
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

30

Synchronization in an Embedded DBMS Environment

Sang-Wook Kim

Division of Information and Communications
Hanyang University, Korea

Abstract — The embedded DBMS is a lightweight DBMS

for effective management of quite small databases contained
in tiny mobile devices. Synchronization is a core function of
the embedded DBMS to preserve the consistency of data
replicated in the server and client databases. This paper
presents a framework for synchronization in embedded DBMS
environment. We first address key issues for realizing
synchronization, and then propose solutions to them obtained
from our development. The main issues touched here are (1)
classifying conflicts, (2) identifying changes in a client
database, (3) detecting conflicts, and (4) resolving conflicts.
The proposed framework would help reduce the trial-and-
errors of embedded DBMS developers in implementing their
synchronization server.

Index Terms — conflict, data consistency, data replication,
embedded DBMS, synchronization.

I. INTRODUCTION

HE advent of the post-PCs' era makes small-sized
mobile devices such as personal digital assistants(PDA),

mobile phones, hand-held PCs(HPC), and pocket PCs(PPC)
ubiquitous in the world. The advances of such mobile devices
combined with wireless Internet technology also enable people
to enjoy a lot of useful information regardless of times and
locations. The embedded database management system
(embedded DBMS) is defined as a light-weight DBMS that
targets effective management of small databases stored in such
mobile devices[1-5].

A mobile device equipped with an embedded DBMS has a
small capacity for storage, and thus is not suitable for
managing a large database shared by a large number of users.
Instead, in embedded DBMS environment, a server DBMS
maintains such a large server database, and an embedded
DBMS manages small data, a part of the server database,
downloaded from the server DBMS. This data downloading
makes the same data stored in both of the server and
embedded DBMSs, thus incurs data replication.

This replicated data can be independently updated by both
the server and embedded DBMSs. If such updates are not
consistently applied into the databases maintained by both
DBMSs, applications referring to the data go into the wrong
way due to the problem of the data inconsistency. The
synchronization is a core function of the embedded DBMS

that is in charge of the consistency of the replicated data in
both sides of DBMSs.

This paper discusses synchronization in embedded DBMS
environment. Some commercial DBMS vendors provide
embedded DBMSs that basically support
synchronization[6][9][14][16]. However, for other developers,
it is hard to refer to their technical solutions in detail since
they just briefly describe their functions rather than solutions
in a form of a brochure or a manual.

Embedded DBMS Team at 4DHomeNet Inc. and Data &
Knowledge Engineering Lab. at Kangwon National
University1 have been working together under the support of
the Ministry of Information and Communications in Korea to
develop an embedded DBMS that targets mobile devices and
information appliances. The purpose of this paper is to share
key issues and our solutions obtained from developing our
synchronization manager with other developers or scientists
working in the similar area. This paper proposes a framework
for synchronization in embedded DBMS environment. We
first point out major issues to be solved for supporting
synchronization, and then present our approaches as solutions
to them.

This paper is organized as follows. As a background,
Section II defines a typical synchronization model for
embedded DBMS environment, and classifies types of
conflicts. Section III suggests the design goals that our
synchronization manager tries to meet. Section IV presents
the data structures, synchronization steps, and conflict
detection & resolution strategies of our synchronization
manager. Finally, Section V summarizes and concludes this
paper.

II. BACKGROUND
As a background of this research, this section briefly

explains a synchronization model and types of conflicts in
embedded DBMS environment.

A. Synchronization
A typical synchronization model in embedded DBMS

environment is shown in Fig. 1. A number of clients are
connected to a server via the wired or wireless network. A
mainframe computer or a workstation would be considered as

1 The author’s prior work.

T

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

31

Fig. 1. Embedded DBMS Environment.

Fig. 2. The TS- and OV-Methods.

a server depending on the weight of applications, and small-
sized mobile devices such as PDAs, HPCs, PPCs, and mobile
phones would be the typical clients.

The server manages the server database shared by all the
clients via the server DBMS. The client maintains the client
database, which is a concern of the mobile device user and
also a part of the server database, via the client DBMS
embedded in the mobile device. The client database can be
built by the mobile device user. However, it is typically built
by downloading a part of a server database from the server.
As a result, data replication occurs since the downloaded data
exist in both sides of the server and client databases.

In general, the client is disconnected from the server after
the data downloading. The client database can be changed by
an embedded DBMS in the client after the disconnection. For
data consistency, this change has to be applied to the server
database when the client is connected to the server. For the
same reason, the change occurred in the server database
during the disconnection also has to be applied to the client
database when they are connected to each other. The
synchronization manager is a core component in embedded
DBMS environment that preserves the consistency of such

replicated data.

B. Conflicts
Let us consider that more than one client download the

same data from a server database. They may change the data
in different ways, thereby making the data diverge. In this
case, the changes in both client databases cannot be applied
into the server database correctly. This problematic situation
is called a conflict[12]. In this paper, we classify the conflict
into three types: the insertion, deletion, and update conflicts.

The insertion conflict happens if two clients insert the same
record R into their own client databases. Two versions for R
in two client databases correspond to a same entity in a real-
world, however, they may have different attribute values. One
client, which first tries to synchronize the client database
containing R with the server database, successfully reflects the
insertion of R on the server database. However, the other
client, which next tries to perform synchronization, finds that

R already exists in the server database, thus encounters the
problematic situation. If it reflects its insertion of R by force
without any concern, two Rs, which have the same value for
the key but different values for other attributes, coexist in the
server database.

The deletion conflict occurs when one client tries to delete
record R from its client database while the other client tries to
modify R in its own client database. As in the previous case,
one client, which first tries to perform synchronization to
delete R, successfully reflects its own changes. However, the
other client, which next tries to perform synchronization to
modify R, recognizes that R does not exist in the server
database.

The update conflict happens when two different clients try
to change the same record R in their own ways. In this case,
one client, which first tries to perform synchronization,
successfully reflects the update on R in the server database.
However, the other client, which next tries to perform
synchronization, is not able to update R in the server database
since R in the server database is not the version the client has
updated in its client database.

When synchronization between a server and a client starts,
the synchronization manager detects what kind of conflicts
happen, and then resolves each conflict in a way that is pre-
defined by an application.

The synchronization methods employed in commercial
embedded DBMSs are classified into two categories: one is to
use the time-stamp value[11][16], and the other is to use the

old value before the change.2 In this paper, we simply call
them the TS-method and the OV-method by taking their
initials. Fig. 2 illustrates their basic concepts.

The TS-method adds a time-stamp field to each record
existing both in the server and clients to be synchronized. The
time-stamp has a value representing the latest time when the
record was changed in the server. The client downloads the
time-stamp value together with other attribute values within
each record from the server. The embedded DBMS in the
client keeps the time-stamp value, and detects conflicts by
referring to it during synchronization.

The OV-method employs the old values of attributes in
each record downloaded from the server. The embedded
DBMS in the client keeps the old values independently of
their new values even when it changes them, and detects the

2 In most references including [11] and [16], they just mentioned the update
conflict without the insertion and deletion conflicts.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

32

conflict by referring to them during synchronization.

III. DESIGN GOALS
In this section, we present the design goals that we tried to

satisfy in developing our synchronization manager.
(1) To minimize the storage overhead in a client for
synchronization: Inherently, the mobile devices such as a
mobile phone, a PDA, and a HPC have small main memory
and/or disk. Thus, it is impractical if a method requires
additional storage too much for synchronization.
(2) To minimize the amount of information transferred during
synchronization between a server and a client via wired or
wireless network: A large volume of such information delays
synchronization, and also makes the possibility of a
synchronization failure due to network problems much
higher. So, it is very important to minimize such information
required in synchronization.
(3) To make our synchronization manager independent of any
server DBMSs: If a synchronization manager is dependent on
a server DBMS, it is not applicable to others. So, in this case,
we have to develop a different synchronization manager for
each server DBMS. Thus, the development of a server-
DBMS-independent synchronization manager is very
important for portability.
(4) To provide various strategies for resolving conflicts: The
straightforward one is to ignore all the changes by a client and
to reflect all the changes by a server on the client database
when detecting a conflict. However, some applications want
the changes by a client with a high priority to be reflected on a
server database even if a conflict occurs. Therefore, it is
desirable that the synchronization manager provides various
strategies for resolving conflicts, and allows applications to
choose some of them by their preferences.

IV. PROPOSED APPROACH
This section presents our approach for synchronization that

meets the design goals in Section III. Section IV-A presents
its main data structures, and Section IV-B details the
synchronization steps. Section IV-C suggests the way to
detect conflicts, and finally Section IV-D presents the
strategies to resolve conflicts.

A. Data Structures
The OV-method has a storage overhead larger than the TS-

method. The TS-method adds only one field of the time-
stamp to each record to be synchronized while the OV-method
has to keep old and new values against every attribute of a
record. Thus, we decided to follow the TS-method in order to
detect conflicts by considering the design goal (1) on the
storage overhead 3.

3 We note that references [6][9][14][16] just briefly describe the concept

and functions of synchronization, and do not provide a concrete description as
proposed in this paper.

In our approach, every record in a server database has an
additional field of the time-stamp. The time-stamp indicates
the latest time of a record to be changed in a server database.
Such changes come from the clients' synchronization request
or a server's change request. Each time-stamp value has a
unique meaning on its own record. That is, even if two

records have an identical value for their time-stamps, this does
not imply that they change at the same time.

When a new record is inserted into a server database, its
time-stamp is set to 1, the minimum value. When a record in a
server database is changed, its time-stamp increases by one.
This implies that the record changes into a new version.
When a record in a server database is required to delete, the
record is removed at the time without the changing of its time-
stamp. These are summarized in Table I.

In our implementation, we use the INTEGER as a type of a
time-stamp. The INTEGER occupies space smaller than the
time-stamp type supported by commercial server DBMSs.
Also, we can simply compare and change the values of the
INTEGER type without special functions. This allows us to
detect changes and conflicts quite efficiently. The INTEGER
type covers a range of 1 to MAX(in case of the 4-byte
INTEGER, it is 231-1). So, it can support the sufficient
number of changes. Even if it overflows due to a lot of
changes, we can simply handle this situation by resuming its
increase from 1. Thus, the INTEGER type does not restrict
the number of changes in a server database.

In a client database, every record contains two additional
fields: one is the time-stamp field for detecting conflicts, and
the other is the status field for keeping track of the changes in
the client.

The time-stamp of a record in a client database does not
change even if the record changes due to the insertion,
deletion, or update. This time-stamp represents a kind of a
version number of the corresponding record in a server
database. Its current value corresponds to the version fetched
by the client for the server at the latest synchronization. The
synchronization manager compares this value with that of the
corresponding record in the server database so as to detect
conflicts during the next synchronization.

During synchronization, only the records, which have been
changed in the client database, cause conflicts. In the
proposed approach, we employ the strategy to transfer only
the records updated in the client into the server in order to
minimize the communication overhead in synchronization.
This strategy enables the proposed approach to meet the
design goal (2). Therefore, the embedded DBMS has to

TABLE I
CHANGES OF TIME-STAMP VALUES IN A SERVER DATABASE

Operation Insertion Update Deletion

Time-stamp 1 Time-stamp+1 Record
Deletion

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

33

Fig. 3. Synchronization Process

identify such records updated after the most-recent
synchronization.

For this, we use the status field in each record to keep track

of the changes in our approach. The status field is a CHAR
type of one byte, and it represents the type of the last operation
performed on the corresponding record in a client database.
As shown in Table II, the status field has "I" for an insertion,
'U' for an update, 'D' for a deletion, and 'N' for none. During
synchronization, the synchronization manager extracts only
those records whose value in the status field is not 'N' in order
to detect conflicts. This process is done simply by performing
the SQL statement supplied by a client DBMS.

Let us consider a situation where a record is inserted and

then changed in a client database after the recent
synchronization. In this case, its status field is kept as 'I' rather
than 'U'. This is because this record has to be regarded as a
newly-inserted one in the server database in the next
synchronization. Also, if a record is requested to delete in a
client database, it is not actually deleted at that moment.
Instead, its value of the status field is changed into 'D'. The
reason for this is, we have to preserve this record in a client
database in order to eliminate it from a server database during
the next synchronization. Since this kind of records are not
allowed to show as a query result in a client, such records
whose value in the status field is 'D' have to be discarded
during query processing. Finally, let's consider a situation
where a record is inserted and then deleted in a client database
after the recent synchronization. In this case, the record is
immediately deleted from the client database without handling
of the status field. This is because the record does not exist in
a server database, so it is not necessary to keep the
information on the record until the next synchronization.

B. Synchronization Steps
Fig. 3 sketches the overall process for synchronization. The

synchronization proceeds by performing a transaction that
runs both in the client and server DBMSs. This means that the
synchronization manager performs the standard SQL
statements supported by the client and server DBMSs when
accessing the records in the client and server databases for
synchronization. By this, our synchronization manager is
independent of any specific server DBMS, thereby meeting
the design goal (3) of the platform independence. In this
section, we discuss the detailed synchronization steps of the
proposed approach:

(1) If a record changes in a client database, its status field is
set as in Table II. In a client database, such changes would

repeatedly occur.

(2) The client requests synchronization of the server. The
client first identifies the records to be reflected in a server
database from its own database. These records have changed
since the latest synchronization, and their status field values
are not 'N'. For synchronization, the client transfers two kinds
of lists into the server.

One is the client-change-records-list that has multiple
entries, each of which corresponds to the record changed after
the latest synchronization. The entry has all the attribute
values and a time-stamp field value for that record. This
client-change-records-list is used to apply the changes
occurred in a client into the server database. We note that it
does not include the status field in each entry. This is to
minimize the communication overhead between the client and
the server in synchronization, thereby satisfying the design
goal (2). In the client database, the status field is necessary to
identify four types of changes of the insertion, deletion, update,
and none. However, we just need to identify just three types
of changes of the insertion, deletion, and update since the
record un-changed in the client database does not exist in the
client-change-records-list. The time-stamp field suffices for
identifying three types of changes by setting it to 0 for an
insertion, to a negative value for a deletion, and to a positive
value for an update.

The other is the client-entire-records-summary-list that has
entries, each of which corresponds to each record in a client
database, and consists of the <primary key, time-stamp field>
pair. This list is useful in examining the new changes that
were made in a server database after the recent
synchronization, and thus has to be applied to a client database
at this synchronization. We present the way to detect new
changes done in a server database by using this entire-records-
summary-list in step (4) in more detail.

(3) The server examines and detects conflicts by using the
client-change-records-list transferred from the client. If it
detects a conflict, it resolves the conflict in the way defined by
an application. We will elaborate more the detection and
resolution of conflicts in Sections IV-C and IV-D.

(4) The server applies the changes occurred in the client
database into the server database by referring to the client-
change-records-list. That is, by examining the time-stamp
field of each record in the client-change-records-list, it
performs an update for the time-stamp of a positive value, a
deletion for the time-stamp of a negative value, and an
insertion for the time-stamp of 0 on the server database.

TABLE II
CHANGES OF STATUS FIELD VALUES IN A CLIENT DATABASE

Operation Insertion Update Deletion None

Status Field I U D N

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

34

Finally, it re-adjusts the time-stamps of the records changed in
the server database by following the rules in Table I.

(5) The server builds the server-change-records-list as in the
below by referring to the client-entire-records-summary-list
and transfers it to the client. This list contains such records
changed in a server database after the client's latest
synchronization. This list represents the new changes to be
applied into the client database. The structure of the server-
change-records-list is identical to that of the client-change-
records-list.

Record update: For each entry of <primary key PK, time-
stamp field TS> in the client-entire-records-summary-list, the
server examines whether the record R with PK as the primary
key in the server database has the same value as TS. The
different value implies that there have been some updates on
the corresponding record in the server database since the
client's latest synchronization. In this case, the server adds the
updated record into the server-change-records-list. The time-
stamp of this record in the list has the same positive value as
that of the original record in the server database.

Record insertion: From the server database, the server
finds such records whose primary keys do not exist in the
client-entire-records-summary-list. The existence of such
records implies that there have been new insertions after the
client's latest synchronization. Also, the server adds each
inserted record into the server-change-records-list, and sets its
time-stamp in the list to a negative value whose absolute value
is the same as that of its corresponding record in the server
database. Note that such records in the client-change-records-
list have 0 as their time-stamp. In case of the server-change-
records-list, we need to know which version of the record in
the server database gets into the client database for conflict
detection.

Record deletion: For each entry of <primary key PK, time-
stamp field TS> in the client-entire-records-summary-list, the
server examines whether the record R with PK as the primary
key exists in a server database. If there is no such a record, it
means that the record has been deleted from the server
database since the client's latest synchronization. In this case,
the server adds the record into the server-change-records-list,
and sets its time-stamp in the list to 0. We remember that such
a record in the client-change-records-list has the same value as
that of the client database. The reason for this is that the
record just has to be removed from the client database without
any conflict detection.

(6) The client applies the changes occurred in a server
database into a client database by referring to the server-
change-records-list. That is, by examining the time-stamp
field of each record in the server-change-records-list, it
performs an update for the time-stamp of a positive value, a
deletion for the time-stamp of 0, and an insertion for the time-
stamp of a negative value in the server database. It also
adjusts the time-stamp of the records inserted at this time to
return to the positive one.

Finally, synchronization ends after deleting all the records

whose status field is 'D' from the client database. These
records are not necessary to be kept in the client database
anymore after terminating successful synchronization.

C. Conflict Detection
The synchronization request by a client makes the server

examine whether conflicts occur or not, by referring to the
client-change-records-list transferred by the client.

The first one is the detection of insertion conflicts. If the
record in the client-change-records-list to be inserted has the
same primary key as the record in a server database, this
insertion incurs an integrity constraint violation in the server
DBMS. Thus, the server database cannot accept this insertion.
The synchronization manager uses the primary key of records
for detecting insertion conflicts. That is, it detects insertion
conflicts by examining if a record of the time-stamp of 0 in the
client-change-records-list has the same primary key as the
record in a server database.

The second one is the detection of update conflicts
classified into two types. The first type is the case that a client
tries to update the record that has already been deleted and
thus does not exist in the server database. The second type is
as follows: (1) Two clients A and B downloaded the same
version of record R; (2) Client A updated R in its client
database, then reflected the update on the server database
through its synchronization; (3) Client B has updated R in its
client database, then tries to reflect the update on the server
database during synchronization.

In the former case, we can detect the conflict by examining
if the record of the positive time-stamp in the client-change-
records-list exists in a server database. If the record does not
exist in the server database, this implies that the server or
other client has already deleted it. In the latter case, we
examine the records of the positive time-stamp in the client-
change-records-list as follows: (1) For record R with the
primary key PK, we first find its corresponding record R' with
the same PK in the server database; (2) Then, we compare the
time-stamp of R with that of R'. If the two time-stamps are
different, there has been a update on R' after the client's
previous synchronization, thus we regard R' as having been
changed into a different version. Therefore, we can detect two
kinds of update conflicts safely.

The third one is the detection of deletion conflicts. A
typical situation is as follows: (1) Clients A and B downloaded
the same version of record R in their client databases; (2)
Client A updated R in its client database, and reflected it on
the server database via synchronization; (3) After that, client B
deleted R from its client database and tries to apply it into the
server database during synchronization. For detecting this
conflict, we first look for record R whose time-stamp has a
negative value in the client-change-records-list, find R's
corresponding record R' in the server database where the
primary keys of R and R' are the same, and then examine if the
absolute values of the time-stamps in R and R' are identical. If
they are different, it means that R' in the server database has
already changed into a different version. So, we regard the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

35

deletion conflict as having occurred.

D. Conflict Resolution
In case a client detects conflicts during synchronization, a

unique decision to guarantee perfect consistency of the server
database is to just give up the changes causing the conflicts to
be applied to the database. Otherwise, such changes incurring
conflicts would make the server database inconsistent.
Therefore, our approach employs a give-up strategy as the
basic one for resolving conflicts.

However, the major problem in the give-up strategy is to
abandon all the changes performed by a user in the client. In
this case, the user would complain that he/she has to do a
tedious job again for applying the changes into the server
database after synchronization. Some applications think much
of users' satisfaction rather than keeping complete consistency
with the database.

So, other than the give-up strategy, we employ another
strategy to allow users to decide whether they accept or
abandon the changes when conflicts occur. Of course, the
user (or client) should have the authority appropriate for such
decisions. For this, we categorize users into multiple classes
according to their authority. This is to support various
strategies for resolving conflicts according to users' preference,
thereby making our approach meet the design goal (4).

V. CONCLUSIONS
Synchronization is a core function in embedded DBMS

environment to sustain the consistency of replicated data in the
client and server databases. Some existing commercial
embedded DBMSs have been supporting synchronization
[6][9][14][16], however, they do not provide their technical
solutions in detail as a form of research papers. Therefore, it
is not easy for developers to refer to their experiences and
techniques.

The Data & Knowledge Engineering Lab. at Kangwon
National University and 4DHomeNet Inc. have been working
together for developing an embedded DBMS since 2001. In
this paper, we have presented a framework for
synchronization in embedded DBMS environment, and also
discussed its related issues and solutions. Major issues
touched are (1) classifying conflicts, (2) identifying changes in
a client database, (3) detecting conflicts, and (4) resolving
conflicts. The purpose of this paper is to share our
experiences obtained in developing a synchronization manager
with other embedded DBMS developers. Our contributions
would help reduce their trial-and-errors significantly.

ACKNOWLEDGMENT
This work was partially supported by Seoul R&BD

Program under the title “Implementation of RBDMS on
Flash”. We would like to thank Se-Bong Oh, Woo-Seok Jang,
Gray Noh, Yeong-Ho Kang, Byung-Dae Jung, and Sung-Yong
Son who have actively participated in developing our
embedded DBMS. Also, we would like to thank Jung-Hee

Seo, Suk-Yeon Hwang, Grace(Joo-Young) Kim, and Joo-
Sung Kim for their encouragement and support.

REFERENCES
[1] Sang-Yun Lee et al., "Synchronizing Techniques for Mobile DBMSs,"

Database Research, Vol. 17, No. 3, pp. 29-41, 2001.
[2] Yun-Seok Choi, "Oracle9i Lite: A Light-Weight DBMS for Mobile

Environment," Database Research, Vol. 17, No. 3, pp. 103-107, 2001.
[3] Do-Yeon Kim, “"IBM Informix Cloudscape for Data Management in the

Post-PC Era," Database Research, Vol. 17, No. 3, pp. 109-114, 2001.
[4] Michael A. Olson, "Selecting and Implementing an Embedded Database

System," IEEE Computer, Vol. 33, No. 9, pp 27-34, September 2000.
[5] Sixto Ortiz, Jr., "Embedded Databases Come out of Hiding," IEEE

Computer Magazine, Vol. 33, No. 3, pp 16-19, March 2000.
[6] Oracle, Oracle 8i Introduction, Oracle's White Paper.
[7] Oracle, Oracle Lite User's Guide.
[8] Oracle, Oracle 8i Replication.
[9] IBM, DB2 Solutions for Mobile Computing, IBM's White Paper.
[10] IBM, DB2 EveryPlace Brochure.
[11] IBM, IBM DB2 Replication Guide and Reference.
[12] IBM, IBM DB2 Sync Server Administration Guide.
[13] IBM, Have Your Database Everyplace, IBM's White Paper.
[14] Informix, Informix CloudSync, Informix's White Paper.
[15] Informix, Informix Cloudscape, Informix's White Paper.
[16] Sybase, Synchronization Technologies for Mobile and Embedded

Computing, A White Paper from Sybase, Inc.
[17] Sybase, Adaptive Server Anywhere Getting Started.
[18] Sybase, Introducing SQL Anywhere Studio.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

