
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

122

Manuscript received July 7, 2006.
Manuscript revised . July 25, 2006

An Efficient Buffer Management in a Network Interface Card

Amit Uppal,† and Yul Chu††,

Mississippi State University, Mississippi State, MS, USA

Summary
This paper proposes a dynamic packet buffer management
algorithm for a protocol processor in a network terminal. The
protocol processor is to handle high-speed data streams, more
than 10 Gb/s, in a network interface card (NIC). There are two
types of packet buffer management algorithms, static and
dynamic. In general, the dynamic buffer management algorithms
work better than the static ones for reducing the packet loss ratio.
However, conventional dynamic buffer management algorithms
do not utilize packet buffer memory efficiently. Therefore, we
propose an algorithm, which contributes to fairness and full
utilization of the packet buffer memory. Our experimental results
show that the proposed algorithm improves the packet loss ratio
by 13.5 % to 18.5% compared to conventional dynamic
algorithms.

Key words:
Packet buffer management, network interface card, protocol
processor, high-speed computer network

1. Introduction

Data is transmitted from one application to another in the
form of packets in a computer network [1]. A packet
consists of necessary data for an application program
associated with headers, such as TCP header, IP header,
etc. The receiver in a network terminal processes and
places a packet in a buffer until the application requests
the packet. The processing of a packet may involve
calculation of the checksums, removal of the headers, and
determination of the destination application. After
processing of layer 3 and layer 4 protocols, packets are
placed in a packet buffer in a network interface card (NIC),
which connects a computer to an Ethernet network.

A packet buffer is a large shared dual-ported memory [6].
Packets for each application are multiplexed into a single
stream. In Figure 1, packet buffer management algorithm
determines whether to accept or reject each packet. The
accepted packet is placed into a logical FIFO queue; each
application has its own queue in a packet buffer [2][4].
The accepted packet remains in a buffer until the
application retrieves it from the buffer.

In general, incoming packets for different applications at
different data rates are placed in a buffer. These

accumulated packets in the buffer can reduce the available
buffer space for a next incoming packet. Once the buffer
is full, further incoming packets will be dropped.
Therefore, it is important to reduce packet loss ratio to
support any end-to-end application in a computer network
[5][6]. Efficient buffer space management can reduce the
packet loss ratio. Buffer management algorithms in a NIC
determine how the buffer space is distributed among
different applications.

Processing of
Layer 3

and Layer 4
Headers

Accepted
Packets

are placed in
Packet Buffer

Application
layer

retrieves
the packets

Buffer Management
algorithm

Accept or Reject
the Packet

Fig. 1 Role of buffer management algorithm in a NIC.

Buffer space can be managed using either a static
threshold scheme or a dynamic threshold scheme for
various applications. The static threshold scheme involves
establishing the maximum and minimum limits for a
buffer space available for each application [16]. In this
scheme, a packet is accepted only if the queue length for
an application is smaller than the static threshold for the
application. The static threshold scheme requires only
queue length counters and a comparator [14]. The static
threshold scheme is easy to implement in hardware, but it
is not adaptive to any changes in traffic conditions. On the
other hand, the threshold value of the dynamic scheme is
determined by the total amount of unused buffer space at
any instant of time. Therefore, the dynamic threshold
scheme is adaptive to changes in traffic conditions. In
general, the dynamic threshold scheme has less packet loss
ratio than the static threshold scheme.

The design of a buffer management algorithm needs to
consider the following two factors [2]: 1) Packet loss ratio
- It is defined as the ratio of the number of dropped
packets to the total number of received packets [8]; and 2)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

123

Hardware complexity - The amount of hardware required
to implement a given buffer management algorithm.
 In this paper, we will present four popular buffer
management algorithms for a NIC: Completely Partitioned
algorithm (CP), Completely Shared algorithm (CS) [11],
Dynamic algorithm (DA) [14], and Dynamic Algorithm
with Dynamic Threshold (DADT) [16].

None of these algorithms except CS makes full utilization
of a buffer space; in other words, packets can be rejected
even if there is some unused buffer space for those
algorithms. This happens because of a controlling
threshold value of each queue. However, CS has a
disadvantage that any application can fill the whole buffer
space. This will increase packet losses for the other
applications. That means CS cannot provide fairness to
applications even though CS utilizes full buffer space.
Therefore, it is required to develop an algorithm for
fairness and efficient memory utilization to reduce packet
losses.

In this paper, we propose an efficient buffer management
algorithm called Fairly Shared Dynamic algorithm
(FSDA); FSDA makes full utilization of memory and
provide fairness to all the applications.
The remainder of the paper is divided into eight sections.
Section 2 describes the traditional and new architecture for
packet reception; Section 3 discusses four popular buffer
management algorithms; Section 4 introduces the
proposed algorithm, FSDA; Section 5 explains our
simulation model to measure the performance of buffer
management algorithms; Section 6 compares the
performance of FSDA with DA and DADT for different
traffic mix; finally, Section 8 gives the conclusions.

2. Brief Description of Protocol Processor

Traditionally, the physical layer and MAC layer
processing, layer 1 and 2, has been done in a NIC [2].
After processing in a NIC, the packet is transferred to the
main memory of a host processor, general-purpose
processor of a network terminal. Then, the TCP/IP header
or UDP/IP header is processed by a host operating system
(OS). In general, 20%-60% of the processing power of the
OS has been used for the protocol handling [2]. Therefore,
the traditional NIC cannot handle packets efficiently for a
high-speed network, more than 10 Gb/sec [2].

2.1 New Architecture for Packet Reception

Tomas Henriksson, et al. [2][7] proposed protocol
processor architecture to offload the host processor for a
high-speed network. The new packet reception shown in
Figure 2, the supporting micro-controller and protocol
processor, moves the layer 3 and layer 4 processing to a

NIC [1][5][7]; as usual, packets coming in from the
network are received in a NIC and are processed for the
layer 1-2 protocols; instead of sending the packet to a host
processor for further processing, the protocol processor in
a NIC handles the processing of the layer 3 and layer 4
protocols. The main goal of the protocol processor is to
handle the TCP/IP or the UDP/IP processing at a wire
speed [2][7].

Ethernet (Physical)

Protocol Processor

Packet Buffer Memory

Supporting Micro-controller

Incoming Packets

Host Processor

 Fig. 2 Protocol processor architecture [2].

As shown in Figure 2, incoming packets will stream
through the protocol processor and the payload
(application) data will be stored in a packet buffer until a
host application retrieves it [5]. Packets are classified
based on an application. Once a packet is classified, it is
stored in an output queue of a buffer. The processor is
estimated to be able to handle 10 Gb/s data streams [2].
The packet loss ratio at this speed comes out to be around
9-10 percent for Dynamic algorithms [14,16]. So, it is
necessary to have a new algorithm, which can reduce the
overall packet loss ratio and provide fairness to all the
applications.

Buffer management algorithms in a NIC must be adaptive
and intelligent to any changes in traffic conditions. These
algorithms are different from what we require in a
switches and a hub of the layer 2, MAC Layer. A switch
stores all the incoming packets in a common memory
buffer that all the switch ports (input/output connections)
share. A switch reads the MAC address and sends the
packet out to the correct port for the destination node.
Hence, the role of a switch is to store and forward a packet
to a correct destination [17]. However, in a NIC, a buffer
memory must be intelligently shared so that all the
applications get fair amount of the buffer space. The aim
of the buffer management algorithm should be to minimize
the packet loss ratio and simultaneously be fair to all the
applications.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

124

3. Buffer Management Algorithms for a NIC

Various buffer management algorithms have been
proposed so far [8-10] [12-13] to reduce packet loss ratio.
This section describes four popular algorithms:
Completely Partitioned (CP), Completely Shared (CS),
Dynamic Algorithm (DA), and Dynamic Algorithm with
Dynamic Threshold (DADT). CP and CS are static
threshold schemes, static thresholds; on the other hand,
DA and DADT are dynamic threshold schemes, dynamic
thresholds.

3.1. Static Thresholds

Kamoun and Kleinrock [11] proposed CP. In CP, the total
buffer space ‘M’ is equally divided among all the
applications (N). Hence, CP does not provide any sharing
of a buffer space among different applications. Packet loss
for any application occurs when the buffer space allocated
to that application becomes full. If ‘M’ is the total buffer
space, ‘n’ is the number of applications and ki,, i= 1….n,
represents the size of queues i=1….n then:

 k1 + k2 + …. +kn = M (1)
 N
 ∑ ki = M (2)
 i=1

The advantage of this algorithm is that it works well if all
the output queues are competing for a buffer space [6]. In
addition, it is easy to implement in hardware. However, if
all the applications are not competing for a buffer space,
then it can reject the incoming packets even though there
is some space left in the buffer.

In CS [11], packets are accepted as long as there is some
space left in a buffer, independent of the application to
which a packet is directed. This algorithm utilizes the
whole buffer space. Packet loss occurs only when the
buffer is full. If ‘M’ is the total buffer space, ‘n’ is the
number of applications and ki, i= 1….n, represents the size
of queues i=1….n then:

 ki = M, i =1, 2,.…, N (3)

The algorithm works well under the balanced load
conditions. In the balanced load conditions, incoming
packets are almost equally distributed among all the
applications; hence, this algorithm can provide the fairness
to all the applications under the balanced load conditions.
In addition, it is easy to implement in hardware. The major
drawback of this algorithm is that a single application can
occupy the whole buffer space if the load of the
application is high. Therefore, it does not guarantee
fairness to all the applications.

3.2. Dynamic Thresholds

When only one application is active, we would like to
allocate the maximum buffer space to it. When there are
many active applications, we want to divide the memory
fairly among them [14]. Dynamic algorithms achieve this
by changing the threshold value dynamically, based on the
traffic conditions. The threshold value is determined by
monitoring the total amount of an unused buffer space.

In DA, packets for any application are accepted as long as
the queue length for the application is less than its
threshold value. Packet loss occurs only when the queue
length of an application exceeds its threshold value. If at
any instant ‘t’, T (t) be the control threshold and let Qi

 (t)
be the length of queue ‘i.’ Q (t) is the sum of all the queue
lengths [14], then, if ‘M’ is the total buffer space, the
controlling threshold will be

 T(t)= α. (M-Q(t)) (4)

where α is some constant. The ‘α’ value is generally taken
as a power of two (either positive or negative), so that
threshold computation is easy to implement in hardware
[14]. This algorithm is robust to changing load conditions
in traffic and it is also easy to implement in hardware.
However, it has a drawback that it rejects packets when
the queue length for an application exceeds the threshold
value, though there is some space available in the buffer
memory.

The DADT [16] works like DA. In this algorithm, the
alpha (α) value is different from different applications and
is dependent on the packet size of an application. Unlike
DA, different applications do not have the same threshold
value. By varying the threshold value, DADT does not
allow queues with the largest packet size to fill the buffer
at a faster rate. In DADT, we have

 T(t)= αi. (M-Q(t)) (5)

where αi is the proportionality constant and varies for each
queue. This algorithm achieves the least packet loss ratio
among all the algorithms described above [16]. However,
it has a drawback that it does not use the whole buffer
space. Therefore, when the queue length for an application
exceeds the threshold value, packets are rejected even if
there is some space left in a buffer. Also, it is difficult to
determine the optimum alpha value for each application.

3.3. Performance Comparison

It has been shown that dynamic threshold schemes are
more robust than static threshold schemes for uniform
loads [14][16]. Hence, the dynamic threshold schemes can
perform better than the static threshold schemes. Therefore,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

125

for our analysis, we will compare our proposed scheme
with the dynamic threshold schemes, DA and DADT.

4. Proposed Dynamic Algorithm: FSDA

As we discussed, CS utilizes a buffer memory at full. The
algorithm, however, is not fair to all the applications. On
the other hand, DA and DADT are fair to all the
applications, but they do not utilize a buffer space at full.
Therefore, we proposed FSDA (Fairly Shared Dynamic
algorithm) that will satisfy two factors: 1) fairness to all
the applications; and 2) full utilization of a buffer space.
To achieve this, FSDA will maintain a flag for each
application. This flag will indicate whether or not the
application has taken more space than its threshold value.
The threshold value is determined by monitoring the total
amount of an unused buffer space.

Incoming Packet

Q(i) < T(t)

Y

(M − ΣQ(i)) ≥ psize(i) (M − Σ Q(i)) ≥ psize(i)

N

Replace a packet
of application

whose flag = 1
with incoming

packet

Accept
Accept and
set flag = 1

for application (i)

Y YN N

Reject

M: total buffer space
Q(i): queue length of application (i)
T(t): threshold at instant ‘t’
psize(i): packet size of application (i)
i: 1 to n, n: number of applications

Fig. 3 Flowchart of FSDA

Figure 3 shows the flowchart of FSDA. The following
example explains the working of FSDA in more detail. Let
us assume that there are two applications: application one
and application two. Total buffer space ‘M’ is 50 bytes.
For simplicity, let us take alpha value as 2 for two
applications, packet size for application one as 4 bytes and
for application two as 8 bytes.

Say at any instant ‘t’, we have queue lengths (in bytes) as
24 and 16 for application one and application two,
respectively. Now, if a packet for application one comes,
then it will be rejected in DA since its queue length
(Q(t)=24) exceeds its threshold value (T (t) = 20). On the
other hand, FSDA will accept this incoming packet for
application one and will set the flag for application one to
‘1’.
In FSDA, the set flag for application one indicates that
application one has taken more space than its threshold
value. Further incoming packets for application one will

be accepted as long as there is sufficient space in the
buffer memory, keeping its flag set as ‘1’.

Similarly, for application two, packets will be accepted as
long as there is some space in the buffer. We will keep the
flag of application two set to ‘0’ until it takes less space
than its threshold value. Now, there can be two cases when
the memory is full: 1) Flag for application two is ‘0’
(space occupied by application two is less than its
threshold value); and 2) Flag for application two is ‘1’.
For the case 1, if the current incoming packet is for the
application two, then we will accept it and replace the
packet of the application one (since flag for the
application one is ‘1’) by this incoming packet of the
application two. Like this way, we are giving fairness to
all the applications and utilizing the whole buffer space
simultaneously. For the case 2, if the incoming packet is
for the application two, then it will be rejected since there
is no space left in the buffer. In FSDA, packets are
replaced only when the memory is full and the incoming
packet is for an application whose flag is still ‘0’.

In FSDA, we are maintaining two counters, counter one
and counter two, for each application. We will increment
counter one for an application until the flag for the
application is ‘0’. However, counter two for the
application will always be incremented whenever the
packet for the application is accepted. The value of
counter two for the application controls the setting and
resetting of the flag for the application. The flag for any
application will be reset to ‘0’ when the value of counter
two for the application is less than the threshold value,
which is calculated by using counter one.

The FSDA, DA, and DADT have one major advantage
over the static threshold schemes: they are adaptive to
changes in traffic conditions [14]. FSDA works similar to
DA and DADT, giving fairness to all the applications. In
addition, FSDA utilizes a buffer space efficiently. Another
advantage of FSDA is that it is more adaptive to changes
in traffic conditions. If one application is active, then
FSDA will provide the whole buffer space to it,
functioning like CS. If many applications are active, then
FSDA will work like DA and DADT except for the fact
that it will utilize the whole buffer space. Like DA, we
keep the alpha value as a power of 2, which makes its
hardware implementation easier. This gives it a distinct
advantage over DADT. According to our simulation
results, by utilizing the whole buffer space, FSDA can
decrease the total packet losses efficiently.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

126

4.1 FSDA for UDP

In the TCP protocol, a source used to get an
acknowledgement from a receiver when a packet is
accepted by a buffer management algorithm. On the other
hand, in the UDP protocol, packets are not acknowledged
by a receiver. As explained in the previous section, in
FSDA, packets are replaced when a buffer memory is full
and an incoming packet is for an application whose flag is
still ‘0’. For the replaced packet, a source will not get an
information that the packet has been replaced, rejected, by
a receiver. Hence, FSDA works more efficiently for the
UDP/IP than the TCP/IP.
Table 1 shows the ratio of the number of replaced packets
to the total number of incoming packets as load varies
from 0.5 to 0.9 for the average traffic load and busty
uniform model (refer to Section 5).

Table 1: Ratio of the replaced packets in FSDA

Load
Total number of the
replaced packets / Total
Incoming packets

0.5 0.009822 (0.98%)
0.6 0.013807 (1.38%)
0.7 0.017489 (1.74%)
0.8 0.018585 (1.85%)
0.9 0.018808 (1.88%)

Table 1 shows that the number of replaced packets is much
less than the total incoming packets; therefore, it might be
possible to ignore the number of the replaced packets.
However, for doing the performance analysis in Section 6,
the replaced packets have been taken into consideration for
FSDA.

5. Simulation Model

Traffic
Generator:
Config file,

SIM simulator,
Converter

Packet Buffer

Controller
headers

RA/WA

FIFO

FIFO

FIFO

FIFO

1

2

i

n

Output
Links

packets

M

traffic
model

load
on
each
port

M: Buffer Space
RA: read address
WA: write address

Fig. 4 Simulation model for the packet buffer

We developed a simulation model for a packet buffer by
using VHDL as shown in Figure 4. In Figure 4, the Traffic
Generator block produces packets according to the

specifications provided in the configuration file (config
file). The config file specifies the traffic model and “load
on each port” [6].

There are three kinds of traffic model that are available
[16]. These are:
• Bursty Uniform Traffic Model: Burst of packets in

busy-idle periods with destinations uniformly
distributed packet-by-packet or burst-by-burst over all
the output ports. The number of packets in the busy
and idle periods can be specified; and

• Bursty Non-Uniform Traffic Model: Burst of packets
in busy-idle periods with destinations non-uniformly
distributed packet-by-packet or burst-by-burst over all
the output ports; and

• Bernoulli Uniform Traffic Model: Incoming packets
are in the form of Bernoulli arrivals and distributions
on all output ports

 “load on each port (ρ)” is determined by the ratio of the
number of packets in the busy-idle periods [14] and is
given by the equation:

 (6)

where Lb = mean burst length and Lidle= mean idle length.

The Traffic Generator produces packets with a mean inter-
arrival time and a mean burst length [6]. The “SIM”
simulator in [15] is used for producing a trace of packets.
The trace of packets from the “SIM” simulator is written
to some output file through converter.

 T=0 T=3ns

Fig. 5 Clock used for the Simulation Model

Figure 5 shows how the simulation model works as a
clock-base. In Figure 5, the packet from output file is read
at every positive edge of the clock. Then, the buffer
management algorithm in the controller determines
whether to accept or reject a packet. If the packet is
accepted, the controller specifies the write address (WA)
based on the output queue for which the packet is destined.
The packet is written into the memory at the negative edge
of the clock. In addition, the queue length for that
application is incremented. This also initiates the dequeue
process for the packet. Dequeue time has been taken as a
Poisson random variable with a fixed mean [5].

idleLbL
bL

+
=ρ

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

127

6. Simulation Results and Analysis

Three different network traffic loads are considered for our
simulations: average network traffic load, heavy network
traffic load, and actual network traffic load. We have used
the “bursty uniform traffic model” for our simulations of
all the network traffic loads since it is the most commonly
used model [19, 16].

For each traffic load, first, the optimum alpha value is
determined for DA. After then, the best combination of the
alpha values for DADT is determined. This is followed by
the performance comparison of DA, DADT, and FSDA
when the load and the buffer size are varied. Finally,
improvement ratio is determined for each network traffic
load. Improvement ratio is defined as the difference of the
number of packet losses in FSDA and the compared
algorithm (DA or DADT) divided by the number of packet
losses in FSDA.

While calculating the improvement ratio and performance
analysis, the replaced packets have been taken into
consideration for FSDA. Section 6.1, 6.2 and 6.3 discusses
our simulation results for the average network traffic loads,
heavy network traffic load, and actual network traffic load,
respectively.

For all simulations, we have used six applications, bursty
uniform traffic model, and average dequeue time of 14
clock cycles for the burst of 10 packets.

6.1 Average Traffic

We implemented a traffic mix with the average network
traffic loads according to [5]. First, we determined the
optimum ‘α’ (alpha) value for DA. Optimum alpha is
considered as the alpha value for which DA gives the
minimum packet loss ratio.

Table 2 shows the packet sizes of different applications in
bytes based on the average network traffic load flow in [5].
For our simulation of the average traffic load, we have
used these packet sizes for different applications.

Table 2: Queue properties for average traffic load
 Q0 Q1 Q2 Q3 Q4 Q5
Size in bytes 256 64 256 32 128 512
packet unit #
(32 bytes/unit) 8 2 8 1 4 16

Figure 6 shows the packet loss ratio for DA as the alpha
value is varied from 4 to 20. In Figure 6, the size of the
buffer is 600 packets, and “load on each queue” is 70%.

0.093
0.095
0.097
0.099
0.101
0.103
0.105
0.107
0.109

4 6 8 10 12 14 16 18 20
Alpha

P
ac

ke
t L

os
s

R
at

io

Fig. 6 Packet loss ratio vs. Alpha for DA for the average traffic load

From Figure 6, we can see that initially, as the alpha value
is increased, packet loss ratio decreases until alpha=14.
After then, the packet loss ratio starts increasing because
the larger alpha values can increase the control threshold
of the queues with large packet sizes. For ‘alpha=14’ and
‘alpha=16’, the packet loss ratio is very similar. From a
hardware implementation point of view, we will take
‘alpha =16 (24)’ as the optimum value.

For DADT, each queue has a different alpha and different
threshold value. For DADT, first we determined the
optimum ‘α’ (alpha) values. Optimum alpha values for
DADT is the combination of alpha for different queues for
which DADT gives the minimum packet loss ratio for the
same load and the same buffer size. Table 3 shows the
different combinations of alpha and Figure 7 shows the
packet loss ratio corresponding to them.

In Figure 7, the buffer size is 600 packets, and “load on
each queue” is 70%. Figure 7 shows that the optimum
combination of alpha comes out of the variation 5.

For our comparison purpose, we will use ‘alpha=16’ for
DA and the variation 5 (from table 3) as alpha values for
DADT.

Table3: Variation of alpha for DADT for the average traffic load

Variation Q0 Q1 Q2 Q3 Q4 Q5

1 12 10 12 10 10 8

2 14 10 14 10 10 7

3 14 12 14 12 12 8

4 16 14 16 14 14 6

5 16 14 16 14 16 8

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

128

0.09

0.0905

0.091

0.0915

0.092

1 2 3 4 5
Variation

P
ac

ke
t L

os
s

R
at

io

Fig. 7 Packet loss ratio vs. variations of alpha for DADT for average
traffic load

In FSDA, changing the alpha value will have little impact
on the performance since FSDA utilizes full memory most
of the time. Therefore, ‘alpha =4’ will be used for FSDA.
Since 4 is a power of 2; it will make hardware
implementation for the proposed algorithm easier.

Figure 8 shows the performance of the three algorithms
(FSDA, DA and DADT) for different loads. Load has been
varied from 0.5 to 0.9. As seen in Figure 8, FSDA has the
least packet loss ratio for all of loads. The packet loss
ratio increases for all the algorithms with increasing “load
on the queues”. Notice that the performance difference
increases more at higher loads. As the load is increased,
most applications tend to increase their queue length
greater than their threshold values frequently. Since,
FSDA utilizes the whole buffer space; FSDA can reduce
packet loss ratio efficiently.

Figure 9 shows the performance of the three algorithms
FSDA, DA, and DADT as the buffer size is varied from
500 to 800 packets. With an increase of buffer size, packet
loss ratio decreases for all the three algorithms. This is due
to the fact that each queue gets more space to
accommodate packets.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

0.5 0.6 0.7 0.8 0.9
Load

Pa
ck

et
 L

os
s

R
at

io

DA

DADT

FSDA

Fig. 8 Packet loss ratio vs. Load for FSDA, DADT, DA for the average
traffic load

Table 4 shows the improvement in packet loss ratio for
‘FSDA over DA’ and ‘FSDA over DADT’ according to
different loads, from 0.5 to 0.9.

0

0.05

0.1

0.15

0.2

500 600 700 800
Buffer Size

P
ac

ke
t L

os
s

R
at

io

DA

DADT

FSDA

Fig. 9 Packet loss ratio vs. Buffer Size for FSDA, DADT and DA for the
average traffic load

Table 4: Improvement ratio of FSDA over DA and DADT for the average
traffic load.

Load Improvement ratio (%)
(FSDA/DA)

Improvement ratio (%)
(FSDA/DADT)

0.5 23.2 13.8
0.6 21.2 14.0
0.7 18.5 13.5
0.8 15.9 12.2
0.9 13.8 10.2

6.2 Heavy Network Traffic

Table 5 shows the packet sizes of different applications in
bytes based on the heavy network traffic load in [5].

Table 5: Queue properties for the heavy traffic load
 Q0 Q1 Q2 Q3 Q4 Q5
Size in bytes 128 64 128 32 256 512
packet unit #
(32 bytes/unit) 4 2 4 1 8 16

0.068
0.07

0.072
0.074
0.076
0.078
0.08

0.082

4 6 8 10 12 14 16 18 20
Alpha

Pa
ck

et
 L

os
s

R
at

io

Fig. 10 Packet loss ratio vs. Alpha for DA for the heavy traffic load

Figure 10 shows the packet loss ratio for DA as the alpha
value is varied from 4 to 20 for the heavy network traffic
load. In Figure 10, the size of the buffer is 600 packets,

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

129

and the “load on each queue” is 70%. The optimum alpha
value for DA comes out to be 16.

Now we will determine the optimum values of alpha for
DADT. Table 6 shows the different combinations of alpha
and Figure 11 shows the packet loss ratio corresponding to
them. Figure 11 shows that the optimum combination of
alpha comes out of the variation 3.

 Table6: Variation of alpha for DADT for the heavy traffic load
Variation Q0 Q1 Q2 Q3 Q4 Q5

1 18 18 18 18 18 6
2 14 10 14 10 10 7
3 14 12 14 12 12 8
4 16 14 16 14 14 6
5 16 14 16 14 16 8

0.066
0.0662
0.0664
0.0666
0.0668

0.067
0.0672

1 2 3 4
Variation

Pa
ck

et
 L

os
s

R
at

io

 Fig. 11 Packet loss ratio vs. Variation for DADT for the heavy traffic
load

Figure 12 shows the performance of the three

algorithms (FSDA, DA and DADT) for different loads.
Load has been varied from 0.5 to 0.9.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.5 0.6 0.7 0.8 0.9
Load

P
ac

ke
t L

os
s

R
at

io

DA
DADT
FSDA

Fig. 12 Packet loss ratio vs. Load for FSDA, DADT, DA for the heavy
traffic load

Figure 13 shows the performance of the three algorithms,
FSDA, DA, and DADT as the buffer size is varied.

Table 7 shows the improvement in packet loss ratio for
‘FSDA over DA’ and ‘FSDA over DADT’ according to
different loads, from 0.5 to 0.9.

0
0.02
0.04
0.06
0.08
0.1

0.12

500 600 700 800
Buffer Size

Pa
ck

et
 L

os
s

R
at

io

DA

DADT

FSDA

Fig. 13 Packet loss ratio vs. Buffer Size for FSDA, DADT and DA for the
heavy traffic load

Table 7: Improvement ratio of FSDA over DA and DADT for the heavy
network traffic load

Load Improvement ratio (%)
(FSDA/DA)

Improvement ratio (%)
(FSDA/DADT)

0.5 16.6 10.2
0.6 17.1 11.1
0.7 16.8 12.5
0.8 15.7 13.3
0.9 13.9 12.0

6.3 Actual Network Traffic

Table 8 shows the packet sizes of the different

applications in bytes based on the actual network traffic
load flow in [18].

Table 8: Queue properties for the actual traffic load
 Q0 Q1 Q2 Q3 Q4 Q5
Size in bytes 32 32 32 64 512 1472
packet unit #
(32 bytes/unit) 1 1 1 2 16 46

Figure 14 shows the packet loss ratio for DA as the alpha
value is varied from 4 to 20 for the actual network traffic
load. Figure 14 shows that the optimum alpha value for
DA comes out to be 4.

0.18

0.182

0.184

0.186

0.188

0.19

4 6 8 10 12 14 16
Alpha

P
ac

ke
t L

os
s

R
at

io

Fig. 14 Packet loss ratio vs. Alpha for DA for the actual traffic load

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

130

For DADT, first we determined the optimum ‘α’ (alpha)
values. Table 9 shows the different combinations of alpha
and Figure 15 shows the packet loss ratio corresponding to
them. Figure 15 shows the optimum alpha values come out
of the variation 5.

Table9: Variation of alpha for DADT for the actual traffic load

Variation Q0 Q1 Q2 Q3 Q4 Q5

1 16 16 16 16 6 4
2 16 16 16 16 6 6
3 18 18 18 18 6 4
4 16 16 16 16 16 6
5 16 16 16 16 16 4

0.17
0.171
0.172
0.173
0.174
0.175
0.176
0.177

1 2 3 4 5
Variation

P
ac

ke
t L

os
s

R
at

io

Fig. 15 Packet loss ratio vs. Variation for DADT for the actual traffic
load

Figure 16 shows the performance of the three algorithms
(FSDA, DA and DADT) for different loads. Load has been
varied from 0.5 to 0.9.

Figure 17 shows performance of three algorithms FSDA,
DA, and DADT as the buffer size is varied.

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2

0.5 0.6 0.7 0.8 0.9
Load

P
ac

ke
t L

os
s

R
at

io

DA
DADT
FSDA

Fig. 16 Packet loss ratio vs. Load for FSDA, DADT, DA for actual
traffic load

Table 10 shows the improvement in packet loss ratio for
‘FSDA over DA’ and ‘FSDA over DADT’ according to
different loads, from 0.5 to 0.9.

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24

500 600 700 800

Buffer Size

P
ac

ke
t L

os
s

R
at

io

DA
DADT
FSDA

Fig. 17 Packet loss ratio vs. Buffer Size for FSDA, DADT and DA for
the actual traffic load

Table10: Improvement ratio of FSDA over DA and DADT for the actual
network traffic load.

Load Improvement ratio (%)
(FSDA/DA)

Improvement ratio (%)
(FSDA/DADT)

0.5 12.5 5.2
0.6 13.5 6.6
0.7 13.6 7.5
0.8 26 20.1
0.9 12.9 8.1

7. Conclusions

This paper proposes the Fairly Shared Dynamic Algorithm
(FSDA) to reduce the number of packets being dropped at
the packet buffer.

A buffer management algorithm will decide the amount of
space for each output queue in the packet buffer. Three
buffer management algorithms are implemented for our
simulations: 1) Dynamic algorithm (DA); 2) Dynamic
Algorithm with Dynamic Threshold (DADT); and 3)
Fairly Shared Dynamic algorithm (FSDA). FSDA utilizes
the whole buffer space, which makes it different from DA
and DADT. FSDA also keeps track of those applications,
which take more space in the buffer than their threshold
values. Flags help in maintaining fairness to all the
applications. With the utilization of the entire buffer space,
FSDA can reduce the number of packets dropped
efficiently.

The simulations considered 6 output queues (0-5), bursty
uniform traffic model, dequeue time of 14 clock cycles for
a burst of 10 packets, and uniform load for all the output
queues. For the traffic mix with the average network
traffic loads [5], the FSDA improves the packet loss ratio
by 18.5% as compared with DA, and by 13.5% as
compared with DADT. For the heavy network traffic [5],
improvement in packet loss ratio is 16.8% over DA and

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

131

12.5% over DADT, and for the actual traffic [18]
improvement in packet loss ratio is 13.6% over DA and
7.5% over DADT.

References
[1] A. Tanenbaum, Computer Networks, 4th ed., Prentice Hall,
2002.
[2] T. Henriksson, U. Nordqvist, D. Liu, “Embedded Protocol
Processor for fast and efficient packet reception”, IEEE
Proceedings on Computer Design: VLSI in Computers and
Processors, vol. 2, pp. 414-419, September 2002.
[3] V. Paxson, “End-to-End internet packet dynamics”,
Proceedings of ACM SIG-COM, vol. 27, pp. 13-52, October
1997.
[4] Tomas Henriksson, “Intra-Packet Data-Flow Protocol
Processor”, PhD Dissertation, Linkopings universitet, 2003.
[5] U. Nordqvist, D. Liu, “Power optimized packet buffering in a
protocol processor”, Proceedings of the 2003 10th IEEE
International Conference on Electronics, Circuits and Systems,
vol. 3, pp. 1026-1029, December 2003.
[6] M. Arpaci, J.A. Copeland, “Buffer Management for Shared
Memory ATM Switches”, IEEE Communication Surveys, First
Quarter 2000.
[7] T. Henriksson, U. Nordqvist, D. Liu, “Specification of a
configurable general-purpose protocol processor”, IEEE
Proceedings on Circuits, Devices and Systems, vol. 149, issue: 3,
pp. 198-202, June 2002.
[8] A. Tobagi, “Fast Packet Switch Architectures for Broadband
Integrated Services Digial Networks”, Proceedings of IEEE, vol.
78, pp. 133-167, January 1990.
[9] M. Irland, “Buffer Management in a Packet Switch”, IEEE
Transactions on Communications, COM-26, no. 3, pp. 328-337,
March 1978.
[10] G. J. Foschini, B. Gopinath, “Sharing Memory Optimally”,
IEEE Transactions on Communications, vol. COM-31, no. 3, pp.
352-360, March 1983.
[11] F. Kamoun, L. Kleinrock, “Analysis of Shared Finite
Storage in a Computer Network Node Environment under
General Traffic Conditions”, IEEE Transactions on
Communications, vol., COM-28, pp. 992-1003, July 1980.
[12] S. X. Wei, E.J. Coyle, M.T. Hsiao, “An Optimal Buffer
Management Policy for High-Performance Packet Switching”,
Proceedings of IEEE GLOBECOM’91, vol. 2, pp. 924-928,
December 1991.
[13] A. K. Thareja, A.K. Agarwal, “On the Design of Optimal
Policy for Sharing Finite Buffers”, IEEE Transactions on
Communications, vol. COM—32, no. 6, pp 737-780, June 1984.
[14] A. K. Choudhury, E.L. Hahne, “Dynamic Queue Length
Thresholds for Shared-Memory Packet Switches”, IEEE/ACM
Transactions on Communications, vol. 6, no. 2, pp. 130-140,
April 1998.
[15] Sundar Iyer, “ SIM: A Fixed Length Packet Simulator”,
http://klamath.stanford.edu/tools/SIM
[16] Vinod Rajan “An enhanced dynamic algorithm for packet
buffer”, Master thesis, Mississippi State University, 2004.
[17]Cisco Systems: http://www.cisco.com/warp/public/473/lan-
switch-cisco.shtml.(Accessed : 2nd March ,2006)
[18] S. McCreary and K. Claffy, “Trends in Wide Area IP Traffic
Patterns: A View from Ames Internet Exchange,” In ITC
Specialist Seminar on IP Traffic Measurement, Modeling, and
Management, Manterey, California, September 2000.

[19] Sam Manthorpe:
http://lrcwww.epfl.ch/people/sam/research_protlevels.html.
(Accessed : 2nd October ,2005)

Amit Uppal received the B.E.
degree in Electronics and
Engineering from Thapar
Institute of Engineering and
Technology India in 2003 and
presently pursuing M.S. degrees
in Electrical Engineering from
Mississippi State University.
During 2003-2004, he worked
as Assistant System Engineer in
Tata Consultancy Services

(TCS), India.

Yul Chu is an Assistant
Professor in the Department of
Electrical and Computer
Engineering at Mississippi State
University. He received his Ph.D.
in Electrical and Computer
Engineering from University of
British Columbia, Canada in 2001,
MS in Electrical engineering from
Washington State University in
1995, and Bachelor in applied
electronics from KwangWoon

University, Seoul, Korea in 1984. His current research interests
lie in the area of high performance computer architecture, low-
power embedded systems, wireless-terminal architecture,
Telematics, parallel processing, cluster and high-available
architectures, etc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

