
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 

 

75

Manuscript received  July 5, 2006. 
Manuscript revised  July 25, 2006. 

Reusable Virtual Elements for Virtual Environment Simulations 

Francisco Luengo and Carol Soto 
  

Department of Computer Science, University of Zulia, Venezuela 
 

 
Summary 
In this paper, we present guidelines for designing virtual 
elements that can be used for developing intelligent virtual 
environments, i.e. 3D environments with autonomous 
agents. We consider three kinds of virtual elements (rigid 
objects, smart objects, and autonomous agents) and their 
functionalities. These functionalities let them to interact 
one to each other. This approach allows for dynamically 
scaling and adapting the virtual element’s geometry and 
functions to different scenarios and simulations. We also 
explain the steps taken in order to construct and animate 
such environments from reusable virtual elements. 
Key words: 
Intelligent Virtual Environment, Autonomous agent, Reusable 
virtual elements 
 

Introduction 

3D Virtual Environments have been successfully used in a 
broad range of contexts, ranging from Virtual Reality 
simulations to video games, and all sorts of interactive 
applications. Nowadays, the term “virtual world” has 
become familiar for most people. These worlds should not 
be limited to just beautiful 3D scene, but also they should 
make users feel a real sense of presence. This is achieved 
integrating dynamic characteristics and autonomous 
entities that can interact with the user or other virtual 
entities to the environment. 
 There is a necessity of creating different intelligent virtual 
environments for several reasons such as testing 
experimental behavioral models, or trying agent-object or 
object-object interactions, or making intelligent virtual 
environment simulations for training, entertainment, 
education, etc. In most cases, designers and developers 
build their own platforms for constructing those virtual 
environments, but the implementation of this kind of 
application is highly expensive in terms of time and 
human resources. On the other hand, the virtual elements 
created (any 3D object or virtual agent that forms up the 
graphic scene) usually are closely tight to the application, 
which makes very expensive and sometimes unfeasible 

reusing them in different platforms. In addition, one 
obstacle to develop those applications is the complexity of 
the design of the virtual elements.  
Some virtual reality applications require interactions 
between virtual objects and a user wearing a special suit, 
and other ones require that virtual characters are able to 
manipulate the objects in their environment. Those objects 
made for interacting are known as smart objects. The 
smart objects paradigm considers virtual objects as agents 
with their own features of behavior. 
In any virtual environment simulation, realism and 
believability of virtual characters plays an important role 
in the immersion of the user. However, one of the most 
challenging topics is the accurate animation of the 
behavior of these virtual agents as well as their 
interactions with objects in the virtual world. Therefore, 
research in this field usually focuses on defining 
development frameworks with reusable and pluggable 
components. 
Allowing an agent to conduct interactions with objects, a 
number of general approaches may be taken. One option 
suggests that the design of the object inform about how to 
handle it. The most successful implementation of this 
approach was presented by Kallman and Thalmann [11] 
and extended by Peters, Dobbyn, MacNamee and 
O’Sullivan [15]. In this approach, all features, geometry, 
behaviors, and interaction information of the smart object 
are described in a text-based script file. Recently works 
add formal description of the action semantics in smart 
objects to allow the agents to meaningfully interact and 
create action plans even with objects never encountered 
before and not anticipated by the agent developer [1]. 
In the case of autonomous agents, separating the design 
from the platform is harder than in smart objects, because 
agent’s design has to integrate the different techniques 
required for a realistic simulation of its behavioral. Among 
them, we can include those for perception, motion control, 
3D rendering and animation, goal selection, action 
execution, communications between agents, their 
interaction with the environment, etc. The goal is to 
provide the agents a high degree of autonomy, so they can 
evolve freely, with a minimal input from the animator. In 
addition, this animation is expected to be realistic; in other 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 

 

76 

words, the virtual agents must behave according to reality 
from the point of view of a human observer. 
A number of different approaches have been proposed to 
fulfill the previous requirements [2,6,8]. Despite these 
approaches make a separation among different kinds of 
simulation presents in an autonomous agent (physical and 
behavioral simulation); it is usual finding one of them 
implemented in the simulation platform. Other approach 
aims to a general model for the representation of virtual 
environments based on the semantics of the virtual entities 
and not on their geometry [7]. 
In this paper we propose the design of virtual elements as 
reusable software components in order to create virtual 
environment simulations. The aim is to form a library of 
independent virtual elements that developers can use and 
share for making their own simulations in a fast and easy 
way.  
The structure of this paper is as follow: The Section 2 
briefly describes the virtual elements that appear in virtual 
environment simulations. In Section 3 we introduce our 
approach to design reusable virtual elements. Some 
design’s considerations for each kind of virtual element 
are commented in Section 3, and extended in Section 4 
and Section 5. Al illustrative example is presented in 
Section 6. Conclusions close the paper. 
 
 

2. Virtual Element in Virtual Environment 
Simulations 

Autonomous agents inhabit an intelligent virtual world. 
This virtual world comprises two kinds of objects which 
the agent can interact with: rigid objects and smart objects. 
By smart objects we mean those objects whose shape, 
location and/or status can be modified over time, as 
opposed to the rigid ones. For example, a music box or a 
traffic light are smart objects, simply because they might 
be turned on/off or red/yellow/green while a wall or a tree 
are rigid objects. This concept, already used in previous 
approaches [10,12,14,17] with a different meaning, has 
shown to be extremely helpful in defining the interactions 
between the virtual actors and the objects. We point out 
that saying that an object is rigid does not mean it has null 
influence on the agents' actions. For instance, a tree could 
be a rigid object but it should be considered in such tasks 
as collision avoidance and path planning. 

With the intention of generating intelligent virtual 
environment simulations from independent virtual 
elements, it should have communication among the virtual 

elements that are participating in the simulation. Examples 
of this communication are presented as follow: 

• Rigid Object - Agent: a virtual human (agent) 
eluding a rock (rigid object). The agent needs to 
know where the rock is. 

• Smart Object - Agent:  a virtual human (agent) 
trying to turn on a lamp (smart object). The agent 
needs to know the status of the lamp (if it is off or 
on), and the position of the switch and how use it. 
The lamp needs to know if its switch has been 
pressed in order to change its status. 

• Rigid Object - Smart Object: a ball (smart object) 
rolling down on an inclined road (rigid object). 
The ball needs to know the road’s slope and its 
length. 

Generally, rigid objects just need to offer information 
about them. Instead, smart objects and autonomous agents 
have to get information about the status of other virtual 
elements in order to interact with them, and to give 
information about their own status. 

The main idea is to design and to implement each 
virtual element as a software component that can be used 
for any programmer to create in an easy and fast way an 
intelligent virtual environment simulation. In that sense, 
some considerations should be taken. 

 
 

3. Reusable Approach 

With the purpose of building intelligent virtual 
environment simulations from individual virtual element 
software components, the design of these elements must 
consider their appearance and functionality, and includes 
the mechanisms that let the programmer set a simulation 
up in an easy way. 
This aim can be reach using object oriented programming 
(OOP). Through classes, it is possible to define a 
completely virtual element. The class would include the 
visual representation (shape), features (attributes), and 
functionalities (methods) of a type of virtual element. 
The figure 1 shows a general framework for creating any 
kind of virtual element. The complexity of the design is 
related to the element’s functionalities. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 
 

 

77

 
Figure 1. Structure of virtual elements 

 
 
A rigid object is the simplest element. It has the basic 
modules of any virtual element. Shape is the data needed 
to represent the element visually. Attributes are shape’s 
parameters which allow modifying some aspects of the 
element such as dimensions, position, orientation, color, 
etc. The request manager is formed by all methods that 
the programmer can used for customizing the element or 
getting information to other elements. 
The structure of a smart object is more complicate because 
it includes a sort of behavior (its respond to an interaction 
with), and that behavior can be ruled by physical laws. A 
smart object needs to be animated. The animation system 
contains all necessary methods to get interaction 
information and to react accordingly. 
On the other hand, an autonomous agent is able to take 
decisions about what to do and how to do it. This is 
achieved through an action selection scheme [4,14,16]. In 
most cases, this action selection scheme tries to simulate 
cognitive process with the intention of taking more 
realistic decisions [5,9]. The behavioral system contains 
methods that usually implement artificial intelligent 
techniques, and it uses the animation control’s methods for 
achieve its goals. The behavioral system also requires new 
attributes related with emotions, feelings, thoughts, needs, 
and believes (about themselves, others, or the 
environment). Depending on those attributes, a goal is 
selected and different actions are taken. Furthermore, in 
order to interact with the 3D world, the autonomous 
agents must identify the different world's elements, 

regardless their nature (smart objects, rigid objects, other 
agents) and properties (location, status, etc). To this 
purpose, each virtual agent should have a perception 
mechanism that includes a set of individual sensors to 
analyze the environment in order to capture relevant 
information [3]. 

4. The Design 

The object-oriented approach allows modeling specific 
features of a virtual element into individual classes; for 
example, the perception system and the behavior system 
can be implemented in separated classes (figure 1). Then, 
the agent’s class is formed inheriting the attributes and 
methods from those classes. The animation system also 
can be implemented in its own class and to be inherited. 
This hierarchical model is very useful because this way, 
designing, testing, or modifying the virtual element’s class 
is easier, and helps to the creation process of new classes. 
We consider two levels of design: low and high level. The 
low level includes the virtual element’s attributes and 
those methods that doing internal process for correctly 
updating the attributes. The high level correspond to the 
class’s interface i.e. the methods used for getting 
information from the class, supplying information to the 
class, and executing some class’s functionality. 
Once the class of an element has been implemented, the 
methods of the interface are the most important ones for 
who are using the class because through them it is possible 
to customize an instance of the class and to use it. The 
Figure 2 shows the Class wheel’s interface. This class 
describes a smart object used for interact with an 
autonomous agent (figure 3).  
 
 

 
Figure 2. Class wheel’s interface 

 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 

 

78 

 

 
Figure 3. Example of an interaction between a smart 

object and an autonomous agent 

There are three different kinds of methods in the interface 
of a class: getting methods, setting methods, and executing 
methods. The getting methods deliver information about 
the virtual element’s attributes to the programmer. This 
information depends on the kind of the element. There is 
basic information, that it can be getting from any element, 
like position, orientation, size and shape; but the 
programmer needs to get additional information about 
smart objects and virtual agents, like their status. The 
setting methods allow to customize the element (changing 
its size or any other attribute and to adapt it to the new 
environment simulation) or give information to the 
element that it needs to react or to interact with. A rigid 
object hasn’t executing methods because it doesn’t need to 
be animated. The executing methods are used for animate 
those elements that exhibit some kind of behavior. 
There are common methods for all implemented classes. 
One of these methods is paint method which let draw the 
virtual element.  Other methods depend on the virtual 
element and for what they were made for. 
All virtual elements’ classes are usually gathered in object 
libraries. This way, when a programmer needs a virtual 
element, he only has to include the corresponding object 
library and create an instance of the class and use it. 

5. Designing Reusable Autonomous Agents 

The rigid object is the perfect reusable element because it 
doesn’t need to be animated. Smart objects aren’t difficult 
to reuse either. On the other hand, autonomous agents can 
be not easier to insert into a virtual environment 
simulation because of their behavioral systems.  
Same as smart objects, the autonomous agents respond to 
actions and events. But different to smart objects, the 
autonomous agents don’t need to wait for something 
happen because they always are taking decisions about 
what to do and how to do it, and trying to achieve their 
goals by themselves. The agent’s behavior and its 
capabilities of interaction depend on what the agent was 
created for. Each agent has its own behavioral system 

which to lead its actions. An executing method is 
associated to this system to animate the agent. 
Nevertheless, the behavioral system requires a lot of 
information to takes decisions. The perception system 
implements setting methods to obtain information that the 
behavioral system needs. If the agent is able to exhibit a 
lot of behaviors then it will have to supply more 
information about its status. 
The behavioral system is usually tight to the simulation 
engine, making impossible to reuse this component in a 
different engine. 
The figure 4 shows a general framework to build 
intelligent virtual agents (IVA). This framework, which 
was originally presented in [13], encloses all components 
that an autonomous agent needs for exhibit an autonomous 
and intelligent behavior. 
 
 
 

 
Figure 4. Scheme of the simulation framework 

 
 
The physical control system implements the interface’s 
methods. It includes methods for specific movements and 
others to obtain information to make decisions. The IVA 
behavioral engine is the “brain” of the agent. It makes the 
process to become information into knowledge, to select a 
goal to be achieved and the way to be accomplished. 
Following the information flow in the figure 4, the agent 
receives environment’s information (1) through setting 
methods. This information is combined with the agent’s 
knowledge (2 and 3) to update its internal states (4) and its 
knowledge base (3). Internal states and knowledge are 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 
 

 

79

used for establish a goal (5) and take the actions 
accordingly (6). Those actions are carried out using 
executing methods (7). 
As we mentioned in the previous section, this framework 
can be implemented by a Class. But, it could be a hard 
task to add new functionalities to a Class implemented by 
someone else. It becomes less hard if the Class offers a set 
of methods that implements basic animation features 
because it is possible to combine some of those methods to 
create new ones. Also, it’s important to implements 
independent processes in their own class. This helps to 
make classes easier to understand and handle. 
Another aspect that makes hard creating reusable 
autonomous agents is that they need to identify the 
different virtual elements inside the virtual environment. 
That is important because normally its behavioral system 
takes decisions about interacting with a specific object or 
another agent. Therefore, it has to be able to identify the 
elements and to know how to interact with them. A 
solution would be using an element representation scheme 
like in [13]. 
All virtual elements’ classes are gathered in object 
libraries. This way, when a programmer needs a virtual 
element, he only has to include the corresponding object 
library and create an instance of the class and use it. 

6. An illustrative example 

In this section we show how some virtual elements used 
for different applications can be gathering in the same 
virtual environment simulation. 
All elements’ classes were implemented using C++ and 
OpenGL. There are some files needed to use a class (the 
class’s package). This package includes the source code, 
the element’s geometry file, texture files, etc. 
First, we start describing virtual elements designed for 
virtual park simulations. The figure 5 shows two rigid 
objects (a tree and a bench) and two smart objects (a 
wheel and a seesaw). Each element has its own class. 
 
 

 
Figure 5. Virtual elements designed for a virtual park 

 
 

The following table describes the seesaw class’s 
interface’s methods. These methods are enough for 
synchronizing a simulation between the seesaw and virtual 
agents. 
 

Getting Methods Description 
get_is_stopped Return true if the seesaw is being 

animated 
get_height Return the height of each seat  
get_position Return the position of the seesaw 

and its seats 
get_shape Return four vertices that 

surround the seesaw  
get_down_seat Return true if a specific seat is 

down 
get_free_seat Return the seats that aren’t 

occupied 
Setting Methods  

set_position Let to put the seesaw in any 
position 

set_occupy_seat Set a seat as not available 
Set_empty_seat Set a seat as available 
Executing Methods  

animate Start or stop the animation of the 
seesaw 

Table 1. Interface of the seesaw class 

 
The wheel class also has an interface that allows 
controlling the interaction with agents. 
The next figure shows two autonomous agents specially 
designed for virtual park simulations. Their behavioral 
engine includes goals that are associated to the different 
elements in the virtual park. Furthermore, the virtual 
human class, that implements the IVA, allows creating 
virtual agent’s instances with different aspect (man, 
woman, child, customizing its clothes and hair). 
  

 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 

 

80 

Figure 6. Two different autonomous agents for a virtual 
park simulation 

 
In the figure 7 we can see some scenes of virtual park 
simulations, which show interactions agents – agents and 
agents – objects.  
 

 
Figure 7. Virtual park simulation 

  
With the purpose of testing the behavioral system’s 
adaptability to different scenarios, a new environment was 
developed (figure 8). This new scenario corresponds to a 
shopping mall. It is possible to identify some virtual 
elements that have taken part in the virtual park simulation. 
For example, it appears the bench with a new texture, and 
the tree class implements several kinds of trees, like the 
palm tree. Obviously, it also appears the same virtual 
agent but news goals were added. It wasn’t necessary to 
eliminate the virtual park’s goals because in the new 
scenario they become unfeasible to reach. 
 

 
Figure 8. Virtual shopping mall simulation 

 

It is important to make emphasizes that all virtual human 
in both simulations are instances of the same class but 
with different attribute’s values. That’s reason for 
different agents show different behaviors. 
 
On the other hand, in a completely different software 
application, virtual elements were developed to create car 
accident and traffic flow simulations. The figure 9 shows 
those elements. Most of them are rigid object, which 
include methods for customizing them (change their size 
or shape) or getting information (like position and area) in 
order to prevent or detect collisions. The cars were 
designed as autonomous agents. The car class allows 
selecting among two kinds of vehicles (truck or car). 
Furthermore, the car class implements a physical control 
system and a behavioral control system that let the car 
exhibits autonomous movement and collision responds 
according to physical laws.  
 

 
Figure 9. Virtual elements created for car accidents 

simulations 
 
A software program gathers all those elements and let to 
build scenarios for making car accident and traffic flow 
simulations (figure 10).  
 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 
 

 

81

Figure 10. Car accident and traffic flow simulation 
program 

 
However, scenarios with only rigid objects are static and 
bored. With the purpose of making dynamic environments 
for the simulations, virtual humans were added to the 
scenes. Those virtual humans are the same used in the 
virtual park simulation. 
It wasn’t needed making any change to the IVA class 
because the virtual humans just had to walking around 
avoiding obstacles. The figure 11 shows the agents into 
the car accident and traffic flow simulation. 
  

 
Figure 11. Integrating virtual human into the traffic flow 

simulation program 

7. Conclusions 

In this paper we have presented different considerations to 
the moment of designing reusable virtual elements. We 
use object-oriented programming approach for designing a 
virtual elements library where each virtual element is 
completely defined by its attributes and functionalities. 
We also show how can use this library to create different 
intelligent virtual environments applications. 
Some approaches present platforms or tools for 
constructing intelligent virtual environments. Others ones 
present frameworks for designing such environments. But 
in all of them, the virtual elements are supported by an 
engine. This engine recognizes all the virtual elements, 
supporting the communication between them, and 
executes the simulation, controlling it. 
There is no approach for the creation of reusable virtual 
elements that perfectly fits to all kind of virtual 
environment applications. The engine approach allows a 
better use of the computational resources but it makes 

difficult import the virtual elements to or exports it from 
other applications. 
A virtual element implemented as an independent software 
component encloses all resources that it needs. A virtual 
environment simulation built from those software 
components couldn’t be so efficient, computationally 
talking. Nevertheless, a careful design of the elements’ 
classes with a good documentation allows modifying the 
classes adding new features when it is necessary. In any 
case, these classes allow creating different virtual 
environment applications for different purposes in an easy 
and fast way. 
 
References 
[1] Abaci T., Ciger J., and Thalmann D. "Action Semantics in 

Smart Objects". proceedings of the Workshop towards 
Semantic Virtual Environments 2005 workshop, March 
2005, Switzerland 

[2] Boulic R., Becheiraz P., Emering L., and Thalmann D. 
“Integration of motion and control techniques for virtual 
human and avatar real-time animation”. ACM Symposium 
on Virtual Reality Software and Technology, ACM, New 
York, pp.111-118, 1997. 

[3] Conde T. and Thalmann D. “An Artificial Life Environment 
for autonomous virtual agents with multi-sensorial and 
multi-perceptive features”. Computer Animation and Virtual 
Worlds 2004, 15:311-318. 

[4] Donnart J-Y and Meyer J-A. “A Hierarchical Classifier 
System Implementing a Motivationally Autonomous 
Animat”. 3th Int. Conf. on Simulation of Adaptive Behavior. 
1994. The MIT Press/Bradford Books. 

[5] Farenc N., Boulic R., and Thalmann D. “An informed 
environment dedicated to the simulation of virtual human in 
urban context”. Proc. EUROGRAPHICS’99, Computer 
Graphics Forum, pp.309-318, 1999. 

[6] Funge J., Tu X., and Terzopoulos D. “Cognitive modeling: 
knowledge, reasoning and planning for intelligent 
characters”. Proceedings of SIGGRAPH’99, ACM, New 
York, p 29-38. 1999. 

[7] Gutierrez M., Vexo F., and Thalmann D. "Semantics-based 
representation of virtual environments". Int. J. of Computer 
Applications in Thecnology, Vol.23, Nos. 2/3/4, 2005. 

[8] Iglesias A. and Luengo F. "A new based-on-Artificial-
Intelligence Framework for behavioral animation of virtual 
actors". Proc. I.C. on Computer Graphics, Imaging and 
Visualization, pp.245-250, 2004. 

[9] Iglesias A. and Luengo F. "New Goal Selection Scheme for 
behavioral Animation of Intelligent Virtual Agents". IEICE 
TRANS. INF. & SYST., Vol.E88-D, No.5 MAY, pp.865-
871, 2005. 

[10] Kallman M., Monzani J-S., Caicedo A., and Thalmann D. 
“ACE: A platform for the real time simulation of virtual 
human agents”. EGCAS'2000, 11th Eurographics Workshop 
on Animation and Simulation, Interlaken, Switzerland, 
August, 2000. 



IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 

 

82 

[11] Kallman M. and Thalmann D. "Modeling Objects for 
Interaction Tasks". Proc. Eurographics Workshop on 
Animation and Simulation, 1998. 

[12] Kallmann M., de Sevin E., and Thallman D."Constructing 
Virtual human life Simulations".Deformable Avatars, 
Kluwer Pub., pp.240-247,2004. 

[13] Luengo F. and Iglesias A. "Framework for simulating the 
human behavior for intelligent virtual agents. Part II: 
Behavioral System". ICCS 2004, LNCS 3039, pp.237-244, 
2004. 

[14] Monzani J.S., Caicedo A., and Thalmann D. "Integrating 
behavioral animation techniques". Proc. of 
EUROGRAPHICS'2001, Computer Graphics Forum, 
Vol.20(3), pp.309-318, 2001. 

[15] Peters C., Dobbyn S., Mac Namee B., and O'Sullivan C. 
"Smart Objects for Attentive Agents". Proc. WSCG'2003. 

[16] Tyrrell T. “An Evaluation of Maes’ “Bottom-Up 
Mechanism for Behavior Selection”. Adaptive Behavior 
2(4), 307—348, 1994. 

[17] Vosinakis S. and Panayiotopoulos T. “SimHuman : A 
Platform for Real-Time Virtual Agents with Planning 
Capabilities”. ”. A. de Antonio, R. Aylett, and D. Ballin 
(Eds.): IVA 2001, LNAI 2190, pp 210-223, 2001. Springer-
Verlag Berlin Heidelberg 2001. 

 
 

Francisco Luengo is Associate 
Professor at the Department of 
Computer Science of the 
University of Zulia (Venezuela). 
He holds a B.Sc. degree in 
Computer Science at the 
University of Zulia (1992) and a 
M.Sc. in Computer Science at the 
Central University of Venezuela 
(1996) and a Ph.D. in Applied 
Mathematics and Computational 
Sciences at the University of 

Cantabria (Spain). His fields of interest are computer graphics 
and animation, parallel computing, artificial intelligence and 
numerical analysis. 
 
 

 
Carol Soto received the B.S. 
degree in Computer Science at the 
University of Zulia (2006). She is a 
M.S. candidate at Applied 
Computer Program in the 
University of Zulia (Venezuela). 
Her research interest is artificial 
life, 3D simulations. 
 
 
 

 
 
 


