makes efforts 
to relax the two assumptions so as to construct Markov 
models with the extended hidden variables and build time-
variant transition probability models using Bayesian 

s 
p Average 

Relative  
Errors
（％） 

s 
p Average 

 Relative 
Errors

（％） 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.6, June 2006 
 

 

156 

probability statistics method. Meanwhile an effective 
structure learning algorithm for DBN with extended 
hidden variables is also proposed. Finally a preliminary 
experiment designed to test the soundness of the methods 
proposed. 

The experiment shows that improved DBN model can 
effectively model the complex battlefield situation and 
realize the prediction of enemy intention in advance. The 
research work of the paper makes a little contribution to 
the application of DBN in other complex systems. The 
future work is to research further several qualitative and 
quantitative problems found in experiment and do 
experimental analysis with real complex systems. 
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