
IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

144

Manuscript submitted July 5, 2006.
Manuscrip revised July 20, 2006.

TJP: A Modified Twig Join Algorithm Based on the
Pri-order Labeling Scheme

Ren JiaDong † and Yue LiWen †

† College of Information Science and Engineering, Yanshan University Qinhuangdao, Hebei, 066004 China

Summary
XML exploits a tree-structured data model for representing
data, and XML queries specify patterns of selection
predicates on multiple elements related by a tree structure.
Finding all occurrences of such a twig pattern in an XML
database is a core operation for XML query processing. A
lot of algorithms have been proposed to process to XML
twig pattern query based-on region labeling scheme, which
can not support the updating of XML documents. In this
paper, a new twig join algorithm TJP is proposed, for
matching an XML query twig pattern, it is modification of
TwigStackList based on a new labeling scheme. This
labeling scheme is optimal to determine the relationships
between nodes and can support efficiently dynamic
updating of documents. TJP uses a list to cache some
elements in input data streams; the length of list is not
longer than that of the longest path in the XML documents.
It is important technique for lists of branching nodes; we
preserve the elements in list only when they contribute to
the final query results. The algorithm is I/O and CPU
optimal for queries with ancestor-descendant edge. When
the twig pattern contains parent-child relationships below
branching nodes, the algorithm TJP will get a much
smaller set of intermediate results than previous join
algorithms.
Key words:
XML, twig pattern, labeling scheme, join algorithm.

1. Introduction

With the development of XML, it has become a common
standard for data representation and information exchange
over the Internet. Although XML documents could have
rather complex internal structures, they can generally be
modeled as labeled and ordered trees. Most of researches
focus on query processing over XML data that conformed
to a tree-structured data model. In most XML query
languages [1, 2], queries on XML data are commonly
expressed in the form of twig pattern (a small tree).A twig
pattern can be represented as a node-labeled tree whose
edges are either parent-child or ancestor-descendant
relationship.

Efficiently finding all occurrences of a twig pattern in

a database is a core operation in XML query processing,
both in relational implementations of XML databases and
in native XML databases. In the past several years, many
algorithms [3 -7] have been proposed. Most of them
decomposed the twig pattern into a set of binary (parent-
child and ancestor-descendant) relationships between pairs
of nodes, the query twig pattern can be matched by (1)
matching each of the binary structural relationships against
the XML databases, and (2) joining together these basic
matches. Zhang et al. [8] and Al-Khalifa et al. [4] proposed
the merge join algorithms: MPMGJN 、 tree-merge and
Stack- tree respectively, to match the binary relationships,
and finally join together basic matches to get the final
results. The limitation of these algorithms for matching
query twig patterns is that intermediate result size get very
large, even we control the size of input and output. To
overcome this disadvantage, Bruno et al. [3] and Lu et al. [9]
proposed holistic twig join algorithms TwigStack and
TwigStackList respectively, based on the region labeling
scheme. In order to answer a query twig pattern, the
algorithms access the labels alone without traversing the
original XML documents. TwigStack use a chain of linked
stacks to compactly represent partial results of individual
query root-to-leaf paths, it is I/O and CPU optimal
algorithm that reads the entire input for twigs with only
ancestor-descendant edges. TwigStackList overcomes the
limitation of TwigStack, its main technique is to look-
ahead read some elements in input data steams and cache
limited number of them to lists in the main memory.
TwigStackList is I/O and CPU optimal not only for queries
with only ancestor-descendant edges, but when queries
contain parent-child edges below non-branching nodes, the
intermediate results can be guaranteed to be a subset of
that in previous algorithms.

In this paper, motivated by the property the existing
prime number labeling scheme [10] when determining the
relationships of nodes, we proposed a new labeling scheme,
called Pri-order, which can quickly determine the
relationships between nodes and efficiently support the
dynamic updating of XML document tree . To reduce the
intermediate results size of query twig pattern further, a
modified join algorithm: TLP is proposed based on the Pri-

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

145

order labeling scheme. The new algorithm has the same
performance as TwigStack and TwigStackList when
queries contain only ancestor-descendant edges, but more
efficient than them for queries with the presence of parent-
child edges below the branching nodes.

The rest of paper is organized as follows. We first
discuss the related works about twig pattern in section 2.
The novel algorithm is presented in section 3. We report
the experimental results in section 4 and section5 we
conclude this paper.

2. Related Works

2.1 Data Model and Query Twig Pattern

XML uses a tree structure model for representing data, an
XML database is a forest of ordered and labeled trees,
where nodes represent element, attributes and texts, and
edges represent element-subelement, element-attribute and
element-text relationships. Most existing query processing
algorithms use a labeling scheme to present the
information of position of a tree node. These labeling
schemes can support efficiently evaluation of structural
relationships. In our paper, we use Pri-order labeling
scheme to label the node in the tree. We will explain the
labeling scheme in section2.3. Figure 1 shows the tree
representation of a XML document. We don’t give labels
(described in ()) of all nodes in the tree for the
limitation of space.

Fig. 1 Tree representation of a XML document

Most of XML query languages like XQuery [2] make
use of twig pattern to match relevant portions of data in an
XML database. Twig pattern nodes may be elements,
attributes and texts. Twig pattern edges are either parent-
children relationships (denoted by ‘/’) or ancestor-
descendant relationships (denoted by ‘//’). If a node has
more than one child, then we call this node a branching

node. Otherwise, when the node has only one child, it is a
non-branching node. For example, the XQuery expression:
Book [title = ‘XML’ and year= ‘2002’] can be represented
as the twig pattern in Figure2 (a). Only parent-children
edges are used in this case. Similarly, the XQuery
expression: book [title = ‘XML’]//author [family = ‘xiao’
and given= ‘yue’] can be represented as the twig pattern in
Figure2 (b). Note that an ancestor-descendant edge is used
between the book element and the author element, title is a
non-branching node and author is a branching node in this
twig pattern.

Fig. 2 Queries twig pattern

2.2 Twig pattern Match

Given a query twig pattern Q and an XML database D, a
match of Q in D is identified by a mapping from nodes in
Q to elements in D, such that: (1) query node predicates
are satisfied by the corresponding database elements, and
(2)the parent-children and ancestor-descendant
relationships between query nodes are satisfied by the
corresponding database elements. The answer to query Q
with m nodes can be represented as a list of m-ary tuples,
where each tuple (q1, q2… qm) consists of the database
elements that identify a distinct match of Q in D.

For example, a query twig pattern in Figure2 (b), and
the data tree in Figure 1, we need to find all the accurate
occurrences of twig pattern of Figure2 (b) in the database
corresponding to Figure 1.

2.3 Pri-order Labeling Scheme

XML tree structures must be preserved explicitly when
XML documents was accessed. One method is to assign
labels for the nodes in XML tree. We can capture the
structural information of XML documents and perform the
twig pattern matching based on the labels alone without
traversing the original XML documents.

For designing a proper labeling scheme for XML
documents, various methods have been proposed, they can
be divided into two kinds: one is region-based [11, 12], the
other is prefix-based [13, 14]. Most of joins algorithms are
based on the region labeling scheme, which is not flexible

family

XML
(26,0,3)

title
(2,0,2)

Book(1,0, 1)

given given

title

chapter
(11,4,2)

zheng da yue xiao

family yin family

author 2002

year
(5,2,2)

qian

given author

authors
(7,3,2)

editor
(3,1,2)

XML

(b)

family given

author year

book

title

XML 2002

book

title

XML

xiao yue
(a)

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

146

for processing the dynamic updating of XML document
tree.

In this paper, we proposed a new labeling scheme for
XML document based on the existing prime number
labeling scheme, called Pri-order labeling scheme. It
allocates a 3-tuple (pri, ord, level) for each node in XML
document tree structure, to represent the position of node,
it also can succinctly captures structural relationships
between nodes in the XML database.

pri is unique integer gained with exploiting the prime
number labeling scheme. The prime number labeling
scheme exploits the unique property of prime numbers to
label the nodes, in this labeling scheme each non-leaf node
is given a unique prime number by width-first traversal of
the XML tree, and the label of each node is the product of
its parent node’label and its own allocated one, the label of
node is divided only by its ancestor’s label. Note that the
first part of Pri-order utilizes the property of the prime
number labeling scheme, is good for dynamic updates of
document. When a new node is inserted, it is easy to
assign a prime number that has not been assigned before as
its own one for the new inserted node, no re-labeling is
required in this part. In Pri-order labeling scheme the
ancestor-descendant relationship between any two nodes is
checked efficiently by this part of label of node, we only
check whether the Pri of the ancestor node is divided by
the Pri of the descendant node or not.

ord is a integer, denotes the sibling order of nodes
with the same parent, the order of first child of node is
zero. ord makes sure the order between nodes with the
same parent node. In this scheme, only sibling order is re-
labeled, when updating occurs in document, the pri and
level are not affected. The range of re-labeling is small,
only the following sibling nodes which have same parent
node with inserted node need to be re-labeled.

level is the level where node locates, the level of the
root node is one. By pri and level we can determine the
parent-child relationships of nodes. For the relationships of
any two nodes n1 and n2 in the document tree, n1 is
ancestor of n2 if and only if n2.pri mod n1.pri = 0, for the
parent-child relationship, we also check whether n1.level
=n2.level-1.

3. Twig Join Algorithm

In this section, we present a new join algorithm for finding
all matches of a query twig pattern against an XML
document; it is a modification of TwigStackList based on
the Pri-order labeling scheme. We introduce some
notations and data structures which will be used by this
join algorithm first.

3.1 Notation and data structures

A query twig pattern can be represented with a small tree.
The node operations are defined as follows: function
isRoot(n) examines a query node is a root or not, and
isLeaf(n) examines a query node is a leaf node or not,
IsBranching(n) examines whether a query node. The
function children(n) gets all child nodes of n, and
PCRchildren(n), ADRchildren(n) return child nodes which
have the relationships of parent-child or ancestor-
descendant with n in the query twig pattern, respectively.
That is PCRchildren(n)∪ADRchildren(n) = children(n).
The two operations ancestor (e) and descendant (e) over
elements in the document return the ancestors and
descendants of e, both including e respectively. In the rest
of paper, “node” refers to a tree node in the twig pattern,
while “element” refers to an element in the data set
involved in a twig join.

There is a data stream Tn associated with each node n
in the query twig. We use Cn to point to the current
element in Tn. Function end (Cn) tests whether Cn is at the
end of Tn. We can access the attribute values of Cn by
Cn.pri, Cn.ord and Cn.level. The cursor can be forwarded to
next element in Tn with the procedure advance
(Tn).Initially, Cn points to the first element of (Tn).

Our algorithm will make use of two types of data
structure: list and stack. Given a query twig, we associate a
list Ln and a stack Sn with each node n in the twig pattern.

The use of stack in our algorithm is similar to that in
previous join algorithm, each data node in the stack
consists of a pair :(positional representation of an element
from Tn, pointer to an element in Sparent(n)). The operations
over stack are: empty, pop, push, top.pri, the last operation
returns the pri attribute of the top element in the stack. At
every point during computation: (i) the nodes in stack Sn
(from bottom to top) are guaranteed to lie on a root-leaf
path in the XML database. (ii) The set of stacks contain a
compact label of partial and total answers to the query twig
pattern.

For each list Ln, we declare an integer variable pn, as
a cursor to point to an element in the list Ln, we use
Ln.At(pn).pri, Ln.At(pn).ord and Ln.At(pn).level to get the attributes
of element in list Ln which pn points to. At every point
during computation: elements in each list Ln are strictly
nested from the first to the end. The operations over list
are delete (pn) and append (e), the first operation delete the
element pointed by pn in list Ln and the last operation
appends element e at the end of Ln

 3.2 Twig Join Algorithm: TJP

Algorithm TJP returns results to a query twig pattern,
it operates in two phases. In the first phase it repeatedly
calls the getNext algorithm with the query root as the

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

147

parameter to get the next node for processing. We output
solutions to individual query root-to leaf paths in this
phase. In the second phase, these solutions are merge-
joined to compute the answer to the whole query twig
pattern.

In section 3.2.1, we give the algorithm TJP, and
section 3.2.2 presents the getNext algorithm, which was
called in algorithm TJP.

3.2.1 Main Algorithm
In this section we will show algorithm TJP: a modified
algorithm of TwigSatckList based on the Pri-ordering
labeling scheme. It calls getNext(n) to get next processed
node n repeatedly, when n is a branching node, we make
sure the elements in list Ln must participate in the final
solution, otherwise we will delete it from the Ln. the
following describes the details of modified algorithm.

Algorithm TJP
Begin
1: while (! end (n)) do
2: g = getNext (root)
3: if (! isRoot (g)) then
4: clearStack(Sparent(g),g, getpri(g))
5: end if
6: if (isroot(g)∨!empty(Sparent(g)))then
7: clearStack(Sn,g, getpri(g))
8: movetoStack(g, Sg, pointertotop(Sparent((g)))
9: if (isLeaf(g)) then

10: showSolutions(Sg)
11: pop (Sg)
12: end if
13: else
14: proceed (g)
15: end if
16: end while
17: MergeSolutions ()
End

Function end ()
1: return ni ∈ descendant (n):isLeaf(ni)∧ end(Cn);

Procedure movetoStack(n, Sn, p)
1: push (getElement(n), p) to stack Sn;
2: proceed (n);

Procedure clearStack (Sn,n, g.pri)
1: while (! empty (Sn) ∧ (g.pri mod toppri(Sn) !=0))do
2: pop (Sn);
3: end while

In algorithm TJP, line 2 calls getNext algorithm to
identify the node to be processed. Line 4 and 7 remove
partial answers from the stacks of parent (g) and g that can
not contribute to the final answer. If n is not a leaf node,

we will push element eg into Sg, otherwise output all path
solutions involving element eg(line10), the individual
solutions should be output in root-to-leaf order so that they
can be easily merged together to get final twig query
results(line17).

3.2.2 getNext Algorithm

Algorithm getNext (n)
Begin
1: if (isleaf (n)) return n;
2: for each node ni in children (n) do
3: ri=getNext (ni);
4: if (ri! =ni) return ri;
5: end for
6: nmax= maxarg ni∈children(n) getpri(ni);
7: nmin=minarg ni∈children (n) get pri(ni);
8: while (getpri (nmax) mod getpri (n)! =0) proceed (n);
9: if (getpri (n) mod getpri(nmin) =0) return nmin;

10: moveStreamtoList(n,nmax)
11: if (isBranching(n))
12: for each ei in Ln ∈MB (nmin,n)
13: if (ei! ∈ancestor (emax)) delete (Ln,ei);
14: end for
15: end if
16: for each node ni in children (n) do
17: if (there is an element ei in list Ln such that ei is the

parent of getElement(ni))then
18: if (ni is the only child of n) then
19: move the cursor pn of list Ln to point to ei;
20: end if
21: else return ni;
23: end if
24: end for
25: return n;
End

Procedure getElement(n)
1: if (! empty (Ln) then
2: return Ln.elementAt(pn);
3: else return Cn;

Procedure getPri(n)
1: return the pri attribute of getElement(n);
Procedure moveStreamtoList(n,m)

1: while (getpri(m) mod Cn.pri =o) do
2: Ln.append(Cn);
3: advance (Tn);
4: end while

Procedure proceed (n)
1: if (empty (Ln) then
2: advance (Tn);
3: else

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

148

4: Ln.delete(Tn);
5: pn=0{move pn to point to the beginning of Ln}
6: end if

Function MB (n,b)
1: if (isBranching(n)) then
2: let e be the maximal element in list Ln
3: else
4: let e =current (Tn)
5: end if
6: return a set of element a that is an ancestor of e such

that a can match node b in the path solution of e to path
pattern pn

Procedure deleteList (Ln, e)
Delete any element a in the list Ln such that a! ∈ancestors
(e) and a! ∈descendants (e)

The getNext(n) is a procedure called by the join
algorithm TJP, it returns a node n’ (possibly n’ = n) with
three properties: assume that element en’= getElement(n’)
then(i)en’ has a descendant in each of stream Tni for ni ∈
children(n’); and (ii) if n’ is not a branching node in the
query, element en’ has a child eni in Tni, where ni ∈
PCRchildren(n’)(if any); and (iii) if n’ is a branching node,
it must contribute to the final answer of query, there is an
element eni in each Tni such that there exists an element
ei(with tag n)in the path from en’ to enmax that is the parent
of eni, where ni∈PCRchildren(n’)(if any) and enmax has the
maximal pri attribute for all children(n’)

At line2-5, the algorithm getNext repeatedly calls
itself for each ni∈ children (n). If the returned node ri is
not equal to ni, the algorithm immediately return ri.
Otherwise, it will try to get a child of n which satisfies the
above three properties. Line6 and line7 get elements which
have max and min pri attribute for the current head
elements in lists or streams, respectively. Line 8 skips the
elements that do not contribute to the final results. If no
common ancestor for all Cni is found, Line9 returns the
child node with the smallest pri value. At line 10, we look-
ahead some elements in the stream Tn and cache elements
that are ancestors of Cnmax into the list Ln.

Line11-15 are important steps, for the branching node
element ei in list Ln, if it does not participate in the solution
of the future elements in other streams, we will delete it
from the list Ln. Note that these steps are key difference
between TwigStackList and TJP. By these steps we can
make sure the elements in Ln must contribute to the final
solutions, the previous one will return the branching nodes
that may result in many “useless” intermediate results.
Algorithm TJP evaluates all branching nodes; they will be
deleted from cache list Ln when they don’t participate in
the final answer.

Example1. Find a query twig pattern on a document
in figure 3.TwigStackList will cache elements a1 and a2 in
list La, c1 and c2 in list Lc, then moves a1, c1 and c2 into
stack Sa and Sc, respectively. Different from TwigStackList,
the TJP algorithm will delete c2 from list Lc, only pushes c1
into list Lc, because c2 does not contribute to the final
answer of query, so it does not output the solution<c2, e1,
g1>. At last our algorithm merges only individual path
solutions<a1, b1> and <a2, c1, d1, f1, e1, g1> to get the final
query result.

Fig. 3 Example twig query and documents

3.2.3 Analysis of Algorithm
In this section, we discuss the correctness and the
complexity of TJP, and then we analyze its complexity.
Finally, we compare TJP with TwigStackList in terms of
the size of intermediate results.

TJP is similar to TwigStackList, for any node n in the
twig query we have getNext (n) =n’. Then (1) n’ has the
child and descendant extension. (2) either (i) n =n’ or (ii)
parent (n) does not have the child and descendant
extension because of n’ or a descendant of n’.
Lemma1. In procedure deleteList of Algorithm getNext,
any element e that is deleted from list Ln does not
participate in any solution.

Lemma 1 shows that any element deleted from list
dose not participate in individual root-leaf solutions, so it
doesn’t contribute to the final result, the deletion is safe.
Any element e that matches a branching node, if e
participates in any final answer, then e occurs in the
corresponding list.
Lemma2. At our algorithm TJP, elements in stack Sn are
strictly nested; each element is a descendant of the element
below it.

We push new element into the stack only in
Procedure movetoStack, there are two cases for
relationship between the new element enew to be pushed
into stack and the existing top element etop in stack.

Case 1: There is not the ancestor-descendant
relationship between two nodes; the element etop will be

g1 (b)Doc

a2 b1

a1

f g

e d

c b

a

c1

c2 d1

f1 e1

(a)Q1

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

149

popped in procedure clearStack. So the case is
impossible.

Case 2: They are the ancestor-descendant
relationship; in this case, enew will be pushed into the
stack safely.

Lemma3. In TJP, any element which is popped from the
stack Sn does not contribute to any new solution any more.

For the first call of clearSatck in line 4 of main
algorithm, suppose on the contrary, there is a new solution
involving the popped element epop, we can note line 1 of
clearStack, if g.pri mod epop.pri! = 0, the element epop will
be popped from the stack. And epop can not involved in any
element in the path from the root to eparent(n) and after
eparent(n), it is a contradiction.

For the second call of clearStack in line 7, according
to the containment property, the elements popped form the
stack are descendant of en, they don’t participate in any
new solutions any more. There no element is a child of epop
in the rest of elements in Tchildren(n), so epop does not
participate in any new solutions.

These lemmas are important to determine the
correctness of the following theorem.
Theorem1. Given a twig query Q and an XML database D,
Algorithm correctly returns all the answers for Q on D.
Proof (sketch): Using the lemmas, we know that when
getNext returns a query node n, if the stack of n’parent is
empty, the head element of Ln does not contribute to any
final solutions. Any element in the ancestors of n that use
en in the descendant and child extension is returned by
getNext before en. For branching nodes, we make sure
they must contribute to the finial solutions before they was
push to stack, finally, when n was returned by getNext is a
leaf node, we output all solutions that use en.

While the correctness holds for query twig patterns
with both ancestor-descendant and parent-child
relationships in any edges, TwigStackList can be proved
optimality only for which parent-child relationships appear
only in edges below non-branching nodes, thus algorithm
TJP is optimal for parent-child relationships below
branching node, according to lemma 2, we are guaranteed
that branching node en is pushed into stack, only when en
has really participated in the finial solutions.
Theorem2. Consider a query twig pattern Q with m nodes
and an XML database Q. the worst case I/O complexity of
algorithm is linear in the sum of the size of input and
output lists. The worst case space complexity is
proportional to m times of the maximal length of a root-
leaf path in D.

For the limitation the space, we do not give the proof
the theorem 2. It is important to note that, we delete the
branching node element which does not participate in the
final solutions from the list. The experiment results were
shown in section 4, our join algorithm output less
intermediate solutions than TwigStackList. The reason is

our algorithm deleted the branching node elements which
don’t contribute to the final answers, thus, it pushed fewer
elements into stack and thereby less intermediate results
were outputted.

4. Experiment Evaluations

We present experimental results on the performance of the
twig pattern matching algorithms in this section with real
datasets. We evaluated the performance of these
algorithms using the following datasets, experiment
checked the size of intermediate results compare our
algorithm with TwigStack and TwigStackList.

4.1 Experimental Setting

We implemented all algorithms in JAVA. All our
experiments were performed on Pentium 4 2.4 G
processor; with 512MB RAM running on windows XP
system. We used the datasets DBLP and TreeBank for our
experiment; the two datasets have different properties:
DBLP is a shallow and wide document, but TreeBank has
very deep recursive structure. We summarize the
properties of two datasets in table1.

Table 1: XML Datasets
 DBLP TreeBank
Data size(MB) 130 22.8
Nodes(million) 3.3 2.4
Max/Avg depth 6/2.9 36/7.8

4.2 Twig Queries

Now we give the experimental results of twig queries,
compared TJP with the TwigStackList. We tested several
XML query on DBLP and TreeBank data in table 2. These
queries have different twig structures and combinations of
parent-child and ancestor-descendant relationships. In
particular, query Q1 contains only ancestor-descendant
relationships, while Q2 contains only parent-children
relationships. Q3contains only ancestor-descendant
relationships between the branching node and its children,
while Q4 contains a branching node with both parent-child
and ancestor-descendant relationships.

Table 2: X Twig queries on DBLP and TreeBank
 Dataset Twig queries
Q1 DBLP //article[//sup]//title//sub
Q2 TreeBank /S/VP/PP[IN]/NP/VBN
Q3 TreeBank /S[//VP/IN]//NP
Q4 TreeBank //VP[DT]//PRP-DOLLAR

We analyze the query performance of algorithms

TwigSatck, TwigStackList and TJP, all the join algorithms
need to scan the all elements for nodes; they have the same

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

150

cost of disk access. Thus, for the size of intermediate
results, we mainly examined the results of queries with
parent-child relationships. Table 3 shows the number of
intermediate solutions and the final answers of queries Q2,
Q3, Q4. From table 3, we can see, all join algorithms are
all sub-optimal. The number of intermediate path solutions
of Twigstack is largest, over 95% useless intermediate
solutions generated by it. The other two algorithms have
almost same performance, the intermediate solutions
generate by them are slightly large than the number of
useful solutions. But compared with the TwigStack and
TwigStackList, TJP is more efficient, especially query with
parent-child relationships below the branching nodes, like
query Q2.

Table 3: Number of intermediate solutions

 Algorithm
Query

Twig
stack

TwigStac
k

List
TJP Useful

Q2 2237 388 337 302
Q3 702391 22565 22565 22565
Q4 10663 9 9 5

On the other hand, we also can check the query

execution time of join algorithms based on different
labeling scheme. Figure 4 shows the execution time of TJP
and TwigStackList for queries Q2, Q3, Q4, the two
algorithms are based on the region labeling and the Pri-
order labeling scheme respectively.

Fig. 4 Queries execution time of two join algorithm
From the figure 4, we can see the algorithm TJP

adopts the Pri-order labeling scheme, the relationships
between nodes can quickly be determined; it can reduce
the time for reading the input. For the number of branching
nodes is reduced in stack, it also can save up the execution
time.

Compared all results of experiment we note that TJP
outperforms TwigStack and TwigStackList under the
dataset. The improvement is due to the facts that for query
with branching nodes, they must contribute to the final
answer before the branching nodes were moved to the list.
With this technique, the size of intermediate results is

reduced; and use the advantage of the labeling scheme for
determining the relationships among nodes, the query
execution time is saved up.

5. Conclusions

XML twig pattern matching is a key issue for XML query
processing. In this paper, we propose an efficient
algorithm for query XML twig pattern, called TJP. It is a
modification of TwigStackList using Pri-order labeling
scheme. This labeling scheme can determined the
relationship of any nodes quickly without traveling the
original document; it is insert-friendly in the context of
dynamic update of XML trees. The most important
technique of TJP is when processing query with parent-
child relationships below branching node, we guaranteed
that the branching node elements in list must contribute to
the finial answers, or else we delete it from list. The
number of intermediate path solutions for query twig
pattern is much smaller than previous algorithms.
Compared with TwigStackList and TwigStack, the
experimental results showed that our method TJP is more
efficient, especially for queries with parent-child edges
below the branching node.

Acknowledgment

As authors, we would like to express our cordial thanks to
reviewers for their valuable advice.

References
[1]A.Bergund, S.Boag, et al. XML Path Language (XPath) 2.0,

W3C Working Draft 22 August 2003.
[2]S.Boag, D,Chamberling et al.XPaht 1.0: An XML Query

W3C , Working Draft 22 August 2003.
[3]N.Bruno,D.Srrivastave,D.Koudas. Holistic Twig Joins:

optimal XML Pattern Matching. In proceedings of ACM
SIGMOD, 2002, P310-321.

[4]S.Al-Khalifa, H.V.Jagadish, N.Koudas et al. Structural joins:
A Primitive for efficient XML query pattern matching, In
Proceedings of ICDE conference, 2002, P141-152.

[5]J.Mchugh, J.widom. Query Optimization for XML. In
Proceedings of VLDB, 1999, P315-326.

[6]T.chen, J. Lu, T. Ling. On Boosting Holism in XML Pattern
Matching using Structural Indexing Techniques. In
Proceedings of ACM SIGMOD, 2005, P455-466.

[7]H.Jiang,W.Wang, H.Lu. Holistic twig joins on indexed XML
documents. In proceedings of VLDB, 2003, P273-284.

[8]C.Zhang, J.Naughton, D.Dewitt et al.On Supporting
Containment Queries in Relational Databases Management
System. In Proceedings of ACM SIGMOD, 2001, P425-436

[9]J. Lu, T.Chen, T.Ling. Efficient Proceeding of XML Twig
Patterns with Parent-Child Edges: a Look-ahead Approach. In
CNKI, 2004, P533-542.

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

0

2

4

6

8

10

12

14

16

Q2 Q3 Q4

TwigStackList

Our algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.7A, July 2006

151

[10]X.Wu, M.Led, W.Hsu. A Prime Number Labeling Schemes
for Dynamic Ordered XML Trees Proceeding of the 20th
International Conference on Data Engineering ICDE ,2004:
66-78.

[11]SihemAmer-Yahia,MaryFernandex,Davesh Srivastava,Phase
Matching in XML, proceeding of the 29th VLDB Conference
Berlin Germany,2003; 177-188.

 [12] Dietz PF. Maintaining order in a linked list. Proc of the
Annual ACM Symposium on Theory of Computing
SanFrancisco, Cali-fomia, May l982:122-127.

[13] E.Cohen,H.KapLan and T.Milo, Labeling Dynamic XML
Tree ,In PODS,2002:271 – 281.

[14]H.Kaplan, T.Milo and R.Shabo, A comparison of Labeling
Schemes for Ancestor Queries in SODA,2002, 954-963.

Ren Jiadong received the B.E
and M.E degrees, from Northeast
Heavy Machine College in 1989
and 1994; respectively.He
received the Dr. Comp. degree
from Harbin Institute of
Technology Univ. in 1999. After
working as a teacher (from 1989),
an assistant professor (from 1999)
in the Yanshan Univ., and he has
been a professor at Yanshan

Univ. since 2005. His research interest includes Space-time
Database, XML Data Model and Data Mining, and their
applications. He is a member of IEEE SMC Society China and
director of Electrical Education Consortium of Hebei Province of
the China.

Yue Liwen received the B.E
from Jilin Normal Univ. in 2000.
She is a postgraduate of
YanShan Univ. from 2000. Her
main research interest is the
query and storage of XML data

