
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006 
 
 

 

144 

Manuscript submitted July 5, 2006. 
Manuscrip revised July 20, 2006. 
 

TJP: A Modified Twig Join Algorithm Based on the 
Pri-order Labeling Scheme 

Ren JiaDong † and Yue LiWen † 
  

† College of Information Science and Engineering, Yanshan University Qinhuangdao, Hebei, 066004 China 
 

 
Summary 
XML exploits a tree-structured data model for representing 
data, and XML queries specify patterns of selection 
predicates on multiple elements related by a tree structure. 
Finding all occurrences of such a twig pattern in an XML 
database is a core operation for XML query processing. A 
lot of algorithms have been proposed to process to XML 
twig pattern query based-on region labeling scheme, which 
can not support the  updating of XML documents. In this 
paper, a new twig join algorithm TJP is proposed, for 
matching an XML query twig pattern,  it is modification of 
TwigStackList based on a new labeling scheme. This 
labeling scheme is optimal to determine the relationships 
between nodes and can support efficiently dynamic 
updating of documents. TJP uses a list to cache some 
elements in input data streams; the length of list is not 
longer than that of the longest path in the XML documents. 
It is important technique for lists of branching nodes; we 
preserve the elements in list only when they contribute to 
the final query results. The algorithm is I/O and CPU 
optimal for queries with ancestor-descendant edge. When 
the twig pattern contains parent-child relationships below 
branching nodes, the algorithm TJP will get a much 
smaller set of intermediate results than previous join 
algorithms. 
Key words: 
XML, twig pattern, labeling scheme, join algorithm. 

1. Introduction 

With the development of XML, it has become a common 
standard for data representation and information exchange 
over the Internet. Although XML documents could have 
rather complex internal structures, they can generally be 
modeled as labeled and ordered trees. Most of researches 
focus on query processing over XML data that conformed 
to a tree-structured data model. In most XML query 
languages [1, 2], queries on XML data are commonly 
expressed in the form of twig pattern (a small tree).A twig 
pattern can be represented as a node-labeled tree whose 
edges are either parent-child or ancestor-descendant 
relationship.   

 

 
Efficiently finding all occurrences of a twig pattern in 

a database is a core operation in XML query processing, 
both in relational implementations of XML databases and 
in native XML databases. In the past several years, many 
algorithms [3 -7] have been proposed. Most of them 
decomposed the twig pattern into a set of binary (parent-
child and ancestor-descendant) relationships between pairs 
of nodes, the query twig pattern can be matched by (1) 
matching each of the binary structural relationships against 
the XML databases, and (2) joining together these basic 
matches. Zhang et al. [8] and Al-Khalifa et al. [4] proposed 
the merge join algorithms: MPMGJN 、 tree-merge and 
Stack- tree respectively, to match the binary relationships, 
and finally join together basic matches to get the final 
results. The limitation of these algorithms for matching 
query twig patterns is that intermediate result size get very 
large, even we control the size of input and output. To 
overcome this disadvantage, Bruno et al. [3] and Lu et al. [9] 
proposed holistic twig join algorithms TwigStack and 
TwigStackList respectively, based on the region labeling 
scheme. In order to answer a query twig pattern, the 
algorithms access the labels alone without traversing the 
original XML documents. TwigStack use a chain of linked 
stacks to compactly represent partial results of individual 
query root-to-leaf paths, it is I/O and CPU optimal 
algorithm that reads the entire input for twigs with only 
ancestor-descendant edges. TwigStackList overcomes the 
limitation of TwigStack, its main technique is to look-
ahead read some elements in input data steams and cache 
limited number of them to lists in the main memory. 
TwigStackList is I/O and CPU optimal not only for queries 
with only ancestor-descendant edges, but when queries 
contain parent-child edges below non-branching nodes, the 
intermediate results can be guaranteed to be a subset of 
that in previous algorithms.    

In this paper, motivated by the property the existing 
prime number labeling scheme [10] when determining the 
relationships of nodes, we proposed a new labeling scheme, 
called Pri-order, which can quickly determine the 
relationships between nodes and efficiently support the 
dynamic updating of XML document tree . To reduce the 
intermediate results size of query twig pattern further, a 
modified join algorithm: TLP is proposed based on the Pri-
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order labeling scheme. The new algorithm has the same 
performance as TwigStack and TwigStackList when 
queries contain only ancestor-descendant edges, but more 
efficient than them for queries with the presence of parent-
child edges below the branching nodes. 

The rest of paper is organized as follows. We first 
discuss the related works about twig pattern in section 2. 
The novel algorithm is presented in section 3. We report 
the experimental results in section 4 and section5 we 
conclude this paper. 

2. Related Works 

2.1 Data Model and Query Twig Pattern 

XML uses a tree structure model for representing data, an 
XML database is a forest of ordered and labeled trees, 
where nodes represent element, attributes and texts, and 
edges represent element-subelement, element-attribute and 
element-text relationships. Most existing query processing 
algorithms use a labeling scheme to present the 
information of position of a tree node. These labeling 
schemes can support efficiently evaluation of structural 
relationships. In our paper, we use Pri-order labeling 
scheme to label the node in the tree. We will explain the 
labeling scheme in section2.3. Figure 1 shows the tree 
representation of a XML document. We don’t give labels 
(described in ()) of all nodes in the tree for the 
limitation of space. 

Fig. 1 Tree representation of a XML document  

Most of XML query languages like XQuery [2] make 
use of twig pattern to match relevant portions of data in an 
XML database. Twig pattern nodes may be elements, 
attributes and texts. Twig pattern edges are either parent-
children relationships (denoted by ‘/’) or ancestor-
descendant relationships (denoted by ‘//’). If a node has 
more than one child, then we call this node a branching 

node. Otherwise, when the node has only one child, it is a 
non-branching node. For example, the XQuery expression: 
Book [title = ‘XML’ and year= ‘2002’] can be represented 
as the twig pattern in Figure2 (a). Only parent-children 
edges are used in this case. Similarly, the XQuery 
expression: book [title = ‘XML’]//author [family = ‘xiao’ 
and given= ‘yue’] can be represented as the twig pattern in 
Figure2 (b). Note that an ancestor-descendant edge is used 
between the book element and the author element, title is a 
non-branching node and author is a branching node in this 
twig pattern. 

Fig. 2 Queries twig pattern 

2.2 Twig pattern Match 

Given a query twig pattern Q and an XML database D, a 
match of Q in D is identified by a mapping from nodes in 
Q to elements in D, such that: (1) query node predicates 
are satisfied by the corresponding database elements, and  
(2)the parent-children and ancestor-descendant 
relationships between query nodes are satisfied by the 
corresponding database elements. The answer to query Q 
with m nodes can be represented as a list of m-ary tuples, 
where each tuple (q1, q2… qm) consists of the database 
elements that identify a distinct match of Q in D. 

For example, a query twig pattern in Figure2 (b), and 
the data tree in Figure 1, we need to find all the accurate 
occurrences of twig pattern of Figure2 (b) in the database 
corresponding to Figure 1. 

2.3 Pri-order Labeling Scheme 

XML tree structures must be preserved explicitly when 
XML documents was accessed. One method is to assign 
labels for the nodes in XML tree. We can capture the 
structural information of XML documents and perform the 
twig pattern matching based on the labels alone without 
traversing the original XML documents. 

For designing a proper labeling scheme for XML 
documents, various methods have been proposed, they can 
be divided into two kinds: one is region-based [11, 12], the 
other is prefix-based [13, 14]. Most of joins algorithms are 
based on the region labeling scheme, which is not flexible 
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for processing the dynamic updating of XML document 
tree. 

In this paper, we proposed a new labeling scheme for 
XML document based on the existing prime number 
labeling scheme, called Pri-order labeling scheme. It 
allocates a 3-tuple (pri, ord, level) for each node in XML 
document tree structure, to represent the position of node, 
it also can succinctly captures structural relationships 
between nodes in the XML database. 

pri is unique integer gained with exploiting the prime 
number labeling scheme. The prime number labeling 
scheme exploits the unique property of prime numbers to 
label the nodes, in this labeling scheme each non-leaf node 
is given a unique prime number by width-first traversal of 
the XML tree, and the label of each node is the product of 
its parent node’label and its own allocated one, the label of 
node is divided only by its ancestor’s label. Note that the 
first part of Pri-order utilizes the property of the prime 
number labeling scheme, is good for dynamic updates of 
document. When a new node is inserted, it is easy to 
assign a prime number that has not been assigned before as 
its own one for the new inserted node, no re-labeling is 
required in this part. In Pri-order labeling scheme the 
ancestor-descendant relationship between any two nodes is 
checked efficiently by this part of label of node, we only 
check whether the Pri of the ancestor node is divided by 
the Pri of the descendant node or not.  

ord is a integer, denotes the sibling order of nodes 
with the same parent, the order of  first child of node is 
zero. ord makes sure the order between nodes with the 
same parent node. In this scheme, only sibling order is re-
labeled, when updating occurs in document, the pri and 
level are not affected. The range of re-labeling is small, 
only the following sibling nodes which have same parent 
node with inserted node need to be re-labeled. 

level is the level where node locates, the level of  the 
root node is one. By pri and level we can determine the 
parent-child relationships of nodes. For the relationships of 
any two nodes n1 and n2 in the document tree, n1 is 
ancestor of n2 if and only if n2.pri mod n1.pri = 0, for the 
parent-child relationship, we also check whether n1.level 
=n2.level-1. 

3. Twig Join Algorithm 

In this section, we present a new join algorithm for finding 
all matches of a query twig pattern against an XML 
document; it is a modification of TwigStackList based on 
the Pri-order labeling scheme. We introduce some 
notations and data structures which will be used by this 
join algorithm first. 

3.1 Notation and data structures 

A query twig pattern can be represented with a small tree. 
The node operations are defined as follows: function 
isRoot(n) examines a query node is a root or not, and 
isLeaf(n) examines a query node is a leaf node or not, 
IsBranching(n) examines whether a query node. The 
function children(n)  gets all child nodes of n, and 
PCRchildren(n), ADRchildren(n) return child nodes which 
have the relationships of parent-child or ancestor-
descendant with n in the query twig pattern, respectively. 
That is PCRchildren(n)∪ADRchildren(n) = children(n). 
The two operations ancestor (e) and descendant (e) over 
elements in the document return the ancestors and 
descendants of e, both including e respectively. In the rest 
of paper, “node” refers to a tree node in the twig pattern, 
while “element” refers to an element in the data set 
involved in a twig join. 

There is a data stream Tn associated with each node n 
in the query twig. We use Cn to point to the current 
element in Tn. Function end (Cn) tests whether Cn is at the 
end of Tn. We can access the attribute values of Cn by 
Cn.pri, Cn.ord and Cn.level. The cursor can be forwarded to 
next element in Tn with the procedure advance 
(Tn).Initially, Cn points to the first element of (Tn). 

Our algorithm will make use of two types of data 
structure: list and stack. Given a query twig, we associate a 
list Ln and a stack Sn with each node n in the twig pattern. 

The use of stack in our algorithm is similar to that in 
previous join algorithm, each data node in the stack 
consists of a pair :( positional representation of an element 
from Tn, pointer to an element in Sparent(n)). The operations 
over stack are: empty, pop, push, top.pri, the last operation 
returns the pri attribute of the top element in the stack. At 
every point during computation: (i) the nodes in stack Sn 
(from bottom to top) are guaranteed to lie on a root-leaf 
path in the XML database. (ii) The set of stacks contain a 
compact label of partial and total answers to the query twig 
pattern. 

For each list Ln, we declare an integer variable pn, as 
a cursor to point to an element in the list Ln, we use 
Ln.At(pn).pri, Ln.At(pn).ord and Ln.At(pn).level to get the attributes 
of element in list Ln which pn points to. At every point 
during computation: elements in each list Ln are strictly 
nested from the first to the end. The operations over list 
are delete (pn) and append (e), the first operation delete the 
element pointed by pn in list Ln and the last operation 
appends element e at the end of Ln 

 3.2 Twig Join Algorithm: TJP 

Algorithm TJP returns results to a query twig pattern, 
it operates in two phases. In the first phase it repeatedly 
calls the getNext algorithm with the query root as the 
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parameter to get the next node for processing. We output 
solutions to individual query root-to leaf paths in this 
phase. In the second phase, these solutions are merge-
joined to compute the answer to the whole query twig 
pattern. 

In section 3.2.1, we give the algorithm TJP, and 
section 3.2.2 presents the getNext algorithm, which was 
called in algorithm TJP. 

3.2.1 Main Algorithm 
In this section we will show algorithm TJP: a modified 
algorithm of TwigSatckList based on the Pri-ordering 
labeling scheme. It calls getNext(n) to get next processed 
node n repeatedly, when n is a branching node, we make 
sure the elements in list Ln must participate in the final 
solution, otherwise we will delete it from the Ln. the 
following describes the details of modified algorithm. 
 
Algorithm TJP  
Begin 
1: while (! end (n)) do 
2:  g = getNext (root) 
3:  if (! isRoot (g)) then 
4:     clearStack(Sparent(g),g, getpri(g)) 
5:  end if 
6:  if (isroot(g)∨!empty(Sparent(g)))then  
7:      clearStack(Sn,g, getpri(g)) 
8:      movetoStack(g, Sg, pointertotop(Sparent((g))) 
9:      if (isLeaf(g)) then 

10:      showSolutions(Sg) 
11:      pop (Sg) 
12:     end if 
13:  else 
14:   proceed (g) 
15:  end if  
16: end while 
17: MergeSolutions () 
End 
 
Function end () 
1: return ni ∈ descendant (n):isLeaf(ni)∧ end(Cn); 
 
Procedure movetoStack(n, Sn, p) 
1: push (getElement(n), p) to stack Sn; 
2: proceed (n); 
 
Procedure clearStack (Sn,n, g.pri) 
1: while (! empty (Sn) ∧ (g.pri mod toppri(Sn) !=0))do 
2:   pop (Sn); 
3: end while 

In algorithm TJP, line 2 calls getNext algorithm to 
identify the node to be processed. Line 4 and 7 remove 
partial answers from the stacks of parent (g) and g that can 
not contribute to the final answer. If n is not a leaf node, 

we will push element eg into Sg, otherwise output all path 
solutions involving element eg(line10), the individual 
solutions should be output in root-to-leaf order so that they 
can be easily merged together to get final twig query 
results(line17). 

3.2.2 getNext Algorithm 

Algorithm getNext (n) 
Begin 
1: if (isleaf (n)) return n; 
2: for each node ni in children (n) do 
3:     ri=getNext (ni); 
4:     if (ri! =ni) return ri; 
5:  end for 
6: nmax= maxarg ni∈children(n) getpri(ni); 
7: nmin=minarg ni∈children (n) get pri(ni); 
8: while (getpri (nmax) mod getpri (n)! =0)   proceed (n); 
9: if (getpri (n) mod getpri(nmin) =0) return nmin; 

10: moveStreamtoList(n,nmax) 
11: if (isBranching(n)) 
12:     for each ei in Ln ∈MB (nmin,n)  
13:          if (ei! ∈ancestor (emax)) delete (Ln,ei); 
14:     end for 
15:  end if 
16: for each node ni in children (n) do  
17:    if (there is an element ei in list Ln such that ei is the 

parent of getElement(ni))then 
18:         if (ni is the only child of n) then 
19:            move the cursor pn of list Ln to point to ei; 
20:          end if 
21:     else return ni; 
23:     end if  
24:  end for 
25: return n; 
End  
 
Procedure getElement(n) 
1: if (! empty (Ln) then 
2:  return Ln.elementAt(pn); 
3: else return Cn; 
 
Procedure getPri(n) 
1: return the pri attribute of getElement(n); 
Procedure moveStreamtoList(n,m) 
 
1: while (getpri(m) mod Cn.pri =o) do 
2:   Ln.append(Cn); 
3:   advance (Tn); 
4: end while 
 
Procedure proceed (n) 
1: if (empty (Ln) then 
2:       advance (Tn); 
3: else 
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4:      Ln.delete(Tn); 
5:      pn=0{move pn to point to the beginning of Ln} 
6: end if  
 
Function MB (n,b) 
1: if (isBranching(n)) then 
2: let e be the maximal element in list Ln 
3: else 
4: let e =current (Tn) 
5: end if  
6: return a set of element a that is an ancestor of e such 

that a can match node b in the path solution of e to path 
pattern pn 

 
Procedure deleteList (Ln, e) 
Delete any element a in the list Ln such that a! ∈ancestors 
(e) and a! ∈descendants (e) 
 

The getNext(n) is a  procedure called by the  join 
algorithm TJP, it returns a node n’ (possibly n’ = n) with 
three properties: assume that element en’= getElement(n’) 
then(i)en’ has a descendant in each of stream Tni for ni ∈ 
children(n’); and (ii) if n’ is not a branching node in the 
query, element en’ has a child eni in Tni, where ni ∈
PCRchildren(n’)(if any); and (iii) if n’ is a branching node, 
it must contribute to the final answer of query, there is an 
element eni in each Tni such that there exists an element 
ei(with tag n)in the path from en’ to enmax that is the parent 
of eni, where ni∈PCRchildren(n’)(if any) and enmax has the 
maximal pri attribute for all children(n’) 

At line2-5, the algorithm getNext repeatedly calls 
itself for each ni∈ children (n). If the returned node ri is 
not equal to ni, the algorithm immediately return ri. 
Otherwise, it will try to get a child of n which satisfies the 
above three properties. Line6 and line7 get elements which 
have max and min pri attribute for the current head 
elements in lists or streams, respectively. Line 8 skips the 
elements that do not contribute to the final results. If no 
common ancestor for all Cni is found, Line9 returns the 
child node with the smallest pri value. At line 10, we look-
ahead some elements in the stream Tn and cache elements 
that are ancestors of Cnmax into the list Ln. 

Line11-15 are important steps, for the branching node 
element ei in list Ln, if it does not participate in the solution 
of the future elements in other streams, we will delete it 
from the list Ln. Note that these steps are key difference 
between TwigStackList and TJP. By these steps we can 
make sure the elements in Ln must contribute to the final 
solutions, the previous one will return the branching nodes 
that may result in many “useless” intermediate results. 
Algorithm TJP evaluates all branching nodes; they will be 
deleted from cache list Ln when they don’t participate in 
the final answer. 

Example1. Find a query twig pattern on a document 
in figure 3.TwigStackList will cache elements a1 and a2 in 
list La, c1 and c2 in list Lc, then moves a1, c1 and c2 into 
stack Sa and Sc, respectively. Different from TwigStackList, 
the TJP algorithm will delete c2 from list Lc, only pushes c1 
into list Lc, because c2 does not contribute to the final 
answer of query, so it does not output the solution<c2, e1, 
g1>. At last our algorithm merges only individual path 
solutions<a1, b1> and <a2, c1, d1, f1, e1, g1> to get the final 
query result. 

Fig. 3 Example twig query and documents  

3.2.3 Analysis of Algorithm 
In this section, we discuss the correctness and the 
complexity of TJP, and then we analyze its complexity. 
Finally, we compare TJP with TwigStackList in terms of 
the size of intermediate results. 

TJP is similar to TwigStackList, for any node n in the 
twig query we have getNext (n) =n’. Then (1) n’ has the 
child and descendant extension. (2) either (i) n =n’ or (ii) 
parent (n) does not have the child and descendant 
extension because of n’ or a descendant of n’. 
Lemma1. In procedure deleteList of Algorithm getNext, 
any element e that is deleted from list Ln does not 
participate in any solution. 

Lemma 1 shows that any element deleted from list 
dose not participate in individual root-leaf solutions, so it 
doesn’t contribute to the final result, the deletion is safe. 
Any element e that matches a branching node, if e 
participates in any final answer, then e occurs in the 
corresponding list.  
Lemma2. At our algorithm TJP, elements in stack Sn are 
strictly nested; each element is a descendant of the element 
below it. 

We push new element into the stack only in 
Procedure movetoStack, there are two cases for 
relationship between the new element enew to be pushed 
into stack and the existing top element etop in stack. 

Case 1: There is not the ancestor-descendant 
relationship between two nodes; the element etop will be 
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popped in procedure clearStack. So the case is 
impossible. 

Case 2: They are the ancestor-descendant 
relationship; in this case, enew will be pushed into the 
stack safely. 

Lemma3. In TJP, any element which is popped from the 
stack Sn does not contribute to any new solution any more. 

For the first call of clearSatck in line 4 of main 
algorithm, suppose on the contrary, there is a new solution 
involving the popped element epop, we can note line 1 of 
clearStack, if g.pri mod epop.pri! = 0, the element epop will 
be popped from the stack. And epop can not involved in any 
element in the path from the root to eparent(n) and after 
eparent(n), it is a contradiction. 

For the second call of clearStack in line 7, according 
to the containment property, the elements popped form the 
stack are descendant of en, they don’t participate in any 
new solutions any more. There no element is a child of epop 
in the rest of elements in Tchildren(n), so epop does not 
participate in any new solutions. 

These lemmas are important to determine the 
correctness of the following theorem. 
Theorem1. Given a twig query Q and an XML database D, 
Algorithm correctly returns all the answers for Q on D.  
Proof (sketch): Using the lemmas, we know that when 
getNext returns a query node n, if the stack of n’parent is 
empty, the head element of Ln does not contribute to any 
final solutions. Any element in the ancestors of n that use 
en in the descendant and child extension is returned by 
getNext before en.  For branching nodes, we make sure 
they must contribute to the finial solutions before they was 
push to stack, finally, when n was returned by getNext is a 
leaf node, we output all solutions that use en. 

While the correctness holds for query twig patterns 
with both ancestor-descendant and parent-child 
relationships in any edges, TwigStackList can be proved 
optimality only for which parent-child relationships appear 
only in edges below non-branching nodes, thus algorithm 
TJP is optimal for parent-child relationships below 
branching node, according to lemma 2, we are guaranteed 
that branching node en is pushed into stack, only when en 
has really participated in the finial solutions. 
Theorem2. Consider a query twig pattern Q with m nodes 
and an XML database Q. the worst case I/O complexity of 
algorithm is linear in the sum of the size of input and 
output lists. The worst case space complexity is 
proportional to m times of the maximal length of a root-
leaf path in D. 

For the limitation the space, we do not give the proof 
the theorem 2. It is important to note that, we delete the 
branching node element which does not participate in the 
final solutions from the list. The experiment results were 
shown in section 4, our join algorithm output less 
intermediate solutions than TwigStackList. The reason is 

our algorithm deleted the branching node elements which 
don’t contribute to the final answers, thus, it pushed fewer 
elements into stack and thereby less intermediate results 
were outputted. 

4. Experiment Evaluations 

We present experimental results on the performance of the 
twig pattern matching algorithms in this section with real 
datasets. We evaluated the performance of these 
algorithms using the following datasets, experiment 
checked the size of intermediate results compare our 
algorithm with TwigStack and TwigStackList. 

4.1 Experimental Setting 

We implemented all algorithms in JAVA. All our 
experiments were performed on Pentium 4 2.4 G 
processor; with 512MB RAM running on windows XP 
system. We used the datasets DBLP and TreeBank for our 
experiment; the two datasets have different properties: 
DBLP is a shallow and wide document, but TreeBank has 
very deep recursive structure. We summarize the 
properties of two datasets in table1. 

Table 1: XML Datasets 
 DBLP TreeBank 
Data size(MB) 130 22.8 
Nodes(million) 3.3 2.4 
Max/Avg depth 6/2.9 36/7.8 

4.2 Twig Queries 

Now we give the experimental results of twig queries, 
compared TJP with the TwigStackList. We tested several 
XML query on DBLP and TreeBank data in table 2. These 
queries have different twig structures and combinations of 
parent-child and ancestor-descendant relationships. In 
particular, query Q1 contains only ancestor-descendant 
relationships, while Q2 contains only parent-children 
relationships. Q3contains only ancestor-descendant 
relationships between the branching node and its children, 
while Q4 contains a branching node with both parent-child 
and ancestor-descendant relationships. 

Table 2: X Twig queries on DBLP and TreeBank 
 Dataset Twig queries 
Q1 DBLP //article[//sup]//title//sub 
Q2 TreeBank /S/VP/PP[IN]/NP/VBN 
Q3 TreeBank /S[//VP/IN]//NP 
Q4 TreeBank //VP[DT]//PRP-DOLLAR

 
We analyze the query performance of algorithms 

TwigSatck, TwigStackList and TJP, all the join algorithms 
need to scan the all elements for nodes; they have the same 
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cost of disk access. Thus, for the size of intermediate 
results, we mainly examined the results of queries with 
parent-child relationships. Table 3 shows the number of 
intermediate solutions and the final answers of queries Q2, 
Q3, Q4. From table 3, we can see, all join algorithms are 
all sub-optimal. The number of intermediate path solutions 
of Twigstack is largest, over 95% useless intermediate 
solutions generated by it. The other two algorithms have 
almost same performance, the intermediate solutions 
generate by them are slightly large than the number of 
useful solutions. But compared with the TwigStack and 
TwigStackList, TJP is more efficient, especially query with 
parent-child relationships below the branching nodes, like 
query Q2. 

Table 3: Number of intermediate solutions 

       Algorithm 
Query 

Twig 
stack 

TwigStac
k 

List 
TJP Useful 

Q2 2237 388 337 302 
Q3 702391 22565 22565 22565 
Q4 10663 9 9 5 

 
On the other hand, we also can check the query 

execution time of join algorithms based on different 
labeling scheme. Figure 4 shows the execution time of TJP 
and TwigStackList for queries Q2, Q3, Q4, the two 
algorithms are based on the region labeling and the Pri-
order labeling scheme respectively. 

Fig. 4  Queries execution time of two join algorithm 
From the figure 4, we can see the algorithm TJP 

adopts the Pri-order labeling scheme, the relationships 
between nodes can quickly be determined; it can reduce 
the time for reading the input. For the number of branching 
nodes is reduced in stack, it also can save up the execution 
time. 

Compared all results of experiment we note that TJP 
outperforms TwigStack and TwigStackList under the 
dataset. The improvement is due to the facts that for query 
with branching nodes, they must contribute to the final 
answer before the branching nodes were moved to the list. 
With this technique, the size of intermediate results is 

reduced; and use the advantage of the labeling scheme for 
determining the relationships among nodes, the query 
execution time is saved up. 

5. Conclusions 

XML twig pattern matching is a key issue for XML query 
processing. In this paper, we propose an efficient 
algorithm for query XML twig pattern, called TJP. It is a 
modification of TwigStackList using Pri-order labeling 
scheme. This labeling scheme can determined the 
relationship of any nodes quickly without traveling the 
original document; it is insert-friendly in the context of 
dynamic update of XML trees. The most important 
technique of TJP is when processing query with parent-
child relationships below branching node, we guaranteed 
that the branching node elements in list must contribute to 
the finial answers, or else we delete it from list. The 
number of intermediate path solutions for query twig 
pattern is much smaller than previous algorithms. 
Compared with TwigStackList and TwigStack, the 
experimental results showed that our method TJP is more 
efficient, especially for queries with parent-child edges 
below the branching node. 
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