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Summary 
A novel genetic algorithm is proposed for degree-
constrained Minimum Spanning Tree (short for d-MST) 
problem in this paper. First, a novel model that transfer d-
MST problem into a preference two objective MST 
problem is presented. Based on this model, a new 
crossover operator, a local search scheme, a mutation 
operator and a new selection operator are designed based 
on the preference of the two objectives. Then, a new 
genetic algorithm (short for GA) is proposed. Furthermore, 
the convergence of the proposed algorithm to globally 
optimal solution with probability one is proved. The 
simulation results indicate the proposed algorithm is 
effective. 
Key words: 
degree-constrained minimum spanning tree, genetic algorithm, 
convergence.  

Introduction 

The minimum spanning tree (MST) of a graph is an 
important concept in the communication network design 
and other network-related problem. Given a graph with 
cost (or weight) associated with each edge, the MST 
problem is to find a spanning tree of the graph with 
minimal total cost. When the graph’s edge costs are fixed 
and the search is unconstrained, the well-known algorithm 
of Krushal [1] and Prim [2] can identify MST in times that 
are polynomial in the number of nodes. However, the 
MST usually satisfies some additional constraints, for 
example, a bound on the degree, or a bound on the 
diameter of the tree, which often makes the problem NP-
hard. Thirteen such NP-complete variants were listed by 
Gary and Johnson [3]. Camerini, Galbiati, and Maffioli 
[4~6] catalogued eighteen spanning tree parameters that 
one might wish to optimize. 
In fact, the d-MST problem can be regarded as a 
generalization of the Traveling Salesman Problem when at 
most only two edges are allowed incident to each node in 
MST. Because of its complexity, we can apply exact 
optimization algorithms only to small instances of them. 

For larger instances, we turn to heuristic techniques, 
including genetic algorithms (GAs). 

Recently, some heuristic algorithms for the d-MST 
have been proposed. Boldon et al [7] present dual simplex 
approach which performs very well on some benchmarks 
based on Prim’s algorithm. Zhou and Gen [8] described a 
simple evolutionary algorithm using a Prüfer based 
encoding and applied it to some small d-MST problem In 
[9], Knowles and Corne introduced a novel tree 
construction algorithm called the Randomized Primal 
Method (RPM) with employed a modified version of 
Prim’s algorithm call d-Prim. This method built degree-
constrained trees of low cost from solution vectors. 
Meanwhile, Raidl and Julstrom [10] presented a novel 
coding of spanning tree in a genetic algorithm. In the 
coding, chromosomes are strings of numerial weights 
associated with the target graph’s nodes. The weights 
temporarily bias the graph’s edge costs, and an extension 
of Prim’s algorithm, applied to the biased costs, identifies 
the feasible spanning tree a corresponding to a 
chromosome. This generally outperformed RPM. The one 
of the best techniques so far according to the best of our 
knovledge, however, seems to be Raidl’s more recent 
work [11] which used a direct spanning tree encoding, 
with associated specialized mutation and recombination 
operators . 

All algorithms above treated the d-MST problem as 
single-objective problem. In this paper, we presented a bi-
objective genetic algorithm for d-MST problem with the 
violation degree as the second objective. This bi-objective 
MST problem with the violation degree as the second 
objective. This bi-objective MST problem is a preference 
one. Based on this model, we design a new crossover 
operation, a local search scheme, a mutation operator and 
a new selection operator based on the preference of the 
two objectives. The convergence of the proposed 
algorithm to globally optimal solution with probability one 
is proved. The simulation results indicate the proposed 
algorithm is effective. 
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2. Transformation of d-MST Problem 

Given a connected, undirected graph G  with n  nodes, a 
spanning tree T  is a subgraph of a G  that connects all of 
G ’s nodes and contains no cycles. When every edge 

),( ji  is associated with a numerical costs ijc , a 

minimum spanning tree (MST) is a spanning tree of the 
smallest possible total edge cost ∑

∈

=
Tji

ijcC
),(

. 

The degree (denoted by id ) of a node ( 1, , )i i n= L  
is the number of incident edges, and the degree of a graph 
is the maximum degree of its nodes. The degree-
constrained MST problem is to determine a spanning tree 
(ST) of the minimum total edge cost and degree no more 
than a given value d: d-MST. The mathematic model of d-
MST problem is as follows. 

( , ) ,
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where ST ∈  (Let S  be the spanning tree space). If a 
spanning tree satisfies all constraints of problem (1), then 
it is called a feasible solution. The set 

},~1,)({ STnidTdTFS i ∈=≤= is called the set 

of feasible solution of problem (1) (simply the feasible set). 
Define function )()(1 TfTf =  and 

nidTdTf i ~1},)(,0max{)(2 =−= . 

Obviously, for any ST ∈ , we have 0)(2 ≥Tf , and 

0)(2 =Tf  if and only if FST ∈ . Therefore, d-MST 
problem (1) can be transformed into the following two 
objective MST problem 

)}(),(min{ 21 TfTf                     (2) 

Optimizing )(1 Tf  means searching for an MST the 

lowest total edge cost, and optimizing )(2 Tf  means 
searching for the feasible solution for d-MST problem (1). 
Thus simultaneously optimizing both )(1 Tf  and )(2 Tf  
means looking for not only a feasible solution for problem 
(1), but also a solution minimizing the object function of 
problem (1). 

It is obvious that the transformation from problem (1) 
into (2) converts single-objective constrained MST 
problem with n  constraints ( n  is the number of nodes) 
into a two-objective unconstrained MST problem. And the 
search space of problem (2) is larger than that of 
problem(1).  

In order to illustrate the relationship of problem (1) 
and (2), we introduce the concept of Pareto optimal 
solution as follows. 
Definition 1. For ST ∈* , if there exists no ST ST ∈  
such that )()( *TfTf ii ≤  for 2,1=i , and 

)()( *TfTf jj < , for some 1=j  or 2, then *T  is 
called a Pareto optimal solution of problem (2). 
Lemma 1. Suppose that there exists at least one optimal 
solution of problem (1), then *T  is an optimal solution of 
problem (1) if and only if it is a Pareto optimal solution of 
problem (2), and FST ∈*  
Proof. If *T is an optima solution of problem (1), then 

FST ∈* . Thus, )(2 Tf  attains its minimum value at 

*T , and )(1 Tf  attains the minimum value at *T  in FS . 

Therefore, *T  is a Pareto optimal solution of problem (2). 

If FST ∈*  is a Pareto optimal solution of problem (2), 

suppose that *T  is not an optimal solution of problem (1), 

then there exist some FST ∈  such that 

)()( *
11 TfTf < . Note that 0)()( *

21 == TfTf . 

This contradicts the fact that *T  is a Pareto optimal 

solution of problem (2). This proof is completed.  

Note that the second objective in problem (2) is more 
important than the first one for infeasible individuals 
because it is crucial to improve these individuals into 
feasible ones. On the other hand, the first objective is more 
important than the second one for feasible individuals 
because in this case it is the key issue to get better and 
better individual. Due to this characteristic of problem (2), 
the difference evolution schemes are adopted. For feasible 
solution, the key issue in evolution is to optimize the first 
objective function so that we can get the optimal solution 
for problem (1) as soon as possible. In this case, we will 
use some evolution scheme to improve the first objective 
function )(1 Tf . While for infeasible solution, the key 
issue is to optimize the second objective function so that 
we can get feasible solution for problem (1) as soon as 
possible. Based on this idea, we design a new crossover 
operator that evolves the individual toward feasible 
solution. Also, some evolution scheme to decrease the 
second objective function )(2 Tf is presented. 
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3 The Proposed Genetic Algorithm 

In this section, we focus on the design of GA for the d-
MST problem. Among the several tree 
encodings([10~13]), only the Prüfernumber encoding 
explicitly contain the information of node degree that any 
node with degree d  will apper exactly )1( −d  times in 
the encoding. Thus, we adopt Prüfer number encoding to 
represent the solution. 

3.1 Prüfer Number Encoding 

One of the classical theorems in graphical enumeration is 
Cayley’s theorem that there are 2−nn  distinct spanning 
tree on a complete graph with n nodes [14],[15]. Prüfer 
presented a constructive proof of Cayley’s theorem by 
establishing an one-to-one mapping between such trees 
and vectors of length )2( −n  in which each element of 
vectors is a positive integer no greater than n . These 
vectors are called Prüfer number, and we can use only 

)2( −n  integers permutation to uniquely represent a tree 
with n  nodes where each integer is an digit between 1 
and n  inclusive. 
Encoding Procedure 
Step 1) Let i  be the smallest leaf node and node j  be 
incident to node i . Set j  be the first digit in the encoding. 
The encoding is built by appending digits to the right. 
Step 2) Removenode i  and the edge from i  to j . 
Step 3) Repeat above operation until only one edge is left. 

 
 

 

 
Fig.1 The process of the encoding procedure. 

 
Fig. 1 is an example to illustrate this encoding 

procedure. The spanning tree T  in Fig. 1 corresponds to 
Prüfer vector [4 6 4 3] on a complete graph with 6-node 
represent in Fig. 1. Node 1 is the smallest leaf node, and 
node 4 is incident to node 1. Therefore, 4 is the first digit 
in the Prüfernumber. Remove node 1 and the edge (1,4) 
from T . Repeat the process on the subtree until edge (3,6) 
is left. The Prüfer number of this tree is produced. 
In a Prüfer number encoding, a tree is encoded as a Prüfer 
vector P  and a set of its eligible nodes P  (the set of all 
nodes not included in P ). For a give P  and P , the 

corresponding tree represented by P  and P , denoted as 
T , can be obtained by the following procedure. 
Decoding Procedure: 
Step 1) Let node i  be the smallest eligible node of P  and 
node j  be the leftmost 
element of P . If ji ≠ , add the edge ( , )i j  into the tree 
T . If i  is no longer eligible, then remove node i  from 

P . Delete j  from P . If j  does not occur anywhere in 

the remaining part of P , then put it into P . Repeat the 
process until P  is empty. 
Step 2) For the remaining last two nodes u  and v  of P , 
add the edge ),( vu  into the tree T . 
 

 
 

 
Fig. 2 The process of the decoding procedure 

 
Fig 2 illustrate the decoding procedure. Prüfervector 

[3 2 2 1] corresponds to a spanning tree on a complete 
graph with 6-node represent in Fig. 2.The construction of 
the spanning tree is described as follows. 

For the Prüfer number with [3 2 21]P = , the set of 

its eligible nodes [4 5 6]P = . It is obvious node 4 is the 
smallest eligible node and node 3 is the leftmost element 
of P . Add edge (3,4) to the tree, and remove 4 from P , 
3 from P  respectively. Because node 3 is no longer 
present in the remaining P , put it into P . Thus 

[2 21]P = , P [3 5 6]= . Repeat the above process until 
P  is empty and add the edge (1,6) into the tree T for the 
remaining last two node 1 and 6 of P . 

The encoding is deceptively appealing. 
Prüfernumbers can be encoded and decoded in times that 
are )log( nnO . 

3.2 Selection Operator with Preference 

Due to the special structure of problem (2), we design a 
new selection operation which is different from that for 
usual multiobjective optimization problem. The detail is as 
follows. 
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 If the second objective values of two solutions are 
both zero, we prefer to select the one with the smaller 
first objective value. This selection is in accordance 
with the concept of Pareto dominance. 

 If the second objective value of one solution is zero, 
and that of the other is nonzero, we prefer to choose 
the one with the zero second objective value. 

 If the second objective values of two solutions are 
both nonzero, we prefer to select the one with the 
smaller second objective value. 
In fact, the selection scheme ensures the best feasible 

solution for problem (1) to inherit to the next generation. 
Meanwhile, it prefers to choose the feasible solutions for 
problem (1) and the infeasible solutions with smaller 
second objective function. 

3.3 Crossover Operator 

In fact, the existence of infeasible solutions for problem 
(1) improves the opportunity of finding the optimal 
solution for the d-MST problem. The ST T  in Fig.3 is an 
infeasible solution for problem (1), while it is a feasible 
solution for problem (2) with degree constraint 3 in a 6-
node complete graph. Let ST 'T  be the MST for problem 
(1). It is obvious that ST T  differs from ST 'T  only one 
edge. Based on this fact, we design new crossover 
operator to evolve toward this direction. 
 

T 'T  
Fig. 3 Two spanning trees 

 
Because of the preference of the feasible solutions for 

problem (1), a new crossover method called partially 
multi-point crossover is modified to induce the solution to 
decrease the second object )(2 xf . 
It is now appropriate to present the detailed procedure of 
the crossover method. 
Let )( 221 −= naaaa L , )( 221 −= nbbbb L  be the 

parents be a pair of parents for crossover. 

Step 1) Choose two positions at random on these strings, 
say, i  and )( jij < ; 

Step 2) Interchange the partially string )( 1 ji aa L+  with 

)( 1 ji bb L+  in a  and b  to get two new individuals 
' ' '

1 2( )na a a −= L  and ' ' '
1 2( )nb b b −= L . 

Step 3) Set ( 1)h i= +  and repeat the following 
procedures; 

 If the number of times '
ha  appears in 'a  exceeds 

)1( −d , then select an integer {1, , }c n∈ L  
randomly which appears less than )1( −d times in 

'a  and replace '
ha  by c . set 1+= hh ; 

 If jh > , stop and let 'a  be the offspring of a . 

Step 3 is carried out for 'b  in the same manner, then the 
offspring of b  is obtained. Fig. 4 illustrates this crossover 
operator with degree constraint 3 in a 6-node complete 
graph. 

 
Fig. 4 Illustration of crossover operation 

 
For this crossover operator, we have the following 

conclusions: 
1) If the parents to participate crossover are both feasible 
solution for problem (1), the offspring generated by 
crossover are both feasible solution for problem (1). 
2) If one parent is feasible solution for problem (1) and the 
other is infeasible solution for problem (1), at least one 
offspring is feasible solution for problem (1). 
3) If the parents to participate crossover are both infeasible 
solution for problem (1), the offspring may be feasible 
solution for problem (1). 

In a word, the crossover operator improves the 
number of feasible solutions in genetic algorithm. 
 

3.4 Local Search Scheme 

Local search algorithm is an important approach for the 
most successful meta-heuristics to solve a wide variety of 
single objective combinatorial problems. It can be easily 
revised to be applicable to multi-criteria problems. A new 
local search scheme is designed to improve the offspring 
generated by crossover operator. It is not an exact local 
optimization algorithm; instead it uses relatively small 
number of individuals in each search process. Thus it 
usually cannot generate the local optimal solution. 
However, it can generate the solution good enough using 
much less computation than general exactly local 
optimization search algorithm, and simultaneously 
improve multiple objectives. The detail is as follows. 
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Let S  be any offspring generated by crossover 
operator. The offspring generated by local search scheme 
can be easily generated by the following pseudo code. 

2

1 3

4

5

6

7
2

1 3

4

5

6

7

 
 

Tree T                                         (5,6)T ∪  

 
Delete edge (3,5) 

Fig.5 Illustration of local search scheme 
 

For 1=i  to )2( −n  do 

Substitute ia  with a integer c  generated randomly, 

denoted the new individual as 'a  
  Choose the Pareto one as a  from },{ 'aa according the 
new selection operator. 
Enddo 
Select the last 'a as the result of local search from S . 

3.5 Discrete Multi-uniform Mutation Operator 

Mutation operator plays the important role of local random 
search in evolutionary algorithm. For an individual 

1 2( )na a a −= L to undergo mutation, a mutation scheme 
called discrete multi-uniform mutation operator is 
designed as follows. 

For each component ia  of a , it is changed to a 
randomly generated integer 

{1, , }ic n∈ L , 1, 2, ,i n= L .The offspring of a  is 

1 2 2( )nb b b b −= L . It is illustrated in Fig. 6. 

 
Fig. 6. Illustration of mutation operation. 

4. The Proposed Algorithm 

Novel Genetic Algorithm (NGA): 

Step 1. (Initialization) Choose population size N , proper 
crossover probability cp  and mutation probability mp , 

respectively. Generate initial population )0(P . Let the 
generation number 0=t . 
Step 2.  (Crossover) Choose the parents for crossover from 

)(tP  with probability cp . If the number of parents 
chosen is odd, then randomly choose additional one 
from )(tP . Afterwards, randomly match every two 
parents as a pair and use the proposed crossover operator 
to each pair to generate two offspring. All these 
offspring constitute a set denoted by O . 
Step 3. (Local Search) For each offspring generated by 
crossover, the proposed local search scheme is used to it to 
generate an improved offspring. All these improved 
offspring constitute a set denote by 1O . 
Step 4. (Mutation) Selection the parents for mutation from 
set 1O  with probability mp . For each chosen parent, the 
proposed mutation operator is used to it to generate a new 
offspring. These new offspring constitute a set denoted 
by 2O . 
Step 5. (Selection) Select the best N  individuals among 
the set 21)( OOtP ∪∪  as the next generation 
population )1( +tP , let 1+= tt . 
Step 6. (Termination) If termination conditions hold, then 
stop, and keep the best solution obtained as the 
approximate global optimal solution of the problem; 
otherwise, go to step 2. 

5. Global Convergence 

To analyze the properties of genetic algorithms easily, we 
use a brief and general framework to describe genetic 
algorithm as follows: in each iteration the population is 
modified by a number of successive probabilistic 
transformation. Evidently, the resulting new population 
only depends on the state of the current population in a 
probabilistic manner. This property, known as the Markov 
property, reveals that Markov processes are appropriate 
models for the probabilistic behavior of genetic algorithms. 
Notice that the deterministic concept of “the convergence 
to the optimum” is not appropriate because the state 
transitions of a genetic algorithm are of stochastic nature. 
In order to clarify the exact semantic of a phrase like “the 
convergence to the global optimum” one has at first to 
define the exact stochastic convergence. 

Let Ω  is the Prüfer number encoding search space 
for the degree-constrained MST problem. In order to 
prove the global convergence of the algorithm with 
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probability one, it is required to introduce the following 
concept: 
Definition 1. For two chromosomes a and b if 

0})({Pr >= baMCob , then chromosome b  is called 
to be reachable from chromosome a  by crossover and 
mutation, where )(aMC  represents the offspring that 
was generated from a  by crossover operator and mutation 
operator.. 

For the proposed algorithm NGA, we have the 
following conclusion: 
Theorem 2 For any two chromosomes , b  is reachable 
from a  by crossover and mutation.  
Proof. In fact, note that the probability of choosing a  to 
take part in crossover is 0>cp . 
Suppose that c  is any offspring generated from a  by 
crossover operator and e  is the individual generated from 
c  by local search, then the probability of e  being chosen 
to take part in mutation is 0>mp . Thus the probability 

of b  being generated form a  by crossover and mutation 
satisfies 

})({Pr})({Pr beMobppbcMCob mc =⋅⋅≥=  

It only needs to prove that b  is reachable from e  by 
mutation, i.e., to prove 
 

0})({Pr >= beMob  
where )(eM  represents the offspring of e  by mutation. 
Suppose that e  and b  have the following form 

),,,( 221 −= neeee L ),,,( 221 −= nbbbb L  
It can be known from the mutation operator that the 

probability of generating ib  from ie  by mutation is 
n
1

. 

Therefore, 

01111})({Pr 2 >=⋅== −nnnnn
beMob L  

Thus, 

0})({Pr})({Pr 2 >
⋅

==⋅⋅≥= −n
mc

mc n
pp

beMobppbcMCob  

This proves that b  is reachable from a  by crossover and 
mutation. 
Theorem3Thepopulationsequen LL ),(,),1(),0( tPPP  
is Pareto monotone, i.e., )1( +tP  is better or at least no 
worse than )(tP  for any t . 
It is obvious according to the new selection operator that 
the population sequence is Pareto monotone. 
Theorem 4 The proposed genetic algorithm converges to 
the global optimal solution with probability one. 

6. The numerical experiments 

In order to examin the proposed algorithm, we compute 
two kinds of problems respectively. 
he first numerical problem is selected from [12] and the 
optimal solution is 2256. The numerical example is made 
by Zhou and Gen in [4]. The problem is a 9-node complete 
graph and the degree constraint is 3 for all nodes. Edge 
weights of this problem is given in Table 1. 
Zhou and Gen [4] reported that their GA found the 
optimal solution on 66.7% (Fig. 7) times of total runs in 
25000 function evaluations (a population of 50 for 500 
generations). The proposed algorithm found the optimal 
solution on this problem on greater than 83.3% times of 
total runs only in 10000 function evaluations. This 
demonstrate that the proposed algorithm is more effective 
than that in [4]. 

The second kind of problems is randomly generated. 
Random graphs are those in which the weight of each 
edge has been generated randomly from a uniform 
distribution within some predefined range. Boldom et. Al. 
[7] have found that when reasonably large graphs are 
generated the maximum degree of a node in the 
underlying MST rarely exceed four. Hence, they 
employed a means of generating biased random complete 
graphs in which a high maximum-node degree is present 
in the underlying MST. For details of these problems 
readers can refer to [9]. 
Results are given in terms of the ratio of the best d-MST 
cost found to the known cost of the MST of the graph. The 
latter is found by simply running Prim’s algorithm, which 
guarantees finding a minimum cost spanning tree without 
degree constraints. We compared the proposed algorthm 
with BF2 [7], GA1 [8] on an M-graph of 250 nodes at 
various degree constraints. Table 2 represents the best, 
mean and worst solutions found by each of the algorithms 
in terms of the d-MST/MST ration. 

It is clear from the above results that the proposed 
algorithm finds the lower-cost solutions than any of the 
other alogorithms. This result is presented graphically in 
Fig. 9, which shows the mean (over all nine graphs) of the 
best solution found by each algorithm. 

7 Conclusion 

In this paper, we presented a new genetic algorithm for the 
degree-constrained minimum spanning tree problem. First, 
we transform the d-MST problem into bi-objective 
preference MST problem. Based on this model, we design 
a new crossover operation, a local search scheme, a 
mutation operator and a new selection operator based on 
the preference of the two objectives. The convergence of 
the proposed algorithm to globally optimal solution with 
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probability one is proved. The simulation results indicate 
the proposed algorithm is effective. 
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Table 1. Edge weights of the 9-node d-MST problem 
i 2 3 4 5 6 7 8 9 

1 224 224 361 671 300 539 800 943 
2 - 200 200 447 283 400 728 762 
3  - 400 566 447 600 922 949 
4   - 400 200 200 539 583 
5    - 600 447 781 510 
6     - 283 500 707 
7      - 361 424 
8       - 500 
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Fig.7 Solution distribution for d-MST using GA 
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Fig. 8 Solution distribution for d-MST using the proposed 
algorithm 
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Table 2 Comparing NGA with GA1 and BF2 
 

Graph n  Degre

e 

 BF2 GA1 NGA

1 50 9 Best  2.5673 3.3540 1.6728

2 50 10 Best  2.8126 3.9985 1.7246

3 50 10 Best  3.3899 3.8800 1.9038

4 100 10 Best 2.0330 4.2999 1.2718

5 100 11 Best  1.8584 4.7599 1.3509

6 100 11 Best  1.5869 4.7639 1.3147

7 200 12 Best 1.4133 6.2079 1.1952

8 200 13 Best 1.3870 6.9406 1.2159

9 200 13 Best 1.3487 6.2461 1.1879

 
 
 

Fig.9 Mean over all graphs of solutions found 
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