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Summary 
A parallel algorithm based on a lattice theoretic 
approach is proposed to find the rules among patterns 
that sustain sequential nature in the multi-stream time 
series data. The human motion data captured by motion 
capturing system considered as multi-stream 
multidimensional data is used as real time data set. The 
data set is transformed into sequences of symbols of 
lower dimension due to its complex nature. The relations 
among symbols are expressed as “rules”. The proposed 
algorithm is implemented on a Distributed Shared 
Memory (DSM) multiprocessors system. The 
experimental results justify the efficiency of finding rules 
from the sequences of the patterns for time series data by 
achieving significant speed up comparing with the 
previous reported algorithm. 
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Introduction 

Time series data mining has recently become an important 
research topic and is earning substantial interest from both 
academia and industry. It sustains the nature of multi-
stream data due to its characteristics. An example of such 
a type could be “if company A’s stock goes up on day 1, 
B’s stock will go down on day 2 and C’s stock will goes up 
in day 3, i.e. some of the events of company A influences 
to occur some of the events of company B and C. If we 
analyze the multi-stream of time series for some stock 
prices and can discover correlations among all the streams, 
then the correlations can help us to decide better time to 
buy stocks. So, the correlations can be expressed as rules. 
It is quite effective and useful to analyze the underlying 
behavior of time series data to investigate the correlations 
among its multi-stream. Strong dependencies capture 

structures in the streams because it indicate that there 
exists relationship between their constituent patterns, that 
occurrences of those patterns are not independent. These 
correlations depicted as rules are useful to describe the 
sequential nature of time series data. Therefore, the 
dependencies can be termed as association rules in multi-
stream. 
Researchers have been concentrating to find out these 
dependency rules from the large and complex data sets 
such as prices of stocks, intensive weather patterns, 
astrophysics databases, human motion data etc. Basically, 
except human motion data, these are one dimensional data 
in nature. In this paper, we focus on human motion data 
deemed as high dimensional multi-stream due to its 
features [4]. The correlations discovered from multi-
stream of human motions data characterize a specific 
motion data. Furthermore, those correlations become basic 
elements that can be used to construct motion with 
combinations of themselves, just as phonemes of human 
voice do. These basic elements are called primitive 
motions. As a result, we can use these primitive motions as 
indices to retrieve and recognize motion for creating SFX 
movies, computer graphics and animations. 
The following section discusses the problem statement and 
various research findings related to the topics. Section 2 
introduces the structure of human body as multi-stream 
and briefly discusses the way of converting high 
dimensional motion data into sequence of symbols of 
multi-stream representing as lower dimensional data. The 
next section discusses the discovery process of association 
rules from the symbols of multi-stream. It is very 
expensive, time consuming and computational intensive 
task to discover association rules from these kinds of huge 
amount of time series data represented as symbols of 
multi-streams. Hence, section 3 illustrates the advantage of 
using lattice theoretic based approach over Distributed 
Shared Memory (DSM) Multiprocessor system. A parallel 
algorithm using the lattice theoretic approach is also 
presented here. The algorithm can efficiently find the 
sequence of correlations among the body parts that 
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perform various motions in a small amount of time. The 
results are discussed elaborately in the section and 
compared with one of our previous reported algorithm. 
Finally section 4 concludes the paper by presenting the 
direction of future research. 
 
1.1   Problem Statement 
 
Let A be a set of distinct attributes. With no loss of 
generality, any subset of A can be represented as a 
sequence that is sorted according to the lexicographic 
order of attribute names. For instance, {a, c} and {c, a} 
represent the same subset of {a, b, c} that is identified by 
the sequence ac. We term such a sequence as a canonical 
attribute sequence (cas) [12]. There exists a one-to-one 
mapping between the set of all cass and the power set, 
denoted 2A, so that the set of cass can be identified with 2A.  
2A can be treated as a Boolean lattice where Ø (i.e. empty 
cas) and A (i.e. the complete cas) are, respectively, the 
bottom and top elements. The order in 2A is denoted as ≤, 
coinciding with set inclusion; where s ≤ u reads as s is a 
partial cas or a subcas of u. 
Given a threshold ratios σ and γ such that  0 ≤ σ ≤ 1 and 0 
≤ γ ≤ 1, mining a database D for association rules consists 
of extracting all pairs of cass s and u for which the relation 
s ⇒ u is a σγ-valid association rule; i.e. support(s ⇒ u) ≥ 
σ and confidence(s ⇒ u) ≥ γ  . The problem can be solved 
with the two-step procedure below. 
 
1) Find all σ-frequent cass v, that is to say all v such that 
     support (v) ≥  σ. 
2) For all cass v found in step 1, generate all association 
rules s ⇒ u such that 
     1. s < v and u = v-s and 
     2. confidence (s ⇒ u) ≥ γ. 

1.2   Related Works 

A good number of serial and parallel algorithms have been 
developed for mining association rules for basket data 
(supermarket transaction data) [6-8]. Several researchers 
have applied data mining concepts on time series to find 
patterns including [1, 3, 5, 13, 16-19]. However, these 
algorithms are sequential in nature except [13, 16].  
The problem of mining sequential patterns was introduced 
in [14]. Three algorithms have been proposed in this work 
for the purpose. However, in subsequent work [15], the 
same authors proposed GSP algorithm that outperformed 
AprioriAll by up to 20 times which is considered as the 
best in their earlier works. In [9], the algorithm SPADE 
was shown to outperform GSP by a factor of two by using 

the advantage of lattice based approach. A parallel version 
of SPADE, was introduced in [10] for Shared Memory 
Multi-processor (SMP) systems. Sequence discovery can 
be essentially thought of as association discovery over a 
temporal database. While association rules discovery only 
applies to intra-relationship between patterns and sequence 
mining refers to inter-transactional patterns [14]. Due to 
this similarity, sequence mining algorithms like AprioriAll, 
and GSP, utilize some of the ideas initially proposed for 
the discovery of association rules [9]. Our algorithm 
proposed in section 3 is basically based on [10]. But we 
use prefix based classes rather than suffix based classes 
[10] and implemented the algorithm to discover the 
sequence of correlations over the multi-stream data. To the 
best of our knowledge there is no suitable algorithm 
proposed in the literatures for discovering sequential rules 
from multidimensional multi-stream time series data. 
Hence, our approach, discovering association rules from a 
large amount of time series data differs from the above 
algorithms in following ways: 
1) We transform the large amount of multi-dimensional 
time series data into symbols of multi streams to make the 
data into lower dimensions. Because, it is very expensive, 
time consuming and computational intensive task to 
discover association rules from these kinds of huge 
amount of time series data represented as symbols of 
multi-streams. 
2) We use lattice-theoretic based approach to decompose 
the original search space into smaller pieces i.e. into the 
prefix based classes which can be processed independently 
in main-memory of DSM multi-processors systems. 

2   Transformation of Multi-dimensional 
Multi-Stream Data  

The motion data captured by motion capturing system 
consists of various information of the human body parts. 
This means that, motion captured data can be represented 
by the 3 dimensional time series stream considering 
various positions of various body joints [4]. The following 
body parts data can be obtained as: lower torso, upper 
torso, the root of neck, head, the root of collar bones, 
shoulder, elbows, wrists, hips, knees and ankles. Moreover, 
body parts can be represented as the tree structure that is 
shown in Figure.1.  
To get time series of 3-D motion data, we use an optical 
motion capture system. The system consists of six infrared 
cameras, 18 infrared ray reflectors, and a data processor. 
To get time series of motion data an actor puts 18 markers 
on the selected body joints and performs an action in the 
field surrounded by the installed cameras.  
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Fig. 1. Human body parts used for the experiments and 

considered as a tree structure 

The recorded actions are processed in order to calculate 
the 3-D locations of the reflectors. Figure 2 shows an 
example of the motion that represents the correlation in 
“walking” such as “after one finished raising one’s right 
hand, one starts lowering the left hand”. 
The example in Fig. 2 shows that the motion data has 
features as multi-stream, such as: “unfixed temporal 
interval between events on each stream: consistent 
contents on each stream do not always occur in fixed 
temporal interval. For instance, “raising the right hand” 
and “lowering the left hand” occur twice in each stream, 
however, temporal interval of occurrence between “raising 
the right” and “lowering the left hand” are different (T1≠ 
T2). 
In order to find motion association rules with easy analysis 
with considerations of various occurrences and reduce the 
cost of the task, we convert the high dimension multi-
stream motion into sequence of symbols of lower 
dimension i.e. from 3 dimensions to 1 dimension. That is 
to say, the motion data can be converted into a small 
number of symbol sequences. Each symbol represents a 
basic content and motion data that can be expressed as the 
set of the primitive motions. We call this process content-
based automatic symbolization [4]. For the content-based 
automatic symbolization, we focused on each change in 
the velocity of a body part that can be considered as a 
break point. We divide motion data into segments at those 
breakpoints where velocity changes. However the 
variation of the curve for motion data between these 
breakpoints are small and include noise occurred by 
unconscious movements, which are independent from 
occurrence of the changes of contents. The unconscious 
movements are mainly caused by the vibrations of the 
body parts. These are too short in time and tiny 
movements and contain no significant content of motion. 
Thus they are discarded by evaluating time scale and 
displacement of positions considering the 3D distances  

 
Fig. 2. An example of correlation of multi-stream of human 

motion 
 
between points. Segmented data is clustered into groups 
according to their similarity. However, even segmented 
data with same content have different time lengths, 
because nobody can perform exactly in the same manner 
as past. In order to find out the similarity between time 
series data with different lengths, we employ Dynamic 
Time Warping (DTW) [1], which was developed in the 
speech recognition domain. By applying DTW on our 
motion data, the best correspondence between two time 
series was found. Human voice has fixed number of 
consistent contents, phonemes, but human motion does not 
have pre-defined patterns. Therefore, it is unknown that 
how many consistent contents exist in our motion time 
series data. For this reason a simple and powerful 
unsupervised clustering algorithm, Nearest Neighbor (NN) 
algorithm [2] is used with DTW to classify an unknown 
pattern (content) and to choose the class of the nearest 
cluster by measuring the distance. 
 

 
 

Fig. 3. Symbols of multi-stream 

Thus, motion data is converted into symbol streams based 
on its content by using symbol that are given to clusters 
(Fig. 3). For more details of these processes please refer to 
[4]. After segmenting and clustering processes, a multi-
stream that represents human motion is expressed as a 
multiple sequence of symbols that we call the sequence of 
symbols of multi-stream. 
 

3   Mining Sequential Association Rules 

Recently, lattice based sequence mining has been 
successfully employed by the researchers on supermarket 
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dataset [5]. The advantage lies in this approach is that it 
helps to decompose original search space into smaller 
pieces termed as the prefix based equivalence classes in 
our case, which can be processed independently in main-
memory with the advantages of the DSM multi-processor 
systems. The decomposition is recursively applied within 
each parent class to produce even smaller classes in the 
next level. For example, in figure 4, the parent classes can 
be denoted as a, b, c, d, e and θ1, θ2, θ3, θ4, θ5 represent the 
level of the search space.  

3.1   Search Space Partition 

As the first step to find the association rules, the step 
essentially consists of enumerating the frequent item sets. 
The database is very large, leading to a large search space. 
In order to lower the main memory requirements and 
perform enumeration in parallel, the search space is 
splitted into several parts that can be processed 
independently in parallel. This can be accomplished via 
prefix-based equivalence classes. It is possible that each 
class is a sub-lattice of the original sequences lattice and 
can be processed independently. For example, in the figure 
4, it is shown that the effect of decomposing the frequent 
sequence lattice for the sample database, by collapsing all 
sequences with the same 1-length prefix into a single class. 
For details about lattice theory and structure please refer to 
[9]. 
The following way describes how the database can be 
partitioned. For example, given the number m in which 
search space is to be partitioned by satisfying the condition 
that k is the smallest integer such that m ≤ 2k. Here, A = {a, 
b, c, d, e} and k are integers. For example, for m = 4, k = 2 
which satisfies the above condition. For this value, it is 
possible to generate 4 sets of classes for splitting (abc), 
(abd), (abe), (ac), (ad), (ae), (bc), (bd), (be), (c), (d), (e). 
The splitted parts are shown in the Fig. 4 by dotted lines. 
For m = 8, the value of k is 3, then the search space is 
splitted in 8 parts considering their corresponding prefixes. 
This is how the search space can be splitted by prefix 
based approach among the multiple processors. 
 

3.2   Lattice Decomposition-Prefix Based Classes 

In figure 4, there are five resulting prefix classes, namely, 
[RightLeg], [LeftLeg], [RightArm], [LeftArm], [Trunk] in 
our case, which are referred to parent classes. It is to 
mention that for simplicity purpose to show the figure, the 
example using only 5 parts of the body is presented here. 
They are denoted in the figure as a, b, c, d and e 

respectively. However, the figure for 17 parts also can be 
built in the same way. Each class is independent in the 
sense that it has complete information for generating all 
frequent sequences that share the same prefix.  
 

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd bcd bce bde cdeace ade

abcd abce abde acde bcde

abcde

∅

θ1

θ2

θ3

θ4

θ5

θ0
a = LeftHand
b = RightHand
c = LeftLeg
d = RightLeg
e = Trunk

 
 

Fig. 4. Partitioning search space with the prefix based 
equivalence classes 

For example, if a class [a] has the elements [b] → [a], and 
[c] → [a]. The only possible frequent sequences at the next 
step can be [b] → [c] → [a] or [c] → [b] → [a] and [bc] → 
[a]. It should be obvious that no other parts such as y can 
lead to a frequent sequence with the prefix [a], unless (ya) 
or y → x is also in [x]. The method decomposes the 
sequences at each new level into smaller independent 
classes. The figure shows the effect of using 2-level 
prefixes i.e. ab, ac, bd, bc etc. The figure also shows the 3-
level, 4-level and 5-level prefixes. For all the levels, it can 
be obtained as a tree like structure of independent classes. 
This composition tree is to be processed in a breath-first 
manner, within each parent classes. In other words, parent 
classes are processed one-by-one, but within a parent class 
we process the new classes in a breath-first search. 
Frequent sequences are generated for the databases list by 
considering their support threshold min_sup. The 
sequences are being found to be frequent at the current 
level from the classes for the next New_Level. The level-
wise process is repeated until all frequent sequences have 
been enumerated.  
In terms of memory management, it is easy to see that we 
need memory to store intermediate lists for the most 5 
consecutive levels within a parent class (Fig. 4). Once all 
the frequent sequences or the next level have been 
generated, the sequences at the current level can be deleted.  
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3.3   The Algorithm 

As for the data set, each motion consists of repetition of 2 
or 3 times for one kind. Test data are about 5 to 20 seconds 
long and the sampling frequency is 120 times/second.  The 
motions are performed 23 times in 6 different types each 
of which lasts for about 6-12 sec. The database consists of 
50 different types of motion such as walking, running, 
dancing, pitching etc. All of the experiments were 
performed on a 64-node SGI Origin 3400 DSM multi-
processor system. The database is stored on an attached 6 
GB local disk. The system runs IRIX 7.3. 
There are two main paradigms that may be utilized in the 
implementation of parallel data mining: a data parallel 
approach and  a task parallel approach. In data parallelism, 
P processors work on distinct portions of the database, but 
synchronously process the global computation tree. The 
parallelism is available within class. In task parallelism, 
the processors share the database, but work on different 
classes in parallel, asynchronously processing the 
computation tree. We need to keep the temporary list of all 
newly generated candidates both infrequent and frequent 
since we cannot say if a candidate is frequent until all 
processors have finished the current level. In the task 
parallelism all processors have access to one copy of the 
database, but they work on separate classes.  
We use the task parallel approach to solve our problem. 
The pseudo code of the algorithm is given below. This is 
done within the level of the computation tree (see fig. 4). 
In other words, at each new level of the computation tree 
(within a parent class like a, b, c, etc.), each processor 
processes all the new classes at that level, performing 
intersections for each candidate, but only over its local 
block (steps 7-11 in algorithm 
Mining_Sequencial_Parts). The local supports are 
sorted in a local array to prevent false sharing among 
processors (step 10 in procedure FindNewClasses). After 
barrier synchronization signals that all processors have 
finished processing the current level, a sub-reduction is 
performed in parallel to determine the global support of  
each candidate. The frequent sequences are then retained 
for the next level, and the same process is repeated for 
other levels until no more frequent sequence are found 
(steps 10-12 in algorithm 
Mining_Sequencial_Parts). The level-wise task 
parallelism requires modifications by performing local 
intersection for all classes at the current level, followed by 
a barrier before the next level can begin. 
In our case, with regards to 17 parts of the body, we used 
17 processors to process the each prefix based class 
independently in the memory. It is to mention that as 
reported earlier, the fig.4 represents only prefix based 
search space with 5 parts. However, in case of 17 parts the 

structure will be of similar type using 17 individual 
(parent) classes. After implementing the proposed 
algorithm for 17 body parts as 17 classes using 17 
processors, we found many sequential associations rules 
for the body parts that took part in performing a motion 
efficiently. As an example of such discovered rules for 
performing “walking” is “raising the RightHand forward, 
lowering the LeftHand back, raising the RightLeg forward, 
directing the LeftLeg backward and move forward the 
trunk”. We can find such kind of sequential rules for other 
sets of motion data like running, pitching, dancing etc. The 
running time presented in figure 6 indicated by “time using 
lattice based approach” justifies that good speed up is 
obtained by our approach. 
 
Algorithm Mining_Sequencial_Parts 
Input: P, min_sup 
Output: Plist 
begin 

1. P = {Total body parts representing 
the parent classes P

i
, where 

i=1,2,…,17} 
2. for each P

i
 ∈ P     

3. { 
4. while (Previous_level ≠ ∅); 
5. do in parallel for all processors p 
6. { 
7. New_Level=New_Level∪FindNewClasses 

(Previous_Level.bodyparts()); 
8. Previous_Level= Previous_Level.next() 
9. } 
10. barrier; 
11. New_Level= ∪

p∈P
New_Level

p
 

12. Repeat steps 5-7 if (New_Level≠ ∅) 
13. } 

end 
 

Procedure FindNewClasses( P, min_sup) 
begin 

1. for all the sequences in P
i
∈P 

2. { 
3. for all the sequences P

j
∈P, with  

4. j ≤ i 
5. { 
6. L= P

i
∪P

j
; 

7. do in parallel for all processors 
p 

8. { 
9. X= P

i
 ∩ P

j
 

10. }  
11. if (σ(L) ≥  min_sup) then 

P
i
=P

i
∪{L}); 

12. } 
13. } 
14. return Plist=Plist ∪ P

i
 

end 

3.4   Comparison of the Results 
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To justify the effectiveness of our algorithm we compared 
with our proposed algorithm presented in [13, 16]. For 
ready reference here, we present a brief overview of our 
previous approach. In previous works [13, 16], we 
introduced two parallel algorithms for the same data sets 
that we used here for mining association rules based on 
well known apriori algorithm [6] in data mining for super 
market set data; one of them for mining association rules 
from 17 body parts and the other one from 5 parts of the 
body by reducing the search space due to the large number 
of combinations that used to occur during the search 
process and the complexity of search process itself. Note 
that the algorithm that used the 5 parts of the body 
regarded as the better solution between the proposed two 
algorithms [13, 16]. But it was identified as a limitation to 
our goal as our motivation was to discover rules using all 
of the parts of the body i.e. from 17 parts. So, as a new 
approach (in this paper), we propose the lattice based 
parallel algorithm for this purpose.  Hence, the approach 
that we have used in this paper prevailed over with our 
previous problem.  As described in the above section, we 
can discover rules from our datasets consisting of 17 parts 
and thus fulfill our objective using the algorithm presented 
here. So, we present the comparison between the results 
using our previous approach and the present approach, to 
figure out the efficiency of our present proposed algorithm. 
The results shown in Fig. 6 indicate that our present lattice 
based parallel algorithm can effectively reduce the time 
required for discovering rules in terms of scalability 
whereas the time taken by our previously reported 
algorithm does not show that kind of trend with the 
number of processors. 
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Fig. 6.  The comparison results of the time required for 
discovering the rules between the two algorithms for the 
same data set 

4 Conclusion and Future Work 

In this paper, we have presented a parallel algorithm for 
finding association rules from sequences of the body parts 
that performs different kinds of motion from multi-stream 
time series data such as human motion data. The algorithm 
has considered a large number of combinations and the 
depth of the sequence of parts that perform motions (such 
as walking, dancing, pitching etc.). The extraction 
technique of motion data into symbols of multi-stream has 
also been discussed briefly. The experimental results have 
demonstrated that the algorithm can efficiently determine 
the rules of sequence of body parts that performs motion in 
our case by using the advantage of lattice based structure. 
It also has outperformed the result of our previously 
reported algorithm.  
It is to mention that the structure of the algorithm and the 
way of implementation is not specific to the problem of 
searching the sequence of patterns (in our case body parts). 
It infers that our motivation was to reduce the time and 
find the sequence of the body parts using various 
combinations efficiently, and hence we achieved that for 
multidimensional data. This technique can be implemented 
with other data sets in the multidimensional multi-stream 
time series domain for finding interesting sequential rules 
for patterns in the domain of medicine and business. As a 
future work we aim to use the techniques for such data sets.   
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