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Summary 
Mainly in regression analysis, numerous methods have been 
proposed historically for the analysis of the influence of single or 
multiple observations on the results of analysis. Such a 
sensitivity or stability problem is not special to the regression 
analysis, but is common to the other statistical methods including 
the multivariate methods. We combined the general procedure of 
the sensitivity analysis and the forward search method to detect 
the influential observations without suffering from the masking 
and swamping effect, and compared its performance with the 
other robust methods numerically. The proposed procedure can 
be applied to any multivariate methods with minor modification. 
In this paper we propose and discuss our procedure in maximum 
likelihood factor analysis (MLFA). 
Key words: 
Sensitivity analysis, Maximum likelihood factor analysis, Robust 
method, Forward search. 

1. Introduction 

We may consider that a statistical method is a system, a set 
of data is an input and the result of analysis is an output. 
We are interested in the sensitivity of this system, that is, 
how a small change of data affects the result of analysis. 
Since late 1970, mainly in regression analysis, numerous 
methods have been proposed for the analysis of the 
influence of single or multiple observations on the results 
of analysis, and major part of them have been summarized 
into several books(see, e.g., [1], [2], [3], [4],  [5]).  

The issue of robust estimation and/or outlier detection 
has been researched by many authors. Rousseeuw [6] 
introduced minimum volume estimator (MVE), and 
minimum covariance determinant (MCD) and used them 
for outlier detection. Other authors have used the concept 
of MVE or MCD in their outlier detection methods. 
Atkinson [7], in his outlier detection method, considered 
forward search from random elemental sets and chose 
partition of the data which had the smallest "half" sample 
ellipsoid volume. Rocke and Woodfuff [8] obtained a 
hybrid algorithm utilizing the steepest descent procedure 
of Hawkins [9] for obtaining the MCD, which was used as 
a starting point for the forward search algorithm of 

Atkinson [10] and Hadi [11]. Atkinson and Riani[12] 
proposed an idea of forward search in regression analysis 
to protect from the masking effect. The basic idea of 
forward search is to select observations forwardly in a 
successive manner based on their closeness to the fitted 
model starting from the fit to an initial subset which can be 
regarded as outlier free. In the later part half we discuss a 
robust method of sensitivity analysis in multivariate 
methods using the idea of the forward search method by 
Atkinson and Riani [12]. 

Covariance structure analysis (CSA) is family of 
multivariate methods which have a common fundamental 
assumption that the covariance matrix Σ  of observable 
variables is expressed as a function of a set of parameters 

),,( 1 mθθθ L= , i.e., )(θΣ=Σ . This family contains 
confirmatory as well as exploratory factor analysis (FA), 
path analysis, LISREL type linear structural equation 
analysis among others. 

Sensitivity analysis procedure have been proposed by 
Tanaka, Watadani and Moon [13] and Tanaka and 
Watadani [14] for CSA without/with equality constraints. 
In these papers the proposed procedures are illustrated in 
confirmatory and exploratory factor analysis.  In this paper 
we deal with CSA with equality constraints and introduce 
a general procedure of sensitivity analysis in such kinds of 
CSA proposed by Tanaka and Watadani [14]. As a special 
case we consider maximum likelihood factor analysis 
(MLFA). 

The main goal of this paper is combine the general 
procedure of influence analysis in MLFA and the forward 
search method to detect influential observations without 
suffering from the masking and swamping effect. The 
proposed procedure can be applied to any multivariate 
method with minor modification. But, here we discuss our 
procedure in MLFA. 

2. Influence Functions in CSA  

In CSA as estimate θ̂  for parameter vector θ̂  is obtained 
by minimizing a function called discrepancy function 
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))(,( θΣSG  which measures the discrepancy between 
the sample covariance matrix 

T
iiii xxxxnS ))((1 −−Σ= −  and the reproduced 

covariance matrix )(θΣ  using the estimated parameters. 
The discrepancy functions is given by 

 
pSStrSGML −Σ−Σ=Σ −− ||log][),( 11         (1) 

 
in maximum likelihood(ML) estimation(see,e.g., Joreskog, 
[15]).  

The major objective of sensitivity analysis is to detect 
influential observations. To evaluate the influence of each 
observation, we use the idea of so-called influence 
function proposed by Hampel [16]. In practice, we usually 
focus our interest on the influence of each observations 

),,1( nixx i L==  on the estimate )ˆ(ˆ Fθθ =  of the 

parameter vector. Where F̂  indicates the empirical 
distribution function. For this propose the empirical 
influence function (EIF) of ix  for θ̂   is defined. Tanaka 
and Watadani [14] discussed the case of CSA with r  
equality constraints expressed as 
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Using the Lagrangian function 
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where  ),,( 1 rλλλ L=  is an 1×r  vector of Lagrangian 

multipliers and TTT ),(* λθθ = , the EIF of ix   for θ̂   is 
given by 
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where s  denotes a vector consists of the elements of 
covariance matrix S , i.e., 

T
pppp ssssss );;,,( 222111 LLL= , the EIF of ix  for 

s  is given by 
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)ˆ,ˆ,( λθsQ  is the upper left mm×  submatrix of the 
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To calculate the EIF for θ̂  the second derivatives of 

discrepancy function G  are required. It known that the 
first derivatives of G  are given in the form as 
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From Eq. 6 the second derivatives of G  are obtained 

as 
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and  
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where *

jkE  is pp×  matrix with 1's in the ),( kj and 

),( jk  elements and 0's in the other elements. The second 
derivative Eq. 7 is often approximated by only the first 
terms of the right-hand side neglecting the remaining 
terms which contain the factor )( S−Σ . Influence 

functions of the estimate θ̂  are in general vector valued. 
So we need to transform them into scalar measures. In this 
paper we use the generalized Cook's distance such as 

 
)ˆ;()ˆ(ˆ)ˆ;( θθθ i

T
ii xEIFcovaxEIFD =    (9) 

 
where )ˆ(ˆ θcova  is an estimate of the asymptotic 

covariance matrix of θ̂ . It is known that )ˆ(ˆ θcova  is 
given in the case of ML as 
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in CSA with equality constraints. 
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Let us consider the influence of a set of k  
observations },{ 1 iki xxΑ L=  on a parameter vector 

)(Fθ , which is given as a functional of the cumulative 
distribution function(cdf). To do this we introduce a 
perturbation on the cdf from F to GFF εε +−= )1(~

, 

where ∑ ∈
−=

Ax x
i i

kG δ1 , 
ixδ  being the cdf of a unit 

point mass at ix  , and define a generalized theoretical 
influence function(TIF) of A  as the limit 

εθθθ ε /)]()~([lim);( 0 FFATIF −= → . Then it can be 

easily verified that ∑ ∈
−=

Axi
xTIFkATIF );();( 1 θθ , 

where );( θxTIF  is the ordinary influence function of ix . 
The similar relation holds for the empirical influence 
function(EIF). Hence the parameter estimate based on the 
sample with a subset A  omitted can be approximated as 
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where symbol(~) indicates the linear approximation based 
on the EIF. 

3. Application to Factor Analysis Models 

We consider the following basic model of FA: 
 

efΛx +=    (12) 
 

where x  a 1×p  vector of observable variables, f  is a 

)(1 qpq <×  vector of common factor scores, e  is a 

1×p  vector of unique factor scores and )( irλ=Λ  is a 
qp×  factor loading matrix. Means and covariances of 

common and unique factors are assumed as 
)()(,0)(,0)( rs

TEEE φ=Φ=== ffef (every 

diagonal element is unity), Ψ=)( TE ee (diagonal 

matrix) and 0)( =TE fe . Then the covariance matrix Σ  

of observable variables x  is expressed as 
 

Ψ+ΛΦΛ=ΨΦΛΣ T),,(    (13) 
 
The first and second derivatives of the covariance matrix 
Eq. 13 with respect to parameters are given as 
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where the symbol δ  represents Kronecker's delta and 

abE  is a matrix unit with 1 in the ),( ba  element and 0's 
in the other elements. 

In exploratory FA, on the other hand, no elements are 
specified in advance. Instead to obtain a unique solution it 
is usually assumed that common factors are not correlated, 
i.e., IE T =Φ=)(ff , and ΛΦΛ −1T  is diagonal. Thus 
we may identify exploratory FA as a special case of CSA 
with 2/)1( −= qqr  equality constraints 
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The parameters to be estimated are the elements of Λ  and 
the diagonal elements of Ψ . The first and second 
derivatives of sth  are given as 
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4. Application of the Forward Search 
Procedure 

Atkinson and Riani [12] proposed a "forward" procedure 
of selecting the subsets of observations. An initial subset 
of the smallest possible size is selected by fitting the 
statistical model to a large number of subsets of the size 
and by evaluating the goodness of the fit. Then all 
observations are ordered by their closeness to this fitted 
model; for regression model the residuals determine 
closeness and for multivariate models other measures such 
as values of normal density function, since the data be 
assumed multivariate normal distribution, so that we 
expect outlying observations have small values, play the 
similar role. The subset size is increased by one based on 
the closeness measure and the model is refitted to the 
observations of the increased subset size. The process 
continues until all the observations are included in the 
subset. As the result of this forward search we have an 
ordering of the observations by the closeness to the 
assumed model. The changes of various statistics, such as 
Cook's iD , are monitored in each step of this forward 
search. 

Now we use the above forward procedure and 
propose the following forward algorithm for robust 
influential analysis in MLFA. 
 

• Step 1. Choice of the initial subset.  

If the model contains P  parameters, the forward 
search algorithm starts with the selection of a subset of 

1+p  observations. Observations in this subset are 
intended to be outlier free. To choose the initial subset we 
make use of the MVE procedure. Using the MVE, we 
obtain the robust mean vector Rx  and the robust 

covariance matrix RS , then calculate the values of 

multivariate normal density function )ˆ;( Rixf θ  of all the 

data points, where )ˆ,ˆ(ˆ
RRR Σ= μθ  and 

R
T
RRR Ψ+ΛΛ=Σ ˆˆˆˆ . RΛ̂  and RΨ̂  indicate the estimated 

factor loading matrix and unique variance diagonal matrix, 
respectively, which are obtained from the MLFA based on 
the 

R
μ̂  and the RΣ̂ . 
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Our initial subset is selected as the set of observations 
which have the 1+p  largest )ˆ;( Rixf θ  values. 
 
• Step 2.  Adding observations during the forward 

search.  

Given a subset of size m , the forward search moves to 
size 1+m  by selecting the 1+m  observations with the 

largest )ˆ;( Jixf θ , 
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where, 
J

μ̂  and JΣ̂  are the mean vector and covariance 

matrix, respectively, which are obtained from subset J . 
Using this subset we recompute the statistics, such as 

))ˆ(ˆ( JJ ovcaV θ  and )ˆ;( JixEIF θ . The forward search 
is repeated in this way until all observations are chosen in 
the subset, and at each step some diagnostic statistics are 
monitored. 
 

• Step 3. Monitoring the search. 

 In monitoring the forward search we additionally 
calculate Cook's iD , and study numerically how 

},1,{ niD J
i L=  change in the forward search process. 
 

( ) ( ))ˆ;()ˆ;( JiJ

T

Ji
J
i xEIFVxEIFD θθ +=   (19) 

 

5. Numerical Example 

Let us investigate the performance of the proposed 
procedure in the case of MLFA. In the following analysis 
we study how the procedure works when there exist 
multiple influential observations and how large are their 
influences on the factor loadings and/or unique variances. 
To do this we generate an artificial data based on the 
following factor analysis model: 
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where 
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A set of 100 observations are generated based on the 

above factor analysis model. But, in generating 
observations #41~#45 the values of 21, ff  are replaced 

by (2.4,-2.4), and #81~#85 the values of 21, ee  are 
replaced by (2.7,-2.7). 

Fig. 1 Index plot of Cook’s D in the ordinary procedure 
 
Before analyzing the data set, we apply the ordinary 

general procedure. The result of the ordinary general 
procedure could not reveal the perturbed observations as 
most influential. Fig. 1 is the index plot of the generalized 
Cook's iD . It is noted that observation #30 is more 
influential than most of the perturbed observations #41, 
#43 and #81 ~ 85. 

To search for subsets of cases whose influence 
functions are located far and on similar directions from the 
origin, we applied PCA with metric ))]ˆ(ˆ[( ++ = θovcaV . 
Fig. 2 shows the scatter plot of the first two PC scores and 
second vs. third PC scores. In Fig. 2 the ordinary 
procedure was applied. The eigenvalues are 18082.6495 > 

13703.8018 > 5114.3863 > 1561.8573 > …, in order of 
their magnitudes. This result can not reveal influential 
observations correctly. 

Fig. 2 Scatter plot of PC scores in the ordinary procedure 
 

Then, the robust version of the general procedure was 
applied. We randomly drew 1680 subsamples of size 7, 
and then proceeded to the iterative process of one-step 
improvement. In this iterative process zero weights were 
assigned to 12 observations including #41~#45, #81~#85, 
#7 and #30. As cutoff value for these distances we used 
3.80 which is the square root of the 0.975 quantile of the 
chi-square distribution with 6 degrees of freedom. The 
index plot of the Cook's iD  is shown in Fig. 3. It is 
obvious that all outliers are easily found to be influential. 
In Fig. 4 the robust version was applied and the 
eigenvalues obtained are 8378.791 > 4743.404 > 1605.236 
> 909.820 > 438.142 > …. From Fig. 4 we can easily find 
the two sets of influential observation. 

Fig. 3 Index plot of Cook’s D in the robust procedure 
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Fig. 4 Scatter plot of PC scores in the robust procedure 
 
Now, we apply the forward search method [17]. First, 

using the MVE, the robust mean vector and the robust 
covariance matrix are computed and the best subset of size 

)19(1 =+P  is selected in the sense that the likelihood 
function has the largest values. Based on the sample mean 
vector and covariance matrix of this subset we calculate 
the density function )ˆ;( Jixf θ  for all 100 observations 

and select 20 observations with the largest )ˆ;( Jixf θ . 
Similarly in each step we select successively a subset of 
size 1+m , where m  is the size of the previous step. In 
each step we recompute the statistics such as the factor 
loadings JΛ̂ , the unique variances JΨ̂ , their asymptotic 

covariances, and their EIFs  which are computed using 
the formulas derived by Tanaka and Watadani [14]. Then, 
we study numerically how },1,{ niD J

i L=  change in 

the forward search process. In the step after 91=m , 
when one of the outlying observations enter the subset, 
Cook's iD  of #41~#45 decrease dramatically (Fig. 5). 
This phenomenon shows clearly the masking effect. 

Let us look at the process more precisely. Fig. 6 is the 
forward plot after the step 70=m  until the end of 
forward search. This shows, when the highest five 
influential observations #85, #83 , #84, #82, and #81 enter 
into the subset, Cook's iD  goes quickly down again, and 
at the end of the search, the groups of influential cases are 
mixed together and masked. 

Fig. 5 Forward plot of Cook’s D from the subset size m=70 

Fig. 6 Index plot of Cook’s D by subset size m=90, 91, 95, 96 

6. Concluding Remarks 

In this paper we proposed a forward search algorithm 
for robust influence analysis in multivariate methods, in 
which the general procedure of sensitivity analysis in 
MLFA(Tanaka and Watadani [14]) and the forward search 
method(Atkinson and Riani [12]) are combined for 
detecting influential observations without suffering from 
the masking and swamping effects. 

The proposed method along with the ordinary general 
procedure and its robust version were applied to an 
artificial data set which were generated in such a way that 
there were two groups of outlying observations. The 
ordinary procedure could not detect influential 
observations. However, the other procedures could reveal 
fully that there exist 10 outlying observations and that they 
are classified into two groups. Compared with Tanaka and 
Watadani [17]'s robust procedure the proposed procedure 
has an advantage that it can show clearly how and when 
the masking and/or swamping effects occur in the forward 
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successive process. In this sense we may say that the 
proposed procedure is an improved version of Tanaka and 
Watadani's procedure. 
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