
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

137

Manuscript received July 5, 2006.
Manuscript revised July 25, 2006.

Efficient Parallelism for Mining Sequential Rules in Time
Series Data: A Lattice Based Approach*

Biplab Kumer Sarker1 and Kuniaki Uehara2

1Faculty of Computer Science, University of New Brunswick, Fredericton, Canada

2Department of Computer and Systems Engineering, Kobe University, Japan

Summary
A parallel algorithm based on a lattice theoretic
approach is proposed to find the rules among patterns
that sustain sequential nature in the multi-stream time
series data. The human motion data captured by motion
capturing system considered as multi-stream
multidimensional data is used as real time data set. The
data set is transformed into sequences of symbols of
lower dimension due to its complex nature. The relations
among symbols are expressed as “rules”. The proposed
algorithm is implemented on a Distributed Shared
Memory (DSM) multiprocessors system. The
experimental results justify the efficiency of finding rules
from the sequences of the patterns for time series data by
achieving significant speed up comparing with the
previous reported algorithm.

Key words:
Data Mining, Time series data, Parallel algorithm,
Association rule and Multiprocessor system.

Introduction

Time series data mining has recently become an important
research topic and is earning substantial interest from both
academia and industry. It sustains the nature of multi-
stream data due to its characteristics. An example of such
a type could be “if company A’s stock goes up on day 1,
B’s stock will go down on day 2 and C’s stock will goes up
in day 3, i.e. some of the events of company A influences
to occur some of the events of company B and C. If we
analyze the multi-stream of time series for some stock
prices and can discover correlations among all the streams,
then the correlations can help us to decide better time to
buy stocks. So, the correlations can be expressed as rules.
It is quite effective and useful to analyze the underlying
behavior of time series data to investigate the correlations
among its multi-stream. Strong dependencies capture

structures in the streams because it indicate that there
exists relationship between their constituent patterns, that
occurrences of those patterns are not independent. These
correlations depicted as rules are useful to describe the
sequential nature of time series data. Therefore, the
dependencies can be termed as association rules in multi-
stream.
Researchers have been concentrating to find out these
dependency rules from the large and complex data sets
such as prices of stocks, intensive weather patterns,
astrophysics databases, human motion data etc. Basically,
except human motion data, these are one dimensional data
in nature. In this paper, we focus on human motion data
deemed as high dimensional multi-stream due to its
features [4]. The correlations discovered from multi-
stream of human motions data characterize a specific
motion data. Furthermore, those correlations become basic
elements that can be used to construct motion with
combinations of themselves, just as phonemes of human
voice do. These basic elements are called primitive
motions. As a result, we can use these primitive motions as
indices to retrieve and recognize motion for creating SFX
movies, computer graphics and animations.
The following section discusses the problem statement and
various research findings related to the topics. Section 2
introduces the structure of human body as multi-stream
and briefly discusses the way of converting high
dimensional motion data into sequence of symbols of
multi-stream representing as lower dimensional data. The
next section discusses the discovery process of association
rules from the symbols of multi-stream. It is very
expensive, time consuming and computational intensive
task to discover association rules from these kinds of huge
amount of time series data represented as symbols of
multi-streams. Hence, section 3 illustrates the advantage of
using lattice theoretic based approach over Distributed
Shared Memory (DSM) Multiprocessor system. A parallel
algorithm using the lattice theoretic approach is also
presented here. The algorithm can efficiently find the
sequence of correlations among the body parts that

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

138

perform various motions in a small amount of time. The
results are discussed elaborately in the section and
compared with one of our previous reported algorithm.
Finally section 4 concludes the paper by presenting the
direction of future research.

1.1 Problem Statement

Let A be a set of distinct attributes. With no loss of
generality, any subset of A can be represented as a
sequence that is sorted according to the lexicographic
order of attribute names. For instance, {a, c} and {c, a}
represent the same subset of {a, b, c} that is identified by
the sequence ac. We term such a sequence as a canonical
attribute sequence (cas) [12]. There exists a one-to-one
mapping between the set of all cass and the power set,
denoted 2A, so that the set of cass can be identified with 2A.
2A can be treated as a Boolean lattice where Ø (i.e. empty
cas) and A (i.e. the complete cas) are, respectively, the
bottom and top elements. The order in 2A is denoted as ≤,
coinciding with set inclusion; where s ≤ u reads as s is a
partial cas or a subcas of u.
Given a threshold ratios σ and γ such that 0 ≤ σ ≤ 1 and 0
≤ γ ≤ 1, mining a database D for association rules consists
of extracting all pairs of cass s and u for which the relation
s ⇒ u is a σγ-valid association rule; i.e. support(s ⇒ u) ≥
σ and confidence(s ⇒ u) ≥ γ . The problem can be solved
with the two-step procedure below.

1) Find all σ-frequent cass v, that is to say all v such that
 support (v) ≥ σ.
2) For all cass v found in step 1, generate all association
rules s ⇒ u such that
 1. s < v and u = v-s and
 2. confidence (s ⇒ u) ≥ γ.

1.2 Related Works

A good number of serial and parallel algorithms have been
developed for mining association rules for basket data
(supermarket transaction data) [6-8]. Several researchers
have applied data mining concepts on time series to find
patterns including [1, 3, 5, 13, 16-19]. However, these
algorithms are sequential in nature except [13, 16].
The problem of mining sequential patterns was introduced
in [14]. Three algorithms have been proposed in this work
for the purpose. However, in subsequent work [15], the
same authors proposed GSP algorithm that outperformed
AprioriAll by up to 20 times which is considered as the
best in their earlier works. In [9], the algorithm SPADE
was shown to outperform GSP by a factor of two by using

the advantage of lattice based approach. A parallel version
of SPADE, was introduced in [10] for Shared Memory
Multi-processor (SMP) systems. Sequence discovery can
be essentially thought of as association discovery over a
temporal database. While association rules discovery only
applies to intra-relationship between patterns and sequence
mining refers to inter-transactional patterns [14]. Due to
this similarity, sequence mining algorithms like AprioriAll,
and GSP, utilize some of the ideas initially proposed for
the discovery of association rules [9]. Our algorithm
proposed in section 3 is basically based on [10]. But we
use prefix based classes rather than suffix based classes
[10] and implemented the algorithm to discover the
sequence of correlations over the multi-stream data. To the
best of our knowledge there is no suitable algorithm
proposed in the literatures for discovering sequential rules
from multidimensional multi-stream time series data.
Hence, our approach, discovering association rules from a
large amount of time series data differs from the above
algorithms in following ways:
1) We transform the large amount of multi-dimensional
time series data into symbols of multi streams to make the
data into lower dimensions. Because, it is very expensive,
time consuming and computational intensive task to
discover association rules from these kinds of huge
amount of time series data represented as symbols of
multi-streams.
2) We use lattice-theoretic based approach to decompose
the original search space into smaller pieces i.e. into the
prefix based classes which can be processed independently
in main-memory of DSM multi-processors systems.

2 Transformation of Multi-dimensional
Multi-Stream Data

The motion data captured by motion capturing system
consists of various information of the human body parts.
This means that, motion captured data can be represented
by the 3 dimensional time series stream considering
various positions of various body joints [4]. The following
body parts data can be obtained as: lower torso, upper
torso, the root of neck, head, the root of collar bones,
shoulder, elbows, wrists, hips, knees and ankles. Moreover,
body parts can be represented as the tree structure that is
shown in Figure.1.
To get time series of 3-D motion data, we use an optical
motion capture system. The system consists of six infrared
cameras, 18 infrared ray reflectors, and a data processor.
To get time series of motion data an actor puts 18 markers
on the selected body joints and performs an action in the
field surrounded by the installed cameras.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.73A, July 2006

139

Fig. 1. Human body parts used for the experiments and

considered as a tree structure

The recorded actions are processed in order to calculate
the 3-D locations of the reflectors. Figure 2 shows an
example of the motion that represents the correlation in
“walking” such as “after one finished raising one’s right
hand, one starts lowering the left hand”.
The example in Fig. 2 shows that the motion data has
features as multi-stream, such as: “unfixed temporal
interval between events on each stream: consistent
contents on each stream do not always occur in fixed
temporal interval. For instance, “raising the right hand”
and “lowering the left hand” occur twice in each stream,
however, temporal interval of occurrence between “raising
the right” and “lowering the left hand” are different (T1≠
T2).
In order to find motion association rules with easy analysis
with considerations of various occurrences and reduce the
cost of the task, we convert the high dimension multi-
stream motion into sequence of symbols of lower
dimension i.e. from 3 dimensions to 1 dimension. That is
to say, the motion data can be converted into a small
number of symbol sequences. Each symbol represents a
basic content and motion data that can be expressed as the
set of the primitive motions. We call this process content-
based automatic symbolization [4]. For the content-based
automatic symbolization, we focused on each change in
the velocity of a body part that can be considered as a
break point. We divide motion data into segments at those
breakpoints where velocity changes. However the
variation of the curve for motion data between these
breakpoints are small and include noise occurred by
unconscious movements, which are independent from
occurrence of the changes of contents. The unconscious
movements are mainly caused by the vibrations of the
body parts. These are too short in time and tiny
movements and contain no significant content of motion.
Thus they are discarded by evaluating time scale and
displacement of positions considering the 3D distances

Fig. 2. An example of correlation of multi-stream of human

motion

between points. Segmented data is clustered into groups
according to their similarity. However, even segmented
data with same content have different time lengths,
because nobody can perform exactly in the same manner
as past. In order to find out the similarity between time
series data with different lengths, we employ Dynamic
Time Warping (DTW) [1], which was developed in the
speech recognition domain. By applying DTW on our
motion data, the best correspondence between two time
series was found. Human voice has fixed number of
consistent contents, phonemes, but human motion does not
have pre-defined patterns. Therefore, it is unknown that
how many consistent contents exist in our motion time
series data. For this reason a simple and powerful
unsupervised clustering algorithm, Nearest Neighbor (NN)
algorithm [2] is used with DTW to classify an unknown
pattern (content) and to choose the class of the nearest
cluster by measuring the distance.

Fig. 3. Symbols of multi-stream

Thus, motion data is converted into symbol streams based
on its content by using symbol that are given to clusters
(Fig. 3). For more details of these processes please refer to
[4]. After segmenting and clustering processes, a multi-
stream that represents human motion is expressed as a
multiple sequence of symbols that we call the sequence of
symbols of multi-stream.

3 Mining Sequential Association Rules

Recently, lattice based sequence mining has been
successfully employed by the researchers on supermarket

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

140

dataset [5]. The advantage lies in this approach is that it
helps to decompose original search space into smaller
pieces termed as the prefix based equivalence classes in
our case, which can be processed independently in main-
memory with the advantages of the DSM multi-processor
systems. The decomposition is recursively applied within
each parent class to produce even smaller classes in the
next level. For example, in figure 4, the parent classes can
be denoted as a, b, c, d, e and θ1, θ2, θ3, θ4, θ5 represent the
level of the search space.

3.1 Search Space Partition

As the first step to find the association rules, the step
essentially consists of enumerating the frequent item sets.
The database is very large, leading to a large search space.
In order to lower the main memory requirements and
perform enumeration in parallel, the search space is
splitted into several parts that can be processed
independently in parallel. This can be accomplished via
prefix-based equivalence classes. It is possible that each
class is a sub-lattice of the original sequences lattice and
can be processed independently. For example, in the figure
4, it is shown that the effect of decomposing the frequent
sequence lattice for the sample database, by collapsing all
sequences with the same 1-length prefix into a single class.
For details about lattice theory and structure please refer to
[9].
The following way describes how the database can be
partitioned. For example, given the number m in which
search space is to be partitioned by satisfying the condition
that k is the smallest integer such that m ≤ 2k. Here, A = {a,
b, c, d, e} and k are integers. For example, for m = 4, k = 2
which satisfies the above condition. For this value, it is
possible to generate 4 sets of classes for splitting (abc),
(abd), (abe), (ac), (ad), (ae), (bc), (bd), (be), (c), (d), (e).
The splitted parts are shown in the Fig. 4 by dotted lines.
For m = 8, the value of k is 3, then the search space is
splitted in 8 parts considering their corresponding prefixes.
This is how the search space can be splitted by prefix
based approach among the multiple processors.

3.2 Lattice Decomposition-Prefix Based Classes

In figure 4, there are five resulting prefix classes, namely,
[RightLeg], [LeftLeg], [RightArm], [LeftArm], [Trunk] in
our case, which are referred to parent classes. It is to
mention that for simplicity purpose to show the figure, the
example using only 5 parts of the body is presented here.
They are denoted in the figure as a, b, c, d and e

respectively. However, the figure for 17 parts also can be
built in the same way. Each class is independent in the
sense that it has complete information for generating all
frequent sequences that share the same prefix.

a b c d e

ab ac ad ae bc bd be cd ce de

abc abd abe acd bcd bce bde cdeace ade

abcd abce abde acde bcde

abcde

∅

θ1

θ2

θ3

θ4

θ5

θ0
a = LeftHand
b = RightHand
c = LeftLeg
d = RightLeg
e = Trunk

Fig. 4. Partitioning search space with the prefix based
equivalence classes

For example, if a class [a] has the elements [b] → [a], and
[c] → [a]. The only possible frequent sequences at the next
step can be [b] → [c] → [a] or [c] → [b] → [a] and [bc] →
[a]. It should be obvious that no other parts such as y can
lead to a frequent sequence with the prefix [a], unless (ya)
or y → x is also in [x]. The method decomposes the
sequences at each new level into smaller independent
classes. The figure shows the effect of using 2-level
prefixes i.e. ab, ac, bd, bc etc. The figure also shows the 3-
level, 4-level and 5-level prefixes. For all the levels, it can
be obtained as a tree like structure of independent classes.
This composition tree is to be processed in a breath-first
manner, within each parent classes. In other words, parent
classes are processed one-by-one, but within a parent class
we process the new classes in a breath-first search.
Frequent sequences are generated for the databases list by
considering their support threshold min_sup. The
sequences are being found to be frequent at the current
level from the classes for the next New_Level. The level-
wise process is repeated until all frequent sequences have
been enumerated.
In terms of memory management, it is easy to see that we
need memory to store intermediate lists for the most 5
consecutive levels within a parent class (Fig. 4). Once all
the frequent sequences or the next level have been
generated, the sequences at the current level can be deleted.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.73A, July 2006

141

3.3 The Algorithm

As for the data set, each motion consists of repetition of 2
or 3 times for one kind. Test data are about 5 to 20 seconds
long and the sampling frequency is 120 times/second. The
motions are performed 23 times in 6 different types each
of which lasts for about 6-12 sec. The database consists of
50 different types of motion such as walking, running,
dancing, pitching etc. All of the experiments were
performed on a 64-node SGI Origin 3400 DSM multi-
processor system. The database is stored on an attached 6
GB local disk. The system runs IRIX 7.3.
There are two main paradigms that may be utilized in the
implementation of parallel data mining: a data parallel
approach and a task parallel approach. In data parallelism,
P processors work on distinct portions of the database, but
synchronously process the global computation tree. The
parallelism is available within class. In task parallelism,
the processors share the database, but work on different
classes in parallel, asynchronously processing the
computation tree. We need to keep the temporary list of all
newly generated candidates both infrequent and frequent
since we cannot say if a candidate is frequent until all
processors have finished the current level. In the task
parallelism all processors have access to one copy of the
database, but they work on separate classes.
We use the task parallel approach to solve our problem.
The pseudo code of the algorithm is given below. This is
done within the level of the computation tree (see fig. 4).
In other words, at each new level of the computation tree
(within a parent class like a, b, c, etc.), each processor
processes all the new classes at that level, performing
intersections for each candidate, but only over its local
block (steps 7-11 in algorithm
Mining_Sequencial_Parts). The local supports are
sorted in a local array to prevent false sharing among
processors (step 10 in procedure FindNewClasses). After
barrier synchronization signals that all processors have
finished processing the current level, a sub-reduction is
performed in parallel to determine the global support of
each candidate. The frequent sequences are then retained
for the next level, and the same process is repeated for
other levels until no more frequent sequence are found
(steps 10-12 in algorithm
Mining_Sequencial_Parts). The level-wise task
parallelism requires modifications by performing local
intersection for all classes at the current level, followed by
a barrier before the next level can begin.
In our case, with regards to 17 parts of the body, we used
17 processors to process the each prefix based class
independently in the memory. It is to mention that as
reported earlier, the fig.4 represents only prefix based
search space with 5 parts. However, in case of 17 parts the

structure will be of similar type using 17 individual
(parent) classes. After implementing the proposed
algorithm for 17 body parts as 17 classes using 17
processors, we found many sequential associations rules
for the body parts that took part in performing a motion
efficiently. As an example of such discovered rules for
performing “walking” is “raising the RightHand forward,
lowering the LeftHand back, raising the RightLeg forward,
directing the LeftLeg backward and move forward the
trunk”. We can find such kind of sequential rules for other
sets of motion data like running, pitching, dancing etc. The
running time presented in figure 6 indicated by “time using
lattice based approach” justifies that good speed up is
obtained by our approach.

Algorithm Mining_Sequencial_Parts
Input: P, min_sup
Output: Plist
begin

1. P = {Total body parts representing
the parent classes P

i
, where

i=1,2,…,17}
2. for each P

i
 ∈ P

3. {
4. while (Previous_level ≠ ∅);
5. do in parallel for all processors p
6. {
7. New_Level=New_Level∪FindNewClasses

(Previous_Level.bodyparts());
8. Previous_Level= Previous_Level.next()
9. }
10. barrier;
11. New_Level= ∪

p∈P
New_Level

p

12. Repeat steps 5-7 if (New_Level≠ ∅)
13. }

end

Procedure FindNewClasses(P, min_sup)
begin

1. for all the sequences in P
i
∈P

2. {
3. for all the sequences P

j
∈P, with

4. j ≤ i
5. {
6. L= P

i
∪P

j
;

7. do in parallel for all processors
p

8. {
9. X= P

i
 ∩ P

j

10. }
11. if (σ(L) ≥ min_sup) then

P
i
=P

i
∪{L});

12. }
13. }
14. return Plist=Plist ∪ P

i

end

3.4 Comparison of the Results

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

142

To justify the effectiveness of our algorithm we compared
with our proposed algorithm presented in [13, 16]. For
ready reference here, we present a brief overview of our
previous approach. In previous works [13, 16], we
introduced two parallel algorithms for the same data sets
that we used here for mining association rules based on
well known apriori algorithm [6] in data mining for super
market set data; one of them for mining association rules
from 17 body parts and the other one from 5 parts of the
body by reducing the search space due to the large number
of combinations that used to occur during the search
process and the complexity of search process itself. Note
that the algorithm that used the 5 parts of the body
regarded as the better solution between the proposed two
algorithms [13, 16]. But it was identified as a limitation to
our goal as our motivation was to discover rules using all
of the parts of the body i.e. from 17 parts. So, as a new
approach (in this paper), we propose the lattice based
parallel algorithm for this purpose. Hence, the approach
that we have used in this paper prevailed over with our
previous problem. As described in the above section, we
can discover rules from our datasets consisting of 17 parts
and thus fulfill our objective using the algorithm presented
here. So, we present the comparison between the results
using our previous approach and the present approach, to
figure out the efficiency of our present proposed algorithm.
The results shown in Fig. 6 indicate that our present lattice
based parallel algorithm can effectively reduce the time
required for discovering rules in terms of scalability
whereas the time taken by our previously reported
algorithm does not show that kind of trend with the
number of processors.

0

50

100

150

200

250

Ti
m

e
in

 se
co

nd
s

1 2 4 8 17
Processors

 Time using lattice
based approach
Time using
Previous algorithm

Fig. 6. The comparison results of the time required for
discovering the rules between the two algorithms for the
same data set

4 Conclusion and Future Work

In this paper, we have presented a parallel algorithm for
finding association rules from sequences of the body parts
that performs different kinds of motion from multi-stream
time series data such as human motion data. The algorithm
has considered a large number of combinations and the
depth of the sequence of parts that perform motions (such
as walking, dancing, pitching etc.). The extraction
technique of motion data into symbols of multi-stream has
also been discussed briefly. The experimental results have
demonstrated that the algorithm can efficiently determine
the rules of sequence of body parts that performs motion in
our case by using the advantage of lattice based structure.
It also has outperformed the result of our previously
reported algorithm.
It is to mention that the structure of the algorithm and the
way of implementation is not specific to the problem of
searching the sequence of patterns (in our case body parts).
It infers that our motivation was to reduce the time and
find the sequence of the body parts using various
combinations efficiently, and hence we achieved that for
multidimensional data. This technique can be implemented
with other data sets in the multidimensional multi-stream
time series domain for finding interesting sequential rules
for patterns in the domain of medicine and business. As a
future work we aim to use the techniques for such data sets.

References

1. Berndt D.J. and Clifford J., Finding Patterns in Time Series: A
Dynamic Programming Approach, in Proc. of Advances in
Knowledge Discovery and Data Mining, pp. 229- 248, 1996.

2. Bay S.D., Combining Nearest Neighbor Classifiers Through
Multiple Feature Subsets, in Proc. of 15th International
Conference on Machine Learning, pp. 37-45, 1998.

3. Oates T. and Cohen P.R., Searching for Structure in Multiple
Stream of Data, in Proc. of 13th International Conference on
Machine Learning, pp. 346-354, 1996.

4. Shimada M. and Uehara K., Discovery of Correlation from
Multi-stream of Human Motion, Lecture Notes in Artificial
Intelligence, Vol. 1967, pp. 290-294, 2000.

5. Das G., Lin K., Mannila H., Renganathan G. and Smyth P.,
Rule Discovery from Time Series, in Proc. of Fourth
International Conference on Knowledge Discovery and Data
mining, AAAI Press, pp. 16-22, 1998.

6. Agrawal R.and Shafer J., Parallel Mining of Association Rules,
IEEE Transactions on Knowledge and Data Engineering, Vol.
6, No.8, pp. 962-969, 1996.

7. Agrawal R. and. Srikant R., Fast Algorithms for Mining
Associations Rules, in Proc. of 20th VLDB Conference, pp.
487-499, 1994.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.73A, July 2006

143

8. Park, J.S. Chen M.S. and Yu P.S., Efficient Parallel Data
mining for Association Rules, in Proc. of CIKM, pp. 31-36,
1995.

9. Zaki M.J., Efficient Enumeration of Frequent Sequences, in
Proc. of Intl. Conf. on Information and Knowledge
Management, pp. 68-75, 1998.

10. Zaki M.J., Parallel Sequence Mining of Shared Memory
Machine, in Proc. of Workshop on Large-Scale Parallel
KDD Systems, SIGKDD, pp. 161-189, 1999.

11. Rosenstein, M.T. and Cohen, P.R., Continuous Categories for
a Mobile Robot, in Proc. of 16th National Conference on
Artificial Intelligence, pp. 634-640, 1999.

12. Jean-Marc Adamo: Data Mining for Association Rules and
Sequential Patterns- Sequential and Parallel Algorithms,
Springer-Verlag, Berlin Heidelberg New York (2001).

13. Sarker, B. K., Mori, T., Hirata, T. and Uehara, K. Parallel
Algorithms for Mining Association Rules in Time Series
Data, Lecture Notes in Computer Science, LNCS-2745, pp.
273-284, 2003.

14. Agrawal R. and Srikant R., Mining Sequential Patterns, in
Proc. of 11th ICDE Conf., pp. 3-14, 1995.

15. Agrawal R. and Srikant R., Mining Sequential Patterns:
Generalization and Performance Improvements, in Proc. of
5th Intl. Conf. on Extending Database Technology, pp. 3-14,
1996.

16. Sarker B.K., Hirata T., and Uehara K., Parallel Mining of
Associations Rules in Time Series Multi-stream Data, Journal
of Information, vol.9, no.2, pp.265-282.

17. Zhu Y. and Shasha D, StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time, Proc. of the 28th
VLDB Conf., (2002), pp. 358-369.

18. Roddick J.F. and Spiliopoulou M., A Survey of Temporal
Knowledge Discovery Paradigms and Methods, IEEE
Transactions on Knowledge and Data Engineering, 14(4)
(2002), pp.750-767.

19. Honda R. and Konishi O.,Temporal Rule Discovery
for Time Series Satellite Images and Integration with
RDB, Proc. 5th European Conf. PKDD, (2001), pp.
204-215.

 Biplab Kumer Sarker received
M.Sc. in Computer Engineering from
Vinnitsa State Technical University, Ukraine
(Ex.USSR) in 1995 and Ph.D in Computer
Engineering from Institute of Technology,
Banaras Hindu University, India in 2003.
From December 2001, he was a Visiting
Researcher in the Research center for Urban
Safety and Security, Kobe University, Japan.
He was held as Assistant Professor in the

Graduate School of Science and Technology, Kobe University, Japan
from April, 2003 to March 2004. He joined KDE laboratory, Institute of
Information Science and Electronics, University of Tsukuba, Japan from
July, 2004. From February 2005, he worked at the faculty of Computer
Science, University of New Brunswick, Canada as a Postdoctoral fellow.
From April 2006, he joined Innovatia Inc. as a researcher under NSERC,
Canada IRDF. His present research interest includes Task Allocation &
Scheduling in Distributed Real Time System, Mining Association Rules

in Time Series Data, Buyers-Sellers Matching in E-Business and
Semantic Knowledge Management in E-Learning. He is a member of
IEEE and IEEE computer society.

 Kuniaki Uehara received the B.Eng.,
M.Eng. and D.Eng. degrees in Information
and computer sciences from Osaka
University, Osaka, in 1978, 1980 and 1984,
respectively. From 1984 to 1990, he was
an Assistant Professor in the Institute of
Scientific and Industrial Research, Osaka
University. He was an Associate Professor
in the Department of Computer and Systems
Engineering, Kobe University from 1990 to

1997. From 1997 to 2002, he was a Professor with the Research Center
for Urban Safety and Security of Kobe University. Currently he is a
Professor with Graduate School of Science and Technology, Kobe
University. He is also a Professor with the Department of Computer and
Systems Engineering, Kobe University. From 1989 to 1990, he was a
visiting assistant professor of Oregon State University, USA. From 1994
to 1996, he was held the position of Associate Director of Information
Processing Center, Kobe University. His current research interests
include machine learning, data mining, natural language processing, and
multimedia processing. He is a member of the Information Processing
Society of Japan, Japan Society for Software Science and Technology,
and Japan Society of Artificial Intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

