
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

18

Manuscript received July 5, 2006.
Manuscript revised July 25,, 2006.

On synchronization of threads in the Java language
using SynchExpressions library

Łukasz Fryz, and Leszek Kotulski,

Institute of Computer Science Jagiellonian University, ul. Nawojki 11, 30-072 Cracow, Poland

Summary
We present a library implementing a new general-purpose
synchronization mechanism for Java threads. The mechanism
extends the concept of monitors by allowing to wait for
fulfillment of logical expressions composed of elementary events.
The paper describes the implementation and illustrates it with
examples of usage.
Key words:
Java, concurrency, synchronization, monitors

1. Introduction

One of the strengths of the Java language [1] is that it
provides facilities for cross-platform concurrent
programming. These facilities consist of means for
creating multiple execution threads and for
synchronization of their work. Java’s native
synchronization mechanisms are however very low level.
They are not only far away from the most elegant
Dijkstra’s guarded commands proposal [3] but also from
the simple Hoare’s monitors proposal [4]. Keedy [5]
describes how the latter model fails when we want to
delay a task until an alternative or conjunction of
elementary events is fulfilled.

Gorazd and Kotulski [6] suggest a notation that allows
to effectively suspend a task (inside a monitor-like
construct) until a composite logical expression of the
fulfillment of elementary events has been evaluated as true.
The paper presents an implementation of the mentioned
solution as a Java library called SynchExpressions 1 .

2. Standard Java synchronization
mechanisms and the SynchExpressions
library

As mentioned in the introduction, Java’s native
synchronization mechanisms are rather low level. A lock is
associated with every Java object, and threads can acquire

1 The library can be obtained by writing to author:
fryz@ii.uj.edu.pl

it by executing a synchronized block. Only one thread
is allowed to own a particular lock at any given time. Once
a thread gets object’s lock’s ownership, it can suspend its
execution by calling the wait() method on the object, or
notify() some other, waiting, thread that it can
continue its execution. Thus, Java implements a simplified
concept of monitors.
Let us note that:
• this solution lacks the ability to declare multiple

condition variables, making it difficult to selectively
wake threads awaiting specific conditions,

• Java does not guarantee queuing of waiting threads—
a thread to be notified is selected in an unspecified
manner.

The SynchExpressions library removes these limitations
by providing its own version of monitors, that :
• allows to declare synchronization entities (called

elementary events);

• allows to suspend the current thread until a logical
expression combining fulfillment of elementary
events has been evaluated as true;

• the threads waiting for a particular event are arranged
in a queue, so the order of waking is the same as the
order of suspending;

• fulfillment of the given event will be signaled
explicitly by an operation named notity().

Thus, the library does not only implements the classic
monitor model, but also extends it by providing the
possibility of waiting for fulfillment of compound logical
expressions composed of elementary events. By raising
the abstraction level of synchronization constructs the
library makes it easier to write correct concurrent
programs.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

19

3. SynchExpressions as a tool for basic
synchronization problems.

As the first step we suggest to analyze the solution of the
classic bounded buffer problem. Here, multiple threads
can insert elements into a buffer and extract elements from
it. The elements have to be extracted in the same order as
they were inserted. When the buffer is empty (no elements
have been inserted or all have been extracted) and a thread
requests extracting an element then the thread has to be
suspended until new elements arrive. Similarly, an attempt
to put a new element into a full buffer has to be blocked.

public class Buffer extends Monitor {
 private byte[] buf;
 private int inIdx, outIdx;
 private int capacity, size;
 public Buffer(int capacity) {
 this.capacity = capacity;
 buf = new byte[capacity];
 size = 0;
 inIdx = 0;
 outIdx = 0;
 }
 protected void declareEvents() {
 declareEvent("NOTEMPTY");
 declareEvent("NOTFULL");
 }

 public synchronized byte get() {
 if(size == 0) {
 wait("NOTEMPTY");
 }
 byte res = buf[outIdx++];
 outIdx = (outIdx + 1) % capacity;
 size--;
 notify("NOTFULL");
 return res;
 }
 public synchronized void put(byte b) {
 if(size == capacity) {
 wait("NOTFULL");
 }
 size++;
 buf[inIdx] = b;
 inIdx = (inIdx + 1) % capacity
 notify("NOTEMPTY");
 }
}

Some comments to the example:
• The Buffer class extends SynchExpressions

library’s Monitor. The latter class is a cornerstone
of the library. It provides support for declaring events,
issuing them, and for waiting for fulfillment of
expressions.

• The declareEvents() method introduces the
elementary events definition for the created monitor;

• Both put() and get() methods are declared as
synchronized. This is necessary due to the way
SynchExpressions library’s mechanisms are
implemented with Java’s synchronization primitives.
Generally, all the methods of Monitor’s subclasses

should be synchronized, except for the methods
that are always called from within other methods—
one such example is declareEvents(), which is
only called from Monitor’s constructor and thus it
is not required to be synchronized;

• The threads are suspended by a call to wait(...)
and resumed by calling notify(...). These
methods take as arguments, respectively, the
expression to be waited for and the event to be issued.
In the above example, the expressions are simply
elementary events, but they can take a more
complicated form.

4. Monitors and events

All the library’s facilities are provided through
protected methods of the Monitor class. Thus, it is
necessary to extend this class in order to use them.
Monitor maintains a structure for declared events, called
synchronizing expressions, history of the notified events
and offers the methods to modify it.

4.1 Free and essential events

In the most of the synchronization problems (like the one
mentioned above) we assume that event notifications
cannot be lost (from now on we will call this kind of
events essential events), otherwise the synchronization
fails. The introduction of synchronization conditions using
both and and or operators can violate this assumption.
Let us consider the following statement:

wait("QA and QB or QC");

If both ‘QA’ and ‘QC’ events have been notified
sequentially, then the thread executing the wait operation
will be resumed, but the ‘QA’ event has been
superfluously consumed. SynchExpressions offers here
two possibilities:
• the expression can be dynamically reduced in the way

that excludes losing the notifications,

• one can declare ‘QA’ and ‘QB’ as free events whose
notification can be lost.

In the first case, after the essential event ‘QA’ is received,
the expression will be reduced to just "QB", so ‘QC’
event notification will be relayed to another thread. The
complete semantics of this reduction is presented in [6]
and in the documentation of the library. Let us however
note that no reduction is necessary when only one type of

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

20

operators (either and or or) has been used in the wait
expression.

In the real world, one can find examples of events that
appear repetitively (e.g. clock signals) and can be lost
without any negative consequences to synchronization;
such events are the motivation for introduction of free
events.

4.2 Declaring events

A concrete subclass of Monitor must inform the base
class what events it is going to manage. This is
accomplished by overriding an abstract method
declareEvents. In its body (and nowhere else) the
methods declareEvent and declareFreeEvent
can be called in order to declare the appropriate type of
event. These methods take the name of the event to be
declared as their argument and (optionally) return an
instance of the Event class, which can be used as a
handle to the newly declared event.

class MyMonitor extends Monitor {
 private Event qc; ...
 public MyMonitor() {
 //declareEvents() is called by the super
constructor
 ...
 }
 public void declareEvents() {
 declareEvent("QA");
 declareFreeEvent("QB");
 qc = declareEvent("QC");
 } ...
}

Here we declare a new Monitor subclass with three
events— two essential ones, called ‘QA’ and ‘QC’, and a
free one named ‘QB’. The example also demonstrates how
to store a reference to an instance of Event allocated for
a given event name. This reference can later be used for
issuing events.

There are some restrictions on the body of
declareEvents:
• Each event declared for a given Monitor subclass

has to have a unique name. If this condition is
violated, an exception will be thrown.

• At least one event has to be declared. Failing to do
this causes an exception to be thrown upon
construction of the monitor’s instance.

4.3 Issuing events

In order to notify other threads about some events that
took place a thread has to use the notify() method of
the Monitor class. The method takes a single argument

which can be either an event name or an instance of the
Event class.

The following fragment demonstrates both methods
(we assume that the monitor is declared as in the previous
section). It also shows how an Event object can be
acquired by calling the method getEventByName() if
it hasn’t been remembered in declareEvents().

public synchronized void someMethod() {
 Event qa = getEventByName("QA");
 notify(qa);
 notify("QB");
 boolean deliveredC = notify(qc);
}

It is possible that no tread is currently interested in an
issued event, so the thread notifying an event can check
whether the event it generated has been consumed. For
this reason notify() returns a boolean value—it’s
true if the event has been consumed; otherwise it’s
false.

5. Waiting for fulfillment of conditions

Suspending execution of threads until some desired
conditions are met is the basic functionality of the
SynchExpressions library. In order to suspend its
execution, a thread has to call the wait() method of the
appropriate Monitor. The expression for whose
fulfillment we want to wait has to be provided as a
String argument. For example:

wait("QA and QB or QC rep 2");

causes suspending the execution until either events QA and
QB are issued or event QC is issued twice.

5.1 A grammar for wait expressions

The syntax for correct wait expressions is given below:

expression ::= disjunction
disjunction ::= conjunction (or conjunction)*
conjunction ::= simpleExpr (and simpleExpr)*
simpleExpr ::= ID (rep POSITIVEINTEGER)?

Symbols ID and POSITIVEINTEGER denote,
respectively, a name of one of the events declared for the
Monitor and a positive integer defining number of
repetitions of this event required for resuming the thread.

The POSITIVEINTEGER must be a constant—
waiting for a number of event occurrences determined by
a value of a variable is not directly supported. Such
behavior can however be simulated by dynamic
construction of the String representing the wait
expression. For instance:

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

21

int i=3;
wait("QA rep "+i);

5.2 Preparsed expressions

The process of parsing a String representing expression
is relatively expensive. Thus, if the program requires
frequent waiting for the same expression, it is desirable to
reduce this overhead.

For this reason, the library provides a facility to create
expressions in preparsed form, which can be used for
multiple wait() calls. In order to create such a form, the
createParsedExpression() method has to be
called. It returns an instance of the ParsedExp-
ression class that can be used instead of a String as
an argument to wait(). The following example
illustrates this:

ParsedExpressin pexpr =
 createParsedExpression("QA and QB or QC");
wait(pexpr);

Of course, it makes no sense to create a parsed expression
before every wait call—usually they should be created
only once, for example in the constructor.

A String representation of the
ParsedExpression can be retrieved using the
toString() method. Additionally, it is possible to
factor a ParsedExpression into objects representing
its respective parts. This ability is provided by the
getAlternatives() method. It returns an array of
Disjunct objects, each representing one of the
possibilities that can wake a thread waiting for fulfillment
of the expression. Let’s look at an example:

ParsedExpression pexpr =
 createParsedExpression("QA and QB or QC");
Disjunct[] alters = pexpr.getAlternatives();

Here, a two element array is created – its first element
represents the QA and QB alternative and the second one
the QC part.

5.3 Determining the cause of resumption

The possibility of waiting for fulfillment of an alternative
of conditions makes it uncertain for the resumed thread
why exactly it has been woken. In some circumstances,
this knowledge can be vital to determine the further course
of actions. Thus, it is necessary to make it possible for the
thread to check which of the wait expression’s
alternatives caused the thread to be awoken.

In order to provide this information, the wait method
returns an instance of the Disjunct class as its result. It
can be inspected through calling toString(), or it can

be compared with elements of an array returned by the
getAlternatives() method of ParsedExp-
ression. This comparison is performed by the
equals() method.

The following code demonstrates how these
mechanisms can be used:

ParsedExpression pexpr =
 createParsedExpression("QA or QB");
Disjunct[] alters = pexpr.getAlternatives();
Disjunct cause = wait(pexpr);
if(cause.equals(alters[0])) {
// resumed by QA
} else if (cause.equals(alters[1])) {
// resumed by QB
}

6. The final example

6.1 Problem description

The following example outlines the properties and
expressiveness of the library. The example concerns the
situation where several threads produce some partial
results (there are several types of these). Then, other
threads consume the partial products to assemble a final
one.

To be more specific, let us assume that there are 3
types of partial results—A, B and C. Also, there are 2
kinds of final products, the first one is a result of
combining A with B, and the second one needs B and C.

Furthermore, we assume that the relative speed at
which A, B and C are produced cannot be determined in
advance, so it is desirable for the ‘assembler’ threads to be
universal (capable of producing both kinds of final
products, depending on the resources currently available.)

6.2 SynchExpressions solution

public class AssemblyMonitor extends Monitor {
 public void declareEvents() {
 declareEvent("A");
 declareEvent("B");
 declareEvent("C");
 declareFreeEvent("READY");
 }
 public static final int PRODUCT_1 = 1;
 public static final int PRODUCT_2 = 2;
 public synchronized void producedA() {
 boolean delivered=notify("A");
 while(!delivered) {
 wait("READY");
 delivered=notify("A");
 }
 } ... //the same for B and C...
 public synchronized int waitForWork() {
 while(notify("READY"));//wake producers

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

22

 Disjunct res=wait("A and B or B and C");
 if(res.toString().equals("A and B")) {
 return PRODUCT_1;
 } else {
 return PRODUCT_2;
 }
 }
}

7. Conclusions

The low level nature of Java’s synchronization has been
identified as a weakness and many solutions were
proposed. Most of them revolve around the idea of
extracting frequently used synchronization patterns, like
blocking queues and worker thread pools, and providing
their implementation through libraries. A notable example
is Lea’s Concurrency Utilities package [2], which has
been included as a part of standard library in release 1.5 of
Java.
The SynchExpressions library attempts to solve this
problem in a different way. Instead of solutions to specific
synchronization scenarios it provides a more expressive
general-purpose mechanisms.

References
[1] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The

Java Language Specification Second Edition. Addison-
Wesley, Boston, Mass., 2000.

[2] Lea, Doug. Concurrent Programming in Java: Design
Principles and Patterns, second edition, Addison-Wesley,
1999.

[3] Dijkstra E.W. Guarded Commands, Nondeterminancy and
Formal Derivation of Programs. Comm. A.C.M. 1975,18,8.

[4] Hoare C.A.R. Monitors: an operating system structuring
concept Comm. of A.C.M. 1974, 17, 10, pp. 549–557

[5] Keedy J.L. On Structuring Operating Systems for Monitors.
The Australian Computer Journal vol.10, no 1 (February
1978), pp. 23–27.

[6] Gorazd T., Kotulski L. Process Synchronization with Help
Composite Conditions of Direct Signals Preprint, II UJ,
1997

Łukasz Fryz received the M.S. degree in Computer Science
from Institute of Computer Science, Jagiellonian University in
2002. Since 2002 he is a Ph. D. student there. His research
interests include graph grammars, distributed computing and
visual languages.

Leszek Kotulski received:

• the M.S. degree in Computer Science from Institute of

Computer Science, Jagiellonian University in 1979,
• the Ph.D. degree in Computer Science from AGH University

of Science and Technology 1984,
• DSc degree in Theoretical Computer Science from Wroclaw

University of Technology in 2002.

He works as Associate Professor in Computer Science
Department, Jagiellonian University. His research interests
include graph grammars, foundation of distributed computing ,
agents systems and software development methodology.

